Flushable tampon applicators

Information

  • Patent Application
  • 20030040695
  • Publication Number
    20030040695
  • Date Filed
    August 31, 2001
    23 years ago
  • Date Published
    February 27, 2003
    21 years ago
Abstract
Disclosed are flushable tampon applicators which comprise a combination of thermoplastic materials and filler such as calcium carbonate and talc, and which readily disintegrate in water such as toilet water for improved disposal and reduced environmental concerns regarding the destruction of these applicators. The flushable tampon applicators comprise a combination of high molecular weight polyethylene oxides, low molecular weight polyethylene glycols, biodegradable polymers, and filler, wherein this combination of water-dispersible thermoplastic polymers, biodegradable thermoplastic polymers, and filler provide flushable tampon applicators that are readily disposed of and that are smooth, soft, flexible, and non-sticky or non-slimy to the touch before and during use.
Description


FIELD OF THE INVENTION

[0002] The present invention relates to plastic tampon applicators which are readily disposed in a sewage system and/or by biodegradation. In particular, the present invention relates to flushable tampon applicators which are made from thermoplastic materials that are suitable for disposal in a toilet system.



BACKGROUND OF THE INVENTION

[0003] Feminine hygiene products such as tampons are commonly used by female consumers. Tampons can be described as a feminine hygiene article that has an absorbent device (i.e., pledget) withheld in a paper or plastic applicator.


[0004] Paper and plastic tampon applicators typically comprise an outer tubular member and a plunger for insertion of the pledget, whereby these components of the paper and plastic applicators are generally made from paper, paper coated, and plastic materials which retain their form during use and are shelf-stable under ambient conditions.


[0005] In addition to absorbent pledget devices, paper tampon applicator components are suitable for disposal via a sewage system or by biodegradable waste disposal means. Therefore, paper tampon applicators are considered environmentally friendly in that these paper tampon applicators can readily disintegrate in a sewage system and/or can be disposed of through aerobic, anaerobic, and natural degradation processes. However, paper tampon articles are not very popular among females due to some tampon's pledget insertion difficulties associated with the use of a paper tampon applicator.


[0006] Certain female consumers prefer plastic tampon applicators because the plastic applicators are made with a grip ring and petal-shaped forward end which facilitate ease of insertion of a tampon's pledget, although plastic tampon applicator components are not easily disposed of as compared to paper applicator components. Most plastic tampon applicators are made from polyethylene-based polymeric materials that are not biodegradable and that do not readily soften or break-up into smaller fragments for decomposition in a sewage system, resulting in increased environmental concerns for the disposal of plastic tampon applicators.


[0007] Many efforts to address the environmental concerns of the disposal of plastic tampon applicators include the manufacture of tampon applicators from thermoplastic materials other than polyethylene polymers. Such attempts include tampon applicators made from water-soluble materials, water-dispersible materials, biodegradable materials, photodegradable materials, ultraviolet light degradable materials, or combinations thereof. In particular, one attempt to address the disposal of plastic tampon applicators involves the use of plastic applicators made from biodegradable polymers such as polyvinyl alcohol polymers. It is known that tampon applicators made primarily from polyvinyl alcohol are water-dispersible and biodegradable, however, such applicators have been shown to suffer from issues involving moisture sensitivity, stability, odor, and stickiness.


[0008] Other attempts in addressing the disposal of plastic tampon applicators include plastic tampon applicators made from other water-soluble materials such as polyethylene oxide polymers, thermoplastic starch, and hydroxypropyl cellulose; plastic tampon applicators made from combinations of water-soluble and water-insoluble/biodegradable materials such as combinations of polyvinyl alcohol and polycaprolactone, combinations of polyethylene oxide and polycaprolactone, combinations of polyethylene oxide and polyolefins such as polypropylene and polyethylene; and combinations of polyvinyl alcohol and polyethylene oxide polymers.


[0009] An example of a plastic tampon applicator constructed from a combination of polyvinyl alcohol and polyethylene oxide is disclosed in U.S. Pat. No. 5,395,308. This plastic tampon applicator is described as being constructed to exhibit accelerated break-up and rapid disintegration in liquid such as water so that the plastic applicator can dissolve over an extended period of time without causing problems in sewage systems such as a waste treatment facility. The slow dissolution rate of these plastic tampon applicators can lead to the clogging of toilet systems and/or drain pipes because of the extended time required for these plastic applicators to initially come in contact with liquid such as toilet water and eventually reach waste disposal means at a waste treatment facility, especially if multiple plastic applicators are suited for disposal. Furthermore, plastic tampon applicators comprising polyvinyl alcohol have been known to become sticky when wet causing the applicator to stick to drain pipes which can result in repeated flushings to dispose of the applicator and to prevent clogging of toilet systems and/or the drain pipes.


[0010] Therefore, the need exists for the manufacture of plastic tampon applicators made from thermoplastic materials that are flushable and can not only readily lose their structural integrity as for example breaking apart in unrecognizable pieces in a sewage system such as a toilet, but that can readily soften, disperse, disintegrate, and/or dissolve in a toilet for clear passage through the toilet to a municipal waste treatment facility. The tampon applicator components should also be anerobically and/or aerobically biodegradable, as well as provide for a flushable tampon applicator that is not slimy, sticky, or tacky to the touch before and during use.


[0011] To increase the flushability of plastic tampon applicators and to improve the applicator aesthetics, ingredients such as fillers, plasticizers, processing aids, dispersing agents, lubricants, resin modifiers, clarifying/nucleating agents, viscosity modifiers, and so forth are often included in the manufacturing of the applicator. These ingredients help in the process of the plastic tampon applicator as well as provide improved structural characteristics to the final applicator product form. For example, plasticizers can increase flow and thermoplasticity of plastic materials by decreasing parameters such as the viscosity of polymer melts, the glass transition temperature, and the elasticity modulus of finished products to result in flushable plastic tampon applicators that have improved softness and flexibility. Lubricants are typically included as mold release agents and slip/anti-blocking agents to increase the overall rate of processing and to improve surface properties. Lubricants have been shown to improve product properties such as brightness, heat stability during processing, light stability, better additive dispersion, and improved optical and mechanical properties. Clarifying/nucleating agents are generally used to increase the crystallization rate, reduce the size of crystals, and improve transparency. Nucleating agents can also improve the meltflow and demolding behavior of partly crystalline plastic materials such as thermoplastic polyesters.


[0012] It has been found, however, that fillers such as calcium carbonate and talc, are especially effective in providing for plastic applicators that are nonsticky when wet, shelf stable, have a smooth, soft texture and improved flushability. Filler materials are also important ingredients for use in the processing of the plastic applicators because they can assist in preventing the thermoplastics from sticking to the surface of processing equipment, reducing processing cycle time, acting as additional mold release and slip/anti-blocking agents, and increasing productivity. Another advantage of constructing flushable plastic tampon applicators with filler ingredients is the reduced cost to manufacture these applicators, especially when an acceptable flushable, plastic applicator can be constructed with low cost fillers to reduce the use of more costly thermoplastic material.


[0013] Thus, not only does the need exist for plastic tampon applicators that are readily flushable, but there's also a need to provide flushable, plastic tampon applicators that meet consumer acceptability for their structural integrity and aesthetic characteristics of smoothness, flexibility, reduced stickiness, stability, and the like.



SUMMARY OF THE INVENTION

[0014] The present invention is directed to flushable tampon applicators which comprise (a) from 0% to about 90% by weight of a water-dispersible polymer; (b) from about 10% to about 50% by weight of a biodegradable polymer, and (c) from 0% to about 50% by weight of a filler.


[0015] The present invention is also directed to a method of making flushable tampon applicators wherein the method comprises (a) preparing a thermoplastic composite comprising (i) from 0% to about 90% by weight of a water-dispersible polymer; (ii) from about 10% to about 50% by weight of a biodegradable polymer; and (iii) from 0% to about 50% by weight of a filler; and (b) injection molding the thermoplastic composite into molded thermoplastic components used to construct the flushable tampon applicator.


[0016] It has been found that flushable tampon applicators can be made from a combination of thermoplastic materials, especially a blend of water-dispersible polymers such as high molecular weight polyethylene oxides and low molecular weight polyethylene glycols, and biodegradable polymers such as aliphatic/aromatic copolyesters, to result in flushable tampon applicators that readily disintegrate in a septic tank such as a toilet and are easily disposed of with minimal or no environmental issues. The flushable tampon applicators of the present invention comprise a combination of water-dispersible and biodegradable thermoplastic polymers which provide for improved disposal properties of the applicators. These applicators are capable of being flushed down a toilet or any other sewage system without causing drainage problems such as clogging, and are capable of biodegradation disposal using commonly employed biodegradation means.


[0017] It has also been found that flushable tampon applicators have improved flushability and aesthetics when filler components are included in the construction of the applicators. The flushable tampon applicators are preferably constructed such that the filler is melt blended with the thermoplastic materials to form a composite mixture of filler particles and thermoplastic material, wherein the filler particles are uniformly dispersed throughout the applicator. The filler aids in the processing of the thermoplastic materials into final flushable plastic tampon applicator product forms that have improved flushability in addition to being nonsticky when wet, shelf stable, smooth, and soft to the touch.







BRIEF DESCRIPTION OF THE DRAWINGS

[0018] While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the present invention, it is believed that the invention can be more readily understood from the following description taken in connection with the accompanying drawings, in which:


[0019]
FIG. 1 is a perspective representation of a flushable tampon applicator (10) of the present invention made from a blend of thermoplastic materials. The flushable tampon applicator is comprised of a thermoplastic outer tubular member (11) and a thermoplastic inner tubular member or plunger (12). The outer tubular member (11) can be any known or otherwise effective thermoplastic, one-piece, hollow cylindrical body that has a plurality of flexible petal tips (13) extending from and disposed on the front end of the outer tube. The outer tubular member (11) functions to contain or house an absorbent device such as a pledget (not shown), and typically has a finger grip ring (14) formed on the opposite end of the outer tube wherein the finger grip ring has one or more ribs or protusions (15) on its exterior to provide a gripping surface to assist a user in holding the flushable tampon applicator (10). The finger grip portion of the outer tubular member (11) can be of other configurations such as gripping rings having score lines, ridges, dimples, one or more flat surfaces, a roughed surface, and so forth.


[0020] The inner tubular member or plunger as referred to hereinafter (12) includes any known or otherwise effective thermoplastic plunger designed to be slidable and telescopically mounted within the finger grip ring (14) such that the plunger (12) can urge the pledget through the flexible petal tips (13) for insertion of the pledget into a woman's vagina.


[0021]
FIG. 2 is a cross-sectional view of a flushable tampon applicator of the present invention depicting a pledget absorbent device (16) positioned in the thermoplastic, cylindricallly shaped outer tubular member (11). A withdrawal string (17) is permanently attached to one end of the pledget (16) and provides a means of withdrawing the soiled tampon pledget (16) from a woman's vagina.


[0022]
FIG. 3 is a perspective view of a flushable tampon applicator (20) of the present invention having an outer tubular member (18) and a plunger (19), both of which are constructed from a composite of thermoplastic materials. The composite structure includes one or more units of water-dispersible thermoplastic polymers (21) affixed to one or more units of biodegradable polymers (22) such that the units are arranged in an alternating striped configuration. The composite structure can also be constructed such that the alternating units of water-dispersible and biodegradable polymers are arranged in a concentric ring configuration or a layered structure of composite materials.


[0023] It should be noted that although the outer tubular members (11) and (18) are shown as having cylindrical shapes, the outer tubular members(II) and (18) can also be of square, elliptical, conical, or oval configurations. Likewise, the plungers (12) and (19), which are typically of an oval configuration, can be configured in other shapes such as square, hemispherical, conical, and elliptical. The outer tubular members and plungers described herein can be constructed from clear, translucent, transparent, colored, or opaque thermoplastic materials, or combinations thereof.







DETAILED DESCRIPTION OF THE INVENTION

[0024] The flushable tampon applicators of the present invention comprise an outer tubular member and plunger made from water-dispersible and biodegradable materials that provide for tampon applicators that are readily disposed by flushing the applicator down a toilet, by biodegradable means, and/or by waste disposal means at a municipal waste treatment facility.


[0025] The term “flushable” as used herein refers to materials which are capable of softening, dissolving, dispersing, disintegrating, and/or decomposing in a septic tank such as a toilet to provide clearance when flushed down the toilet without clogging the toilet or any other sewage drainage pipe.


[0026] The term “water-dispersible” as used herein refers to materials that readily break apart in unrecognizable pieces upon contact with water as a result of dissolution, solubilization, dissipation, agitation, softening, or any other chemical or mechanical dispersion means.


[0027] The term “biodegradable” as used herein refers to materials that when disposed of after use will physically and biologically decompose using known degradation procedures including aerobic, anaerobic, and microbial digestion processes. The biodegradable materials described herein include those degradable water-insoluble materials that will also physically and biologically decompose after disposal in a sewage system.


[0028] The term “ambient conditions” as used herein refers to surrounding conditions at about one atmosphere of pressure, at about 50% relative humidity, at about 25° C.


[0029] The water-dispersible and biodegradable thermoplastic polymers described herein can be generally defined according to their weight or number average molecular weight. The weight average molecular weight IMP) of a polymer is the summation of the weight fraction of each molecular species present multiplied by its molecular weight. The number average molecular weight (Mn) of a polymer is the summation of the mole fraction of each molecular species present multiplied by its molecular weight. The molecular weight of polymer materials can typically be determined by Size Exclusion Chromatography (SEC) or Gel Permeation Chromatography (GPC) techniques well known in the art.


[0030] The thermoplastic polymers described herein are used to construct the outer tubular member and plunger components of the flushable tampon applicators of the present invention. These outer tubular member and plunger components each have a density of greater than about 1.0 grams per cubic centimeter (g/cm3) to about 3.0 g/cm3. Thermoplastic components having a density of greater than about 1.0 g/cm3 will easily fall to the bottom of a septic tank such as a toilet, resulting in disposal of the thermoplastic components without the need of repeated flushings. The density of a given thermoplastic material and/or components made from the material, will be dependent upon the degree of interaction of attractive forces between the polymer chains in the material, the degree of crystallinity of the thermoplastic material, and the presence of any additives, fillers or other optional components described herein. Therefore, if an individual thermoplastic material does not have a density of greater than about 1.0 g/cm3, the thermoplastic material can be combined with other thermoplastic materials and/or optional ingredients described herein to make suitable outer tubular members and plungers having a density of greater than about 1.0 g/cm3. Density values of the outer tubular and plunger components herein can be determined by any known or otherwise effective method for determining the density of thermoplastic materials and final products made from these materials.


[0031] The flushable tampon applicators of the present invention can comprise, consist of, or consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, or limitations described herein.


[0032] All percentages, parts and ratios are by weight of the total applicator device, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the specific ingredient level and, therefore, do not include carriers or by-products that may be included in commercially available materials, unless otherwise specified.



Applicator Components

[0033] The flushable tampon applicators of the present invention typically comprise an outer tubular member and a plunger made from any known or otherwise effective thermoplastic materials that can readily soften and disintegrate upon contact with water such as toilet water. The thermoplastic materials are preferably combinations of water-dispersible and biodegradable polymers that are structurally stable before and during use while also being capable of rapid softening and disintegration in a toilet sewage system to provide disposal via the toilet to her enhance any additional disposal such as further disposal treatment of biodegradation and/or municipal waste disposal.


[0034] The outer tubular member and plunger components of the flushable tampon applicator of the present invention can be constructed from the same or otherwise different water-dispersible and biodegradable materials. In other words, the outer tubular member and plunger both can be made from an individual or combination of water-dispersible materials; the outer tubular member and plunger both can be made from an individual or combination of biodegradable materials; the outer tubular member and plunger both can be made from a combination of water-dispersible and biodegradable materials; the outer tubular member can be made from water-dispersible materials and the plunger can be made from biodegradable materials; or the outer tubular member can be made from biodegradable materials and the plunger can be made from water-dispersible materials.


[0035] Construction of the outer tubular member and plunger components from the same or otherwise different combination of materials provide, for example, a flushable tampon applicator that has an outer tubular member with a lower stiffness or hardness relative to the plunger to increase insertion comfort. The outer tubular member and plunger may also be constructed from different combinations of materials to incorporate, for example, a flushability signal, such as a color change or effervescence, to the user. The water-dispersible and biodegradable materials from which the outer tubular member and plunger can be made are described in detail hereinbelow.


[0036] Water-Dispersible Components


[0037] The flushable tampon applicators of the present invention comprise a total of from 0% to about 99%, preferably from about 5% to about 90%, more preferably from about 10% to about 80% of water-dispersible thermoplastic polymers by weight of the applicator. The water-dispersible thermoplastic polymers can be used individually or as a combination of polymers provided that the water-dispersible thermoplastic polymers can readily disintegrate in water, and can be combined with one or more biodegradable polymers described hereinafter.


[0038] The water-dispersible thermoplastic polymers suitable for use herein include those water-dispersible compounds that can readily disintegrate in water such as toilet water while being structurally stable before contact with the water. The terms “structurally stable” and “structural stability” are used interchangeably herein to refer to materials that maintain their molded shape, form, and chemical composition before and during use, and that do not become sticky or slimy to the touch upon contact with moisture-laden air and/or moist human tissue.


[0039] Nonlimiting examples of suitable water-dispersible thermoplastic polymers include high molecular weight polyethylene oxides, low molecular weight polyethylene glycols, polyethylene/polypropylene oxide copolymers, polyethylene/polybutylene oxide copolymers, polyethylene/polypropylene glycol copolymers, thermoplastic starch polymers, polyvinyl alcohols, partially hydrolyzed polyvinyl alcohols, modified polyvinyl alcohols, infrared treated polyvinyl alcohols, cross-linked polyvinyl alcohols such as a polyvinyl alcohol cross-linked with an aldehyde, alkali metal sulfonate thermoplastic polyesters, hydroxyethyl celluloses, hydroxypropyl celluloses, methylated hydroxypropyl celluloses, polyacrylic acids, polyaspartic acids, polymethacrylic acids, polysaccharides excluding sucrose polysaccharides suitable for use as a plasticizing agent herein, proteins, polyvinyl pyrrolidone homopolymers, polyvinyl pyrrolidone copolymers including polyvinyl pyrrolidonelvinyl acetate copolymers and polyvinyl pyrrolidone/acrylic acid copolymers, polyvinyl methyl ether homopolymers, polyoxazolines including polyethyloxazoline and poly(2-isopropyl-2-oxazoline), polyvinyl methyl oxazolidones, polyvinyl methyl oxazolidimones, polyethyleminines, polyacrylamides, polyvinyl methyl ether/maleic anhydride copolymers, water-dispersible polyurethanes, water-dispersible sulfonate polyesters, and mixtures thereof. Preferred water-dispersible thermoplastic polymers include high molecular weight polyethylene oxides and low molecular weight polyethylene glycols.


[0040] Preferred high molecular weight polyethylene oxides and low molecular weight polyethylene glycols suitable for use as water-dispersible thermoplastic polymers herein include those polyethylene oxides and polyethylene glycols which conform to the formula:
1


[0041] and those polyethylene glycols which conform to the formula:
2


[0042] wherein n has an average value of from about 500 to about 180,000, preferably from about 650 to about 50,000, more preferably from about 800 to about 25,000, for high molecular weight polyethylene oxides; and an average value of from about 12 to about 465, preferably from about 12 to about 341, more preferably from about 13 to about 227, for low molecular weight polyethylene glycols. These materials are polymers of ethylene oxide, which are also known as polyethylene oxides, polyoxyethylenes, polyethylene glycols, and polymethoxyethylene glycols.


[0043] Specific examples of preferred high molecular weight polyethylene oxides suitable for use as a water-dispersible thermoplastic polymer herein include, but are not limited to, polyethylene oxides having repeating alkylene oxide radicals in the ranges described hereinabove, and a weight average molecular weight of from about 65,000 daltons to about 8,000,000 daltons, preferably from about 80,000 daltons to about 2,000,000 daltons, more preferably from about 100,000 daltons to about 900,000 daltons. These polyethylene oxide polymers are prepared by methods known in the art for making high molecular weight copolymers and interpolymers of ethylene oxide. For example, the high molecular weight copolymers of polyethylene oxide are prepared using ionic catalysts to react ethylene oxide with oxirane compounds such as styrene oxide, propylene oxide, butylene oxide, and the like. High molecular weight interpolymers of polyethylene oxide are prepared by co-polymerizing polyethylene oxide with one or more vinyl monomers such as N,N-dimethylaminoethyl methacrylate, styrene, methyl methacrylate, 2-methyl-5-vinyl pyridine, acrylonitrile, hydroxyethyl methacrylate, acrylic acid, acrylamide, and the like. Grafted or chemically modified high molecular weight polyethylene oxides are also suitable for use as a water-dispersible thermoplastic polymer herein.


[0044] The weight average molecular weight (Mw) of the high molecular weight polyethylene oxides can be determined by measuring the intrinsic viscosity of a polyethylene oxide material in water at 30° C. The intrinsic viscosity, [η], is correlated to the Mw of polyethylene oxide materials, and can be expressed by the following equation: [η]=1.25×10−4Mw0.78.


[0045] Examples of commercially available high molecular weight polyethylene oxide polymers are the polyethylene oxides which are sold under the tradename POLYOX®, and which are available from the Dow Chemical Company located in Midland, Mich.. Specific examples of such polyethylene oxides include POLYOX® WSR-10 which has a Mw of about 100,000; POLYOX® WSR-80 which has a Mw of about 200,000; POLYOX® WSR-N-750 which has a Mw of about 300,000; POLYOX® WSR-N-3000 which has a Mw of about 400,000; POLYOX® WSR-3333 which has a Mw of about 400,000; POLYOX® WSR-205 which has a Mw of about 600,000; POLYOX® WSR-1105 which has a Mw of about 900,000; POLYOX® WSR-N-K12 which has a Mw of about 1,000,000; POLYOX® WSR-N-K60 which has a Mw of about 2,000,000; POLYOX® WSR-301 which has a Mw of about 4,000,000; POLYOX® WSR Coagulant which has a Mw of about 5,000,000; POLYOX® WSR-303 which has a Mw of about 7,000,000; POLYOX® WSR-308 which has a Mw of about 8,000,000; and mixtures thereof.


[0046] Specific examples of preferred low molecular weight polyethylene glycols suitable for use as a water-dispersible thermoplastic polymer herein include, but are not limited to, polyethylene glycols having repeating alkylene oxide radicals in the ranges described hereinabove, and a number average molecular weight of from about 500 daltons to about 20,000 daltons, preferably from about 550 daltons to about 15,000 daltons, more preferably from about 600 daltons to about 10,000 daltons. The number average molecular weight (Mn) of the low molecular weight polyethylene glycols can be determined by known titration procedures used to determine the number of molecules having hydroxy-end groups wherein the Mn is calculated based on the weight of a given polyethylene glycol divided by the number of hydroxy-end group-containing molecules within the polyethylene glycol polymer.


[0047] Nonlimiting examples of the preferred low molecular weight polyethylene glycols include those polyethylene glycols (PEG) and polymethoxyethylene glycols (MPEG) that are commercially available from Dow Chemical, and sold as PEG-600 which has a Mn of about 600; PEG-900 which has a Mn of about 900; PEG-1000 which has a Mn of about 1000; PEG-1450 which has a Mn of about 1450; PEG-3350 which has a Mn of about 3350; PEG-4000 which has a Mn of about 4,000; PEG-4600 which has a Mw of about 4600; PEG-8000 which has a Mw of about 8,000; MPEG-550 which has a Mn of about 550; MPEG-750 which has a Mn of about 750; MPEG-2000 which has a Mn of about 2,000; MPEG-5000 which has a Mn of about 5,000; and mixtures thereof.


[0048] Specific examples of polyvinyl alcohols suitable for use as a water-dispersible thermoplastic polymer herein include, but are not limited to, those water-soluble thermoplastic polymers prepared by the partial or complete hydrolysis of polyvinyl acetate. The degree of hydrolysis of polyvinyl acetate results in polyvinyl alcohols having different residual acetyl groups and therefore different molecular weight and viscosity characteristics. Accordingly, the water solubility of the polyvinyl alcohol can be regulated by controlling the hydrolysis, molecular weight, and viscosity of the specific polyvinyl alcohol resin. Nonlimiting examples of such suitable polyvinyl alcohols include polyvinyl alcohols having a percent hydrolysis of from about 74% to about 98%, specific nonlimiting examples of which include polyvinyl alcohol 98% hydrolyzed ultra low viscosity resin having a viscosity of from about 3.2 centipoises (cps) to about 4.2 cps, and a weight average molecular weight of from about 13,000 daltons to about 23,000 daltons; polyvinyl alcohol 88% hydrolyzed ultra low viscosity resin having a viscosity of from about 3.0 cps to about 4.0 cps, and a weight average molecular weight of from about 13,000 daltons to about 23,000 daltons; polyvinyl alcohol 88% hydrolyzed low viscosity resin having a viscosity of from about 5.2 cps to about 6.2 cps, and a weight average molecular weight of from about 31,000 daltons to about 50,000 daltons; and mixtures thereof.


[0049] The viscosity of the polvinyl alcohols and any other suitable thermoplastic polymer and optional ingredient described herein are measured or determined under ambient conditions, unless otherwise specified, using suitable methods known in the art. Examples of methods for measuring or determining viscosity include method DIN 53 015 which involves the use of a Hoppler falling-ball viscometer for measuring dynamic viscosity in units of Pascal-seconds (Pa-s), and methods DIN 53 562 and DIN 53 012 which involve the use of a Ubbelohde glass capillary viscometer to measure kinematic viscosity in units of square centimeters per second (cm2/sec).


[0050] Other examples of suitable polyvinyl alcohols include, but are not limited to, water dispersible polyvinyl alcohol resins that have been modified to contain pendant alcohol groups. These modified polyvinyl alcohols can be produced by polymerizing a polyethylene oxide acrylate with vinyl acetate and then hydrolyzing the resultant polymer to produce pendant alcohol groups. Modified polyvinyl alcohols prepared by this procedure typically have viscosities ranging from about 500 poise to about 4,500 poise dependent upon the shear rate used to form the modified polyvinyl alcohol into a molded thermoplastic polymer. Examples of commercially available modified polyvinyl alcohols include those modified polyvinyl alcohol resins manufactured by Texas Polymer Services Incorporation (Houston, Tex.), and sold under the VINEX and AIRVOL tradenames. Specific examples of commercially available VINEX resins include, but are not limited to, VINEX 2019, VINEX 2025, VINEX 2034, and VINEX 2144. Specific examples of AIRVOL resins include, but are not limited to, AIRVOL 125 and AIRVOL 325.


[0051] Other examples of suitable polyvinyl alcohols include, but are not limited to, the polyvinyl alcohols that are commercially available from Clariant GmbH (Sulzbach, Germany) under the MOWIOL tradename. Specific examples of MOWIOL resins include MOWIOL 18-88, MOWIOL 26-88, and MOWIOL 30-92.


[0052] Nonlimiting specific examples of alkali metal sulfonate polyesters suitable for use as a water-dispersible thermoplastic polymer herein include those water-dispersible, linear thermoplastic polyesters which contain carbonyloxy-linking groups in the linear, molecular structure. The alkali metal sulfonate polyesters are typically prepared by reacting at least one difunctional dicarboxylic acid, at least one diol, and at least one difunctional sulfomonomer containing at least one metal sulfonate group attached to an aromatic nucleus having the functional group carboxyl. The number average molecular weight of suitable alkali metal sulfonate polyesters ranges from about 13,000 daltons to about 19,000 daltons, based on the number of repeating sulfomonomer groups in the molecule. It is believed that the sulfomonomer substituent is primarily responsible for the water dispersibility of the thermoplastic polyester. Nonlimiting examples of commercially available water-dispersible, linear thermoplastic polyesters include the alkali metal sulfonates sold under the tradename Eastman AQ® polymer from Eastman Chemical Products, Incorporation located in Kingsport, Tenn., specific examples of which include Eastman AQ(D 1045, Eastman AQ® 1350, Eastman AQS 1950, Eastman AQ® 14,000, Eastman AQ® 29S, Eastman LB-100 AQ® 29S, Eastman AQ® 55S, Eastman AQ® 38S, Eastman AQ® 48, and mixtures thereof.


[0053] Biodegradable Components


[0054] The flushable tampon applicators of the present invention comprise a total of from about 1% to about 99%, preferably from about 5% to about 95%, more preferably from about 10% to about 90% of biodegradable thermoplastic polymers by weight of the applicator. The biodegradable thermoplastic polymers can be used individually or as a combination of polymers provided that the biodegradable thermoplastic polymers are degradable by biological and environmental means, and that they are compatible for combination with one or more water-dispersible polymers described hereinabove, The biodegradable polymers suitable for use herein are those biodegradable materials which are susceptible to being assimilated by microorganisms such as molds, fungi, and bacteria when the biodegradable material is buried in the ground or otherwise comes in contact with the microorganisms including contact under environmental conditions conducive to the growth of the microorganisms.


[0055] Suitable biodegradable polymers also include those biodegradable materials which are environmentally degradable using aerobic or anerobic digestion procedures, or by virtue of being exposed to environmental elements such as sunlight, rain, moisture, wind, temperature, and the like.


[0056] Nonlimiting examples of biodegradable thermoplastic polymers suitable for use in the flushable tampon applicators of the present invention include aliphatic polyesteramides; diacid/diol-based aliphatic polyesters; aromatic polyesters including modified polyethylene terephthalates; aliphatic/aromatic copolyesters; polycaprolactones; polycaprolactone copolymers; poly(3-hydroxyalkanoates) including poly(3-hydroxybutyrates), poly(3-hydroxyhexanoates), and poly(3-hydroxyvalerates); poly(3-hydroxyalkanoates) copolymers including poly(3-hydroxy) butyrate/valerate copolymers; polyesters and polyurethanes derived from aliphatic polyols (i.e., dialkanoyl polymers); polyvinyl acetates; polyethylene/vinyl alcohol copolymers; lactic acid polymers including lactic acid homopolymers and lactic acid copolymers; lactide polymers including lactide homopolymers and lactide copolymers; glycolide polymers including glycolide homopolymers and glycolide copolymers; and mixtures thereof. Preferred are aliphatic polyesteramides, diacid/diol-based aliphatic polyesters, poly(3-hydroxyalkanoates), poly(3-hydroxyalkanoates) copolymers, aliphatic/aromatic copolyesters, lactic acid polymers, and lactide polymers.


[0057] Specific examples of preferred aliphatic polyesteramides suitable for use as a biodegradable thermoplastic polymer herein include, but are not limited to, aliphatic polyesteramides which are reaction products of a synthesis reaction of diols, dicarboxylic acids, and aminocarboxylic acids; aliphatic polyesteramides formed from reacting lactic acid with diamines and dicarboxylic acid dichlorides; aliphatic polyesteramides formed from caprolactone and caprolactam; aliphatic polyesteramides formed by reacting acid-terminated aliphatic ester prepolymers with aromatic diisocyanates; aliphatic polyesteramides formed by reacting aliphatic esters with aliphatic amides; and mixtures thereof. Aliphatic polyesteramides formed by reacting aliphatic esters with aliphatic amides are most preferred.


[0058] Preferred aliphatic polyesteramides which are copolymers of aliphatic esters and aliphatic amides can be characterized in that these copolymers generally contain from about 30% to about 70%, preferably from about 40% to about 80% by weight of aliphatic esters, and from about 70% to about 30%, preferably from about 60% to about 20% by weight of aliphatic amides. The weight average molecular weight of these copolymers ranges from about 10,000 daltons to about 500,000 daltons, preferably from about 20,000 daltons to about 300,000 daltons as measured by known gel chromatography techniques used in the determination of molecular weight of polymers.


[0059] The aliphatic ester and aliphatic amide copolymers of the preferred aliphatic polyesteramides are derived from monomers such as dialcohols including ethylene glycol, diethylene glycol, 1,4-butanediol, 1,3-propanediol, 1,6-hexanediol, and the like; dicarboxylic acids and dicarboxylhc acid esters including oxalic acid, succinic acid, adipic acid, oxalic acid esters, succinic acid esters, adipic acid esters, and the like; hydroxycarboxylic acid and lactones including caprolactone, and the like; aminoalcohols including ethanolamine, propanolamine, and the like; cyclic lactams including s-caprolactar, lauric lactam, and the like; (o-aminocarboxylic acids including aminocaproic acid, and the like; 1:1 salts of dicarboxylic acids and diamines including 1:1 salt mixtures of dicarboxylic acids such as adipic acid, succinic acid, and the like, and diamines such as hexamethylenediamine, diaminobutane, and the like; and mixtures thereof. Hydroxy-terminated or acid-terminated polyesters such as acid terminated oligoesters can also be used as the ester-forming compound. The hydroxy-terminated or acid terminated polyesters typically have number average molecular weights of from about 200 daltons to about 10,000 daltons.


[0060] The preferred aliphatic polyesteramides can be prepared by any suitable synthesis or stoichiometric technique known in the art for forming aliphatic polyesteramides having aliphatic ester and aliphatic amide monomers. A typical synthesis involves stoichiometrically mixing the starting monomers, optionally adding water to the reaction mixture, polymerizing the monomers at an elevated temperature of about 220° C., and subsequently removing the water and excess monomers by distillation using vacuum and elevated temperature, resulting in a final copolymer of an aliphatic polyesteramide. Other suitable techniques involve transesterification and transamidation reaction procedures. As apparent by those skilled in the art, a catalyst can be used in the above-described synthesis reaction and transesterification or transaindation procedures, wherein suitable catalysts include phosphorous compounds, acid catalysts, magnesium acetates, zinc acetates, calcium acetates, lysine, lysine derivatives, and the like.


[0061] The preferred aliphatic polyesteramides comprise copolymer combinations of adipic acid, 1,4-butanediol, and 6-aminocaproic acid with an ester portion of 45%; adipic acid, 1,4-butanediol, and ε-caprolactam with an ester portion of 50%; adipic acid, 1,4-butanediol, and a 1:1 salt of adipic acid (“AH salt”) and 1,6-hexamethylenediamine; and an acid-terminated oligoester made from adipic acid, 1,4-butanediol, 1,6-hexamethylenediamine, and s-caprolactam. These preferred aliphatic polyesteramides have melting points of from about 115° C. to about 155° C. and relative viscosities (1 wt. % in m-cresol at 25° C.) of from about 2.0 to about 3.0, and are commercially available from Bayer Aktiengesellschaft located in Leverkusen, Germany under the BAK® tradename. Specific examples of such commercially available polyesteramides include BAK® 402, BAK® 403, and BAK® 404.


[0062] Specific examples of preferred diacid/diol-based aliphatic polyesters suitable for use as a biodegradable thermoplastic polymer herein include, but are not limited to, aliphatic polyesters produced either from ring opening reactions or from the condensation polymerization of aliphatic diacids and aliphatic diols, wherein the number average molecular weight of these aliphatic polyesters typically range from about 30,000 daltons to about 300,000 daltons. The preferred diacid/diol-based aliphatic polyesters are reaction products of a C2-C10 diol reacted with oxalic acid, succinic acid, adipic acid, suberic acid, sebacic acid, copolymers thereof, or mixtures thereof. Nonlimting examples of preferred diacid/diol-based aliphatic polyesters include polyalkylene succinates such as polyethylene succinate, and polybutylene succinate; polyalkylene succinate copolymers such as polyethylene succinate/adipate copolymer, and polybutylene succinate/adipate copolymer; polypentamethyl succinates; polyhexamethyl succinates; polyheptamethyl succinates; polyoctamethyl succinates; polyalkylene oxalates such as polyethylene oxalate, and polybutylene oxalate; polyalkylene oxalate copolymers such as polybutylene oxalate/succinate copolymer and polybutylene oxalate/adipate copolymer; polybutylene oxalate/succinate/adipate terpolymers; and mixtures thereof. An example of suitable commercial diacid/diol-based aliphatic polyesters is the polybutylene succinate/adipate copolymers sold under the BIONOLLE 1000 and BIONOLLE 3000 tradenames from the Showa Highpolymer Company, Ltd. located in Tokyo, Japan.


[0063] Specific examples of preferred poly(3-hydroxyalkanoates) suitable for use as a biodegradable thermoplastic polymer herein include, but are not limited to, the poly(3-hydroxyalkanoates commercially available under the Biomer 209H and Biomer 240H tradenames from the Biomer Company located in Krailling, Germany. Specific examples of preferred poly(3-hydroxyalkanoates) copolymers suitable for use as a biodegradable polymer herein include, but are not limited to the poly(3-hydroxy) butyrate/valerate copolymers disclosed in U.S. Pat. No. 5,391,423, issued to Wnuk et al. on Feb. 21 1995, which disclosure is incorporated by reference herein; and the poly(3-hydroxy) butyrate/valerate copolymers such as poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), poly(3-hydroxybutyrate-co-3-hydroxynonanoate), poly(3-hydroxybutyrate-co-3-hydroxydecanoate), poly(3-hydroxybutyrate-co-3-hydroxydocosanoate), poly(3-hydroxybutyrate-co-3-hydroxyhexadecanoate), poly(3-hydroxyvalerate-co-3-hydroxyoctanoate), poly(3-hydroxybutyrate-co-3-hydroxyvalerateco-3-hydroxyoctanoate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxydecanoate), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyoctanoate-co-3-hydroxydecanoate) disclosed in U.S. Pat, No. 5,489,470, issued to Noda on Feb. 6, 1996, which disclosure is incorporated by reference herein.


[0064] Specific examples of preferred aliphatic/aromatic copolyesters suitable for use as a biodegradable thermoplastic polymer herein include, but are not limited to, those aliphatic/aromatic copolyesters that are random copolymers formed from a condensation reaction of dicarboxylic acids or derivatives thereof and diols. Suitable dicarboxylic acids include, but are not limited to, malonic, succinic, glutaric, adipic, pimelic, azelaic, sebacic, fumaric, 2,2-dimethyl glutaric, suberic, 1,3-cyclopentanedicarboxylic, 1,4-cyclohexanedicarboxylic, 1,3-clohexanedicarboxylic, diglycolic, itaconic, maleic, 2,5-norbornanedicarboxylic, 1,4-terephthalic, 1,3-terephthalic, 2,6-naphthoic, 1,5-naphthoic, ester forming derivatives thereof, and combinations thereof. Suitable diols include, but are not limited to, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, and combinations thereof. Nonlimiting examples of such aliphatic/aromatic copolyesters include a 50/50 blend of poly(tetramethylene glutarate-co-terephthalate), a 60/40 blend of poly(tetramethylene glutarate-co-terephthalate), a 70/30 blend of poly(tetramethylene glutarate-co-terephthalate), an 85/15 blend of poly(tetramethylene glutarate-co-terephthalate), a 50/45/15 blend of poly(tetramethylene glutarate-co-terephthalate-co-diglycolate), a 70/30 blend of poly(ethylene glutarate-co-terephthalate), an 85/15 blend of poly(tetramethylene adipate-co-terephthalate), an 85/15 blend of poly(tetramethylene succinate-co-terephthalate), a 50/50 blend of poly(tetramethylene-co-ethylene glutarate-co-terephthalate), and a 70/30 blend of poly(tetramethylene-co-ethylene glutarate-co-terephthalate). These aliphatic/aromatic copolyesters, in addition to other suitable aliphatic/aromatic polyesters, are further described in U.S. Pat. No. 5,292,783 issued to Buchanan et al. on Mar. 8, 1994, which descriptions are incorporated by reference herein. The poly(tetramethylene adipate-co-terephthalate) is a preferred aliphatic/aromatic copolyester that is commercially available from Eastman Chemical (Kingsport, Tenn.) under the Eastar Biodegradable Copolyester 14776 tradename.


[0065] Specific examples of preferred lactic acid polymers and lactide polymers suitable for use as a biodegradable thermoplastic polymer herein include, but are not limited to, those polylactic acid-based polymers and polylactide-based polymers that are generally referred to in the industry as “PLA”. Therefore, the terms “polylactic acid”, “polylactide” and “PLA” are used interchangeably to include homopolymers and copolymers of lactic acid and lactide based on polymer characterization of the polymers being formed from a specific monomer or the polymers being comprised of the smallest repeating monomer units. In other words, polylactide is a dimeric ester of lactic acid and can be formed to contain small repeating monomer units of lactic acid (actually residues of lactic acid) or be manufactured by polymerization of a lactide monomer, resulting in polylactide being referred to both as a lactic acid residue containing polymer and as a lactide residue containing polymer. It should be understood, however, that the terms “polylactic acid”, “polylactide”, and “PLA” are not intended to be limiting with respect to the manner in which the polymer is formed.


[0066] The polylactic acid polymers generally have a lactic acid residue repeating monomer unit that conforms to the following formula:
3


[0067] The polylactide polymers generally having lactic acid residue repeating monomer units as described herein-above, or lactide residue repeating monomer units that conform to the following formula:
4


[0068] Typically, polymerization of lactic acid and lactide will result in polymers comprising at least about 50% by weight of lactic acid residue repeating units, lactide residue repeating units, or combinations thereof. These lactic acid and lactide polymers include homopolymers and copolymers such as random and/or block copolymers of lactic acid and/or lactide. The lactic acid residue repeating monomer units can be obtained from L-lactic acid and D-lactic acid. The lactide residue repeating monomer units can be obtained from L-lactide, D-lactide, and meso-lactide.


[0069] Suitable lactic acid and lactide polymers include those homopolymers and copolymers of lactic acid and/or lactide which have a weight average molecular weight generally ranging from about 10,000 daltons to about 600,000 daltons. An example of commercially available polylactic acid polymers includes a variety of polylactic acids that are available from the Chronopol Incorporation located in Golden, Colorado. An example of commercially available polylactide polymers includes the polylactides sold under the tradename EcoPLA®. An example of commercially available “PLA” polymers includes PLA 44D and PLA 62-50, both of which are available from Cargill-Dow Polymers, LLC located in Minnetonka, Minn. Other suitable polylactic acid polymers and copolymers include polylactic acid prepared by direct polycondensation of lactic acid (available from the Mitsui Chemical Incorporation under the tradename LACEA), and a block copolymer comprising a polylactic acid hard segment and a polyoxyalkylene dialkanoate soft segment (available from the Dainippon Ink and Chemicals Incorporation and the Shimadzu Corporation, both of which are located in Japan).


[0070] Specific examples of other suitable biodegradable polymers include polycaprolactone polyesters having a number average molecular weight of from about 10,000 daltons to about 80,000 daltons. Commercially suitable polycaprolactone polymers are the polycaprolactones available from the Union Carbide Corporation sold under the TONE tradename, examples of which include Tone P-767, Tone P-787, and Tone P-303. Tone P-767 has a number average molecular weight of about 43,000 daltons. Tone P-787 has a number average molecular weight of about 80,000 daltons. Tone P-303 is an A-B-A block polymer of Tone P-767 polycaprolactone and polyethylene oxide, and has a number average molecular weight of from about 30,000 daltons to about 35,000 daltons.


[0071] The biodegradable polymers described herein, in addition to thermoplastic compositions containing these polymers, will physically and biologically decompose using known degradation procedures such as aerobic, anaerobic, and microbial digestion processes. One such method of evaluating the decomposition of biodegradable materials includes an anaerobic disintegration procedure which involves measuring the percent weight loss of thermoplastic compositions containing biodegradable polymers. Typically, thermoplastic compositions containing biodegradable polymers are exposed to anaerobic sludge that can be obtained from a municipal wastewater treatment plant (e.g., sludge that has a pH of or between about 7 and 8, and about 1% total solids). The sludge-exposed thermoplastic compositions are allowed to disintegrate or decompose for 7, 14, and 28 days at 35° C. under controlled incubator conditions. After the 7, 14, or 28 day incubation period, the sludge-exposed thermoplastic compositions are evaluated for percent weight loss by recovering any undisintegrated portions of the compositions, drying these undisintegrtaed portions at 40° C. for at least 2 hours after a tap water rinsing, and determining the weight of the dried undisintegrated portions. The percent weight loss is calculated based on the weight of the thermoplastic compositions before and after exposure to sludge for a given time period. It has been found that the biodegradable polymer containing-thermoplastic compositions described herein lose their structural integrity by breaking apart into smaller pieces and/or by shrinking into smaller fragments after being exposed to sludge for only 7 days. Anaerobic biodegradation of these biodegradable polymer containing-thennoplastic compositions increased after the compositions were exposed to sludge for periods of 14 and 28 days.


[0072] Filler Components


[0073] In addition to the water-dispersible and biodegradable thermoplastic materials, the flushable tampon applicators of the present invention preferably comprise one or more fillers which can aid in the applicators having an opaque appearance and provide for applicators that have a smooth, soft texture and improved water-dispersibility. The filler can be added by compounding the filler with the thermoplastic polymers and any optional ingredient described herein, and processing this compounded mixture according to the disclosed methods of constructing flushable tampon applicators of the present invention. Preferably, the flushable tampon applicators are constructed such that the filler is melt blended with the thermoplastic polymers to form a composite of thermoplastic material and discrete filler particles that are uniformly dispersed throughout the composite, flushable tampon applicator structure.


[0074] Suitable fillers include inorganic and organic filler materials. Nonlimiting examples of suitable inorganic fillers include clays, silica, mica, wollastonite, calcium hydroxide, calcium carbonate, sodium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, kaolin, calcium oxide, magnesium oxide, aluminum hydroxide, magnesium silicates including talc, titanium dioxide, and mixtures thereof. Nonlimiting examples of suitable organic fillers include wood flour, walnut shell flour, alpha cellulose floc, cellulose fibers, chitin, chitosan powders, organosilicone powders, nylon powders, polyester powders, polypropylene powders, starch granules, and mixtures thereof. Filler components such as calcium carbonate, talc, barium sulfate, starch granules, and wood flour are preferred.


[0075] The fillers are typically included at total filler concentrations ranging from 0% to about 70%, preferably from about 5% to about 65%, more preferably from about 8% to about 60% by weight of the applicator. The inclusion of filler components within the defined concentration ranges have been found to provide the flushable tampon applicators with improved disintegration rate for spontaneous flushability in addition to the flushable tampon applicators being shelf stable, nonsticky when wet, nontacky when wet, and smooth to the touch. The filler components can be included in the construction of the flushable tampon applicators as an individual filler or a combination of filler components provided that the total filler concentration is within these defined concentration ranges.


[0076] Specific examples of calcium carbonates suitable for use of a filler herein, include but are not limited to, the calcium carbonates commercially available from Specialty Minerals (Bethlehem, Pa.) under the Vicron 15-15, Vicron 10-25, and Vicron 25-11 tradenames.


[0077] Specific examples of magnesium silicates such as talc which are suitable for use as a filler herein include, but are not limited to, ABT 2500 talc and OPTIBLOC 10 talc, both of which are available from Specialty Minerals.


[0078] Specific examples of starch granule materials suitable for use as a filler herein include, but are not limited to, the corn starch materials sold under the Staley STAR-DRI® 1 and Staley Pure Food Powdered tradenames, both of which are commercially available the A. E. Staley Manufacturing Company (Decatur, Ill.); Clinton 290 which is commercially available from ADM Corn Processing (Decatur, Ill.); and National Starch Melojel which is commercially available from National Starch & Chemical (Bridgewater, N.J.).


[0079] Specific examples of wood flour materials suitable for use as a filler herein include, but are not limited to, Maple Wood Flour, Grade 10010 and Pine Wood Flour, Grade 10020, both of which are commercially available from American Wood Fibers (Columbia, Md.).


[0080] A specific example of a nylon powder suitable for use as a filler herein is Morton Corvel White Nylon 11 powder which is commercially available from the Morton International Incorporation located in Chicago, Ill.


[0081] A specific example of a polyester powder suitable for use as a filler herein is Morton Corvel H RF polyester powder which is commercially available from the Morton International Incorporation.


[0082] A specific example of a titanium dioxide material suitable for use as a filler herein is Titanium Dioxide Grade R102 17145T-43 which is commercially available from Dupont White Pigment & Mineral Products located in Wilmington, Del.



Preferred Embodiments

[0083] The flushable tampon applicators of the present invention preferably comprise a blend of water-dispersible and biodegradable materials, wherein this blend can be defined as a combination of one or more high molecular weight polyethylene oxides, one or more low molecular weight polyethylene glycols, and one or more aliphatic/aromatic copolyesters. In this context, the term “blend” refers to a composition of thermoplastic materials that has been formed by melt processing two or more thermoplastic materials to result in a homogenous, heterogeneous, or mixture thereof, of these materials. It has been found that a thermoplastic blend comprising a combination of high molecular weight polyethylene oxides, low molecular weight polyethylene glycols, and aliphatic/aromatic copolyesters provides a flushable tampon applicator that readily disintegrates in water, that has improved aesthetics such as non-sticky, non-slimy, air-laden moisture resistance, softness, flexibility, and that is of little or no environmental concern for disposal.


[0084] The combination of the high molecular weight polyethylene oxides, low molecular weight polyethylene glycols, and aliphatic/aromatic copolyesters results in a thermoplastic composition comprising a total of from about 1% to about 90% by weight of high molecular weight polyethylene oxides, a total of from about 1% to about 4 0% by weight of low molecular weight polyethylene glycols, and a total of from about 9% to about 59% by weight of aliphatic/aromatic copolyesters. Therefore, the thermoplastic compositions can comprise blended ratios of water-dispersible materials such as high 20 molecular weight polyethylene oxides and low molecular weight polyethylene glycols to biodegradable materials such as aliphatic/aromatic copolyesters of from about 10:1 to about 1:6, preferably of from about 4:1 to about 1:3. The ratio of water-dispersible materials, such as a ratio of high molecular weight polyethylene oxide to low molecular weight polyethylene glycol, typically ranges from about 9:1 to about 1:4, preferably from about 3:1 to about 1:2.


[0085] The flushable tampon applicators of the present invention can also comprise other blends of water-dispersible and biodegradable thermoplastic polymers, nonlimiting examples of which include a blend of one or more high molecular weight polyethylene oxides, one or more low molecular weight polyethylene glycols, and one or more diacid/diol-based aliphatic polyesters; a blend of one or more high molecular weight polyethylene oxides, one or more low molecular weight polyethylene glycols, and one or more aliphatic polyesteramides; and a blend of one or more high molecular weight polyethylene oxides, one or more low molecular weight polyethylene glycols, and one or more polylactic acid polymers. These blends as well as the above-described preferred thermoplastic polymer blend and any other blend or structure of thermoplastic materials are suitable for forming the outer tubular member and plunger components of the flushable tampon applicators of the present invention.


[0086] The flushable tampon applicators of the present invention can also comprise a composite of thermoplastic materials. In this context, the term “composite” refers to a structure of thermoplastic polymeric materials that are intermingled together or joined such that each thermoplastic polymer forms at least one unit of the total composite structure. For example, a thermoplastic composite can contain one or more units of water-dispersible polymers intermixed or joined with one or more units of biodegradable polymers such that within the overall composite structure the water-dispersible polymer units create structural discontinuities between the biodegradable polymer units. In this context, the term “structural discontinuities” refers to discrete or separate components that are joined or intermingled to provide adjacent or alternate units of individual components. Preferably, a thermoplastic composite is constructed such that it comprises less than about 99% of water-dispersible polymers and more than about 1% of biodegradable polymers, more preferably less than about 95% of water-dispersible polymers and more than about 5% of biodegradable polymers, even more preferably less than about 90% of water-dispersible polymers and more than about 10% of biodegradable polymers, by weight of the composite. However, the thermoplastic composites can be any composite combination of water-dispersible and biodegradable polymers described herein provided that the water-dispersible polymers allow for rapid dispersion of the biodegradable polymers into separate components so that the overall composite structure readily disintegrates upon contact with water. The thermoplastic composite tampon applicators can be constructed using known procedures such as injection molding and co-injection molding which eliminate the need to assemble separate composite pieces for producing a final tampon applicator product. Alternatively, the thermoplastic composite tampon applicators can be constructed by molding separate composite pieces and assembling or joining the pieces into a final tampon applicator product, wherein means of assembling or joining the composite pieces include adhesive bonding, heat sealing, ultrasonic welding, solvent welding, dielectric sealing, and mechanical attachment. The flushable tampon applicators of the present invention made from thermoplastic composites have been found to be readily disposed of by flushing down a sewage system such as a toilet and by the disclosed biodegradation procedures. The composite tampon applicators can also be made from a composite structure of thermoplastic polymers combined with paper, cellulose, cellophane, rayon fiber, woven, nonwoven materials, or combinations thereof.


[0087] It is contemplated that the flushable tampon applicators of the present invention can be constructed 30 in any other blend, composite, shape, or configuration using the water-dispersible and/or biodegradable thermoplastic polymers, and any other desired or optional ingredient described herein. Another nonlimiting preferred embodiment includes spiral shaped flushable tampon applicators made from spirally wound thermoplastic materials that are held together using water-soluble adhesives. The water-soluble adhesive materials may be any known or otherwise effective water-soluble adhesives, but preferably are polyethyloxazoline and methyl cellulose adhesives.


[0088] The flushable tampon applicators of the present invention can also comprise a composite of thermoplastic material and a non-thermoplastic material wherein the non-thermoplastic material is selected from the group including paper, starch, cellulose, cellophane, rayon fiber, natural fiber fabrics either woven or nonwoven, and combinations thereof. The thermoplastic material may be combined with the non-thermoplastic material by various techniques such as overmolding or insert molding. In overmolding, the non-thermoplastic material, for example a paper tube, is placed into an injection mold cavity, the mold clamped shut, and a molten thermoplastic resin is injected into the cavity such that the non-thermoplastic material is encapsulated or partly encapsulated by the thermoplastic material. In a tampon applicator, overmolding can provide, for example, a means of providing plastic-like features to a paper tube, or providing the look and feel of a plastic applicator to a paper tube, or providing a means of minimizing the amount of thermoplastic material needed to form the applicator components. Both inner and outer tube members may be fabricated from a composite of thermoplastic material and a non-thermoplastic material. In insert molding, the non-thermoplastic material is typically provided in a roll, unwound, and then trimmed or formed to a proper preform size and shape appropriate to insertion into the injection mold. The perform (or performs) is placed, along the wall of the mold cavity. The mold is then clamped shut, and the thermoplastic material injected into the mold cavity. Heat and pressure conditions in the mold cavity bond the perform to the thermoplastic resin. Bonding between the thermoplastic material perform may occur through mechanical entanglement, adhesion, or via melt bonding or fusion if the surface of the non-thermoplastic material has been pre-treated with a meltable surface coating. The preform comprising the non-thermoplastic material, generally becomes the surface or part of the surface of the finished molded part. In a tampon applicator, insert molding can provide, for example, a means of attaching a thin, water-insoluble, biodegradable surface layer to a water-softenable or water-dispersable, or water-degradable, or water-soluble thermoplastic resin.


[0089] Still yet another nonlimiting embodiment of flushable tampon applicators include a composite flushable tampon applicator made from a combination of water-dispersible thermoplastic polymers, biodegradable thermoplastic polymers, and filler. These composite applicator structures are less tacky when wet, non-sticky when wet, softer, and more flexible than plastic tampon applicators made without filler components. The filler-containing composite applicators also result in reduced manufacturing cost with improved processibility of the applicators. Any suitable inorganic and/or organic filler component can be included in the construction of the composite applicator, provided that during the processing of the applicator the filler does not melt and remain in its particle form. Typically, the processing temperatures are lower than the melting temperature and decomposition temperature of the fillers, and during processing the water-dispersible and biodegradable thermoplastic polymers are melted and the filler particles are uniformly dispersed in the matrix of polymer blends of the water-dispersible and biodegradable polymers to result in the formation of a composite structure. The fillers suitable for use herein generally are water insoluble which help to reduce the stickiness of the applicators upon contact of the applicators with water, and which help to increase the shelf stability of the applicators. Also, because the fillers are in the dispersed phase of the composite, they accelerate the disintegration rate when the matrix of polymer blends of water-dispersible and biodegradable polymers start to disintegrate after flushing into a sewage system such as a toilet.


[0090] It is preferred that the flushable tampon applicators of the present invention be constructed from thermoplastic materials that are typically in the form of polymer films. It should be understood, however, that these thermoplastic materials are also suitable for use as fibrous materials in the construction of absorbent articles such as tampon pledgets or any other fibrous or nonwoven material.



Composition Morphology

[0091] Thermoplastic compositions suitable for use in the manufacture of flushable tampon applicators of the present invention can be a blend or other configuration of polymeric materials which will result in the compositions exhibiting amorphous and crystalline properties that can be characterized in terms of compositional morphology. It has been found that a particular blend of water-dispersible and biodegradable polymers described herein results in a thermoplastic composition having a defined morphology which provides for individual components of the composition to have melt profiles that allows for the creation of crystalline structures in the form of separate regions or domains within the blended nmixture of thermoplastic materials. Specifically, it has been found that a thermoplastic composition comprising a blend of high molecular weight polyethylene oxides, low molecular weight polyethylene glycols, and aliphatic polyesteramides or aliphatic/aromatic copolyesters exhibits a morphology such that the polyethylene oxides and polyethylene glycols form a homogenous blend of water-dispersible polymers that surrounds or encloses microdomains of the aliphatic polyesteramides or aliphatic/aromatic polyesters. In this context the term “microdomain” refers to polymer crystalline structures that have particle sizes in the submicron to micron sized region. It has also been found that a thermoplastic composition comprising a blend of water dispersible polymers such as high molecular weight polyethylene oxides and/or low molecular weight polyethylene glycols in combination with biodegradable polymers such as diacids/diols aliphatic polyesters forms a homogeneous one-phase polymer morphology.


[0092] The two phase crystalline structure of a continuous phase of water-dispersible polymers and a discontinuous phase of biodegradable polymer microdomains are especially effective in forming thermoplastic compositions that can be melt processed into flushable tampon applicators of the present invention which are readily disposed of without creating any environmental concerns for their disposal. The two-phase crystalline structure has a morphology profile of water-dispersible and biodegradable polymers wherein in the liquid state (temperature above the melting point of the individual polymers), the polymers exhibit a heterogeneous phase morphology, but can be melt processed to result in a solid flushable tampon applicator exhibiting homogenous properties. Therefore, as used herein the term “homogenous” refers to a uniform mixture of materials, whereas the term “heterogeneous” refers to a nonuniform mixture of materials. The phase morphology can be determined using optical and scanning electron microscopes, for example a convenient optical microscopy instrument that can be used to determine the phase morphology of the thermoplastic compositions described herein is the Zeiss Axioplan 2 Mot-Imaging Microscope that is equipped with a Linkham MDS-BCS-600 hot stage and that is available from the Carl Zeiss Incorporation located in Thornwood, N.Y.


[0093] The phase morphology of the water-dispersible and biodegradable polymers defined herein can further be described in terms of the polymers glass transition temperatures (Tg). The glass transition temperature of polymers or any other materials is typically identified as the area on the line where a distinct change in slope occurs, and can be determined using a thermal analysis instrument such as the 2980 Dynamic Mechanical Analyzer (DMA) in combination with Thermal Analyst Data Collection software program (Thermal Solutions version 2.5) and Data Analysis software program (Universal Analysis version 2.5H), all of which are available from T. A. Instruments Incorporation of New Castle, Delaware. It has also been found that combinations of water-dispersible and biodegradable polymers exhibit one or two glass transition temperatures, providing further support of polymers having one- or two-phase morphology profiles. As exemplified in Table 1 hereinbelow, polymer blends of water-dispersible polymers and aliphatic polyesteramides exhibit two different glass transition temperatures indicative of a two-phase morphology wherein polymer blends of water-dispersible polymers and diacids/diols aliphatic polyesters exhibit one glass transition temperature indicative of a one-phase morphology.


[0094] It is believed that these morphology properties will also be exhibited in thermoplastic compositions made from a composite or any other configuration of water dispersible and biodegradable polymers described herein.
1TABLE 1Glass Transition Behavior of Water-Dispersible/BiodegradablePolymers and Polymer BlendsTg1Tg2Tg3Polymers(° C.)(° C.)(° C.)PEO1−41PEO1/PEG2-40/30 blend−33aliphatic polyesteramide (BAK 404)3 −7aliphatic-aromatic copolyester (Eastar 14776)4−25diacid-diol aliphatic polyester (Bionolle 3001)5−31PEO1/BAK 4043-75/25 blend−43   8PEO1/Eastar 147764-60/40 blend−42−24PEO1/Bionolle 30015-70/30 blend−36PEO1/Bionolle 30015-50/50 blend−28PEO1/Bionolle 30015-15/85 blend−30PEO1/PEG2/BAK 4043-40/30/30 blend−31−10PEO1/PEG2/Eastar 147764-40/30/30 blend−41−27PEO1/PEG2/Bionolle 30015-40/30/30 blend−31Tg1-glass transition temperature of water-dispersible polymer(s) Tg2-glass transition temperature of biodegradable polymer Tg3-combined glass transition temperature of water-dispersible and biodegradable polymers 1polyethylene oxide available as POLYOX ® WSR-80 from the Union Carbide Corporation 2polyethylene glycol available as PEG-8000 from Union Carbide 3aliphatic polyesteramide available as BAK 404 from Bayer Aktiengesellschaft 4aliphatic-aromatic copolyester available as Eastar Biodegradable Copolyester 14776 from Eastman Chemical 5diacid-diol aliphatic polyester available as BIONOLLE 3001 from the Showa Highpolymer Company, Ltd.



Physical Properties

[0095] The flushable tampon applicators of the present invention are made from thermoplastic compositions having physical properties of tensile strength at break, percent elongation at break, elastic modulus, and hardness. The thermoplastic compositions can include ingredients such as fillers, plasticizers, processing aids, dispersing agents, lubricants, resin modifiers, clarifying/nucleating agents, viscosity modifiers, and the like. Preferred thermoplastic compositions comprise water-dispersible thermoplastic polymers, biodegradable thermoplastic polymers, plasticizers, and/or lubricants, and/or fillers in various combinations.


[0096] The tensile strength at break, percent elongation at break, and elastic modulus of thermoplastic materials, especially blends of thermoplastic materials, are determined according to methods known in the art. One such method is the ASTM D882-95a test method described in “Standard Test Method for Tensile Properties of Thin Plastic Sheeting”, pages 159-167. This procedure involves testing blends of thermoplastic materials for achieving desired properties of flexibility, elasticity, durability, unbrittleness, resilency, distensibility, tenacity, and so forth. Typically, blends of thermoplastic materials are injection molded to form “dogbone-shaped” test samples having dimensions of ½ inch length (L)×⅛ inch width (W)×{fraction (1/16)} inch height (H), then the “dogbone-shaped” test samples are evaluated for tensile strength at break, percent elongation at break, and elastic modulus using an Instron Tensile Tester (Model 1122 from Instron Corporation located in Canton, Mass.) equipped with a 50 pound load cell, grip separation of 1 inch, a gage length of ½ inches, 5 millimeter (mm) jaw gap, and a crosshead speed of 2 inches/minute. For each analysis, the “dogbone-shaped” test sample is stretched until breakage occurs, and a load-versus-extension plot is generated for determining the tensile strength at break, percent elongation at break, and elastic modulus properties. The tensile strength at break is the load at break divided by the cross-sectional area of the test sample, and is defined in units of mega-Pascal or MPa (newton/square meter). The percent elongation at break is determined by dividing the length of the extension at the point of rupture by the gage length, and then multiplying by 100. Elastic modulus is the slope of the initial linear portion of the load-extension curve, and is defined in units of MPa.


[0097] The thermoplastic compositions described herein preferably have a harness property such that the compositions exhibit a firm resistance to stress or strain, yet are not brittle or too soft for processing into flushable tampon applicators of the present invention. The hardness properties are determined according to ASTM D2240-97 test method described in “Standard Test Method for Rubber Property-Durometer Hardness, pages 388-391. Typically, thermoplastic materials are injected molded into bars that are stacked in groups of two bars per stack wherein each bar stack has a total thickness of ⅛ inches. The hardness value is measured at various points of the bar stack using a hardness instrument such as Model 307 L Shore D Durometer from PTC Instruments, and a mean hardness measurement is determined.


[0098] The preferred thermoplastic compositions for constructing the flushable tampon applicators of the present invention have physical properties similar to or superior to physical properties of known thermoplastic materials that are used in the manufacture of tampon applicators. For example, polyethylene-based thermoplastic polymers typically have elastic modulus properties of from about 80 MPa to about 200 MPa, wherein other thermoplastic polymers such as polypropylene-based polymers have elastic modulus of from about 1000 MPa to about 1500 MPa. It has been found that the thermoplastic compositions described herein exhibit desirable properties of an elastic modulus value of less than 1000 MPa, and this elastic modulus attribute in addition to the other described physical properties result in thermoplastic compositions having flexibility, elasticity, durability, resilency, distensibility, tenacity, and the like. The physical properties of the preferred thermoplastic compositions are exemplified hereinbelow in Table 2.
2TABLE 2Thermoplastic Compositions Physical PropertiesTensilePercentStrengthElongationElasticat breakat breakModulusHardnessSample(MPa)(%)(MPa)(Shore D)PEO1/PEG2/Biomer 209H6 (40/30/30 blend)62031058PEO1/PEG2/Bionolle 30015 (40/30/30 blend)8460 22051PEO1/PEG2/Bionolle 30015 (66/17/17 blend)58027052PEO1/PEG2/Eastar 147764 (40/30/30 blend)68023051PEO1/PEG2/BAK 4043 (40/30/30 blend)11 2025057PEO1/PEG2/BAK 4043 (40/40/20 blend)92034060PEO1/PEG2/BAK3/P-6457 (36/27/27/10 blend)84619051PEO1/PEG2/BAK3/P-41418 (36/27/27/10 blend)74818051PEO1/PEG2/PLA 44D9 (40/30/30 blend)19 1353067PEO1/PEG2/PLA 62-50D9 (40/30/30 blend)22 1051067PEO1/PEG2/Eastar4/P-6457/CaCO310 (11/9/20/10/50 blend)327 9043PEO1/PEG2/Eastar4/P-6457/CaCO310 (24/18/18/10/30 blend)56016649PEO1/PEG2/Eastar4/P-6457/CaCO310 (29/21/10/10/30 blend)41822752PEG2/PEG11/Eastar4/P-6457/CaCO310 (20/5/40/5/30 blend)61217448PEO1/PEG2/Eastar4/P-6457/CaCO310 (16/12/12/10/50 blend)51318447PEO1/PEG2/Eastar4/P-6457/Talc12 (17/13/10/10/50 blend)51617343PEO1/PEG2/Eastar4/P-6457/Talc12 (24/18/18/10/30 blend)44030347PEO1/PEG2/Eastar4/AB13/wood flour14/TiO215/Kemamide E1617  564061(17/17/25/5/30/5/1 blend)PEO1/PEG2/Eastar4/Starch17/P-6457/Kemamide E16222 9834(18/13/13/50/5/1 blend)PEO1/PEG2/Eastar4/Starch18/P-6457/Kemamide E16/MgSt194180 16046(15/10/37/30/5/1/2 blend)PEO1/Eastar4/CaCO310/P-6457 (18/15/65/4 blend)75823053PEO1/PEG2/Eastar4/CaCO310/P-6457/Kemamide E1669518049(15/10/29/40/5/1 blend)PEO1/PEG2/Eastar4/CaCO310/P-6457/MgSt19/Loxiol G33205310 16043(15/10/26/40/5/2/2 blend)PEO1/PEG2/Eastar4/CaCO310/P-6457/Kemamide E168450 18049(15/10/39/30/5/1 blend)PEO1/PEG2/Eastar4/CaCO310/P-6457/Kemamide E16/Paraffin5340 14042wax21 (15/10/34/30/5/1/5 blend)PEO1/Eastar4/CaCO310/P-6457/Kemamide E1610 640  8344(25/39/30/5/1 blend)PEG2/Eastar4/CaCO310/MgSt19 (17.5/64/17.5/1 blend)6650 15046PEG2/Eastar4/CaCO310/MgSt19/P-64322/DC4-70512510 1040  6837(15/62/15/1/5/2 blend)PEO1/PEG2/Eastar4/CaCO310/P-6457/MgSt19/DC9506235130 15044(15/10/26/40/5/2/2 blend)PEO1/PEG2/Eastar4/CaCO310/P-6457/MgSt19/Loxiol5130 15044G3320/Kraton G 165224 (14.5/9.5/25.5/39.5/5/2/2/2 blend)6polyhydroxyalkanoate available as Biomer 209H from Biomer, Frost-Kasten-Str., Krailling, Germany 7adipate polyester plasticizer available as Plasthall 645 from C. P. Hall 8triethylene glycol caprate-caprylate plasticizer available as Plasthall 4141 from C. P. Hall 9polylactic acids available as PLA 44D grade and PLA 62-50D grade from Cargill-Dow Polymers, LLC 10calcium carbonate available as Vicron 15-15 from Specialty Mineral 11polyethylene glycol available as PEG-600 from Union Carbide 12talc available as ABT 2500 from Specialty Mineral 13AB anti-block processing aid available from Eastman Chemical 14pine wood flour available as Pine Wood Flour Grade 10020 from American Wood Fibers 15titanium dioxide available from DuPont White Pigment & Mineral Products 16euracamide available as Kemamide E Ultra from Crompton Corpration 17Food grade corn starch available as Staley Pure Food Powdered from A. E. Staley Manufacturing Co. 18Food grade corn starch available as National Starch Melojel from National Starch & Chemical 19Magnesium Stearate available from Aldrich Chemical Company 20ester wax of fatty acid and fatty alcohol available as Loxiol G33 from Cognis Plastics Technology 21paraffinic hydrocarbon wax available as Paraflint H-1 from Moore & Munger Inc 22adipate polyester plasticizer available as Plasthall 643 from C. P. Hall 23silicone elastomer powder available as DC 9506 from Dow Corning 24SEBS, tri-block copolymer of styrene and ethylene-butylene with poly(ethylene-butylene) in the center available as Kraton G 1652 from Kraton Polymers 25silicone resin modifier available as DC4-7051 from Dow Corning


[0099] The thermoplastic compositions also have physical properties of dry and wet flexural modulus. The dry flexural modulus is determined according to ASTM D5943-96 test method described in “Standard Test Method for Determining Flexural Properties of Plastics”, pages 708-712. This procedure involves injection molding thermoplastic materials into “beams” of test samples having 5 inch L×½ inch W×⅛ inch H. Generally, the test samples are pre-loaded with 0.01 pounds of force, thereafter a force loading is applied at a rate of 0.1 inches per minute, and a stress-versus-strain curve is generated to determine the dry flexural modulus property. The dry flexural modulus is the slope of the stress-strain curve as calculated in the linear region of from about 0.05% to about 0.25% of the flexural strain. The wet flexural modulus is determined by submerging the dry “beams” of test samples in water at time intervals of 5 minutes, 15 minutes, and 60 minutes, and observing the softening of the test samples. As used herein, the term “softening” refers to materials that readily lose their stiffness or undergo a decrease in flexural modulus property upon contact with water. It has been found that the preferred thermoplastic compositions described herein undergo a significant decrease in flexural modulus upon contact of the composition with water. This decrease in flexural modulus property provides for thermoplastic compositions that are manufactured into flushable tampon applicators that readily lose their structural integrity in water for easy disposal down a sewage system such as a toilet. Dry and wet flexural modulus properties of preferred thermoplastic compositions are exemplified hereinbelow in Table 3.
3TABLE 3Flexural Modulus Physical PropertiesWetWetWetDryFlexuralFlexuralFlexuralFlexuralModulusModulusModulusModulus(MPa)(MPa)(MPa)Sample(MPa)at 5 min.at 15 min.at 60 min.PEO1/PEG2/Biomer 209H6 (40/30/30 blend)70029014040PEO1/PEG2/Bionolle 30015 (40/30/30 blend)54018014030PEO1/PEG2/Bionolle 30015 (66/17/17 blend)45019015050PEO1/PEG2/Eastar 147764 (40/30/30 blend)61018012020PEO1/PEG2/BAK 4043 (40/30/30 blend)72021010040PEO1/PEG2/BAK 4043 (40/40/20 blend)84045030060PEO1/PEG2/BAK3/P-6457 (36/27/27/10 blend)36023015030PEO1/PEG2/BAK3/P-41418 (36/27/27/10 blend)35022012040PEO1/PEG2/PLA 44D9 (40/30/30 blend)1280 700430260 PEO1/PEG2/PLA 62-50D9 (40/30/30 blend)1220 660450220 PEO1/PEG2/Eastar4/P-6457/CaCO310 (11/9/20/10/50 blend)20615410642PEO1/PEG2/Eastar4/P-6457/CaCO310 (24/18/18/10/30 blend)37721118161PEO1/PEG2/Eastar4/P-6457/CaCO310 (29/21/10/10/30 blend)54921116328PEG2/PEG11/Eastar4/P-6457/CaCO310 (20/5/40/5/30 blend)292257226210 PEO1/PEG2/Eastar4/P-6457/CaCO310 (16/12/12/10/50 blend)47324318272PEO1/PEG2/Eastar4/P-6457/Talc12 (17/13/10/10/50 blend)55428024677PEO1/PEG2/Eastar4/P-6457/Talc12 (24/18/18/10/30 blend)745434320140 PEO1/PEG2/Eastar4/AB13/wood flour14/TiO215/Kemamide E162050 1120 260 (17/17/25/5/30/5/1 blend)PEO1/PEG2/Eastar4/Starch17/P-6457/Kemamide E1633013012(18/13/13/50/5/1 blend)PEO1/PEG2/Eastar4/Starch18/P-6457/Kemamide E16/MgSt19360308211120 (15/10/37/30/5/1/2 blend)PEO1/Eastar4/CaCO310/P-6457 (18/15/65/4 blend)43027817752PEO1/PEG2/Eastar4/CaCO310/P-6457/Kemamide E1639027020683(15/10/29/40/5/1 blend)PEO1/PEG2/Eastar4/CaCO310/P-6457/MgSt19/Loxiol G332041027120381(15/10/26/40/5/2/2 blend)PEO1/PEG2/Eastar4/CaCO310/P-6457/Kemamide E16380302234125 (15/10/39/30/5/1 blend)PEO1/Eastar4/CaCO310/P-6457/Kemamide E1620018417999(25/39/30/5/1 blend)PEO1/PEG2/Eastar4/CaCO310/P-6457/Kemamide E16/Paraffin30020518794wax21 (15/10/34/30/5/1/5 blend)PEG2/Eastar4/CaCO310/MgSt19 (17.5/64/17.1/1 blend)320263245228 PEG2/Eastar4/CaCO310/MgSt19/P-64322/DC4-705125140128133116 (15/62/15/1/5/2 blend)


[0100] The thermoplastic compositions also have physical properties of weight loss in water which can be determined by the percent weight loss of a dry specimen sample of a thermoplastic composition that has been submerged in water for time intervals of 5 minutes, 1 hour, 24 hours, and 1 week. For example, dry injection molded thermoplastic compositions having a thickness of about ⅛ inches are weighed to ascertain the dry specimens dry weight. The dry specimens are then soaked in water for a duration of 5 minutes, 1 hour, 24 hours, or 1 week, wherein dependent on the type of thermoplastic composition dissolution of the water-soaked specimen occurs. The water-soaked specimens are recovered for drying in a Blue M oven for 16 hours at 40° C. to obtain a final weight loss. The percent weight loss is calculated by subtracting the weight of dried water-soaked specimens minus the dry specimens initial weight, divided by the dry specimens initial weight, and multiplied by 100. The percent weight loss values of thermoplastic compositions described herein are exemplified hereinbelow in Table 4. A negative percent weight loss value is indicative of the thermoplastic composition being able to readily dissolve or disintegrate in water, and a positive percent weight loss value is indicative of the thermoplastic composition being able to maintain its structural integrity in water and not readily break apart into unrecognizable pieces. It has been found that the preferred thermoplastic compositions described herein can be molded into flushable tampon applicators of the present invention that exhibit a weight loss in water such that after being submerged for a period of 5 minutes the tampon applicators are capable or readily breaking apart, an observation of such tampon applicators being suitable for disposal by flushing down a toilet. These flushable tampon applicators exhibited a significant weight loss in water over a time period of 24 hours.
4TABLE 4% Weight (Wt.) Loss Physical Property% Wt.% Wt.% Wt.% Wt.losslosslossloss(5 min,(1 hour(24 hours(1 weekSamplesoaking)soaking)soaking)soaking)PEO1/PEG2/Biomer 209H6 (40/30/30 blend)−4−22−69−87PEO1/PEG2/Bionolle 30015 (40/30/30 blend)−8−16−63−67PEO1/PEG2/Bionolle 30015 (66/17/17 blend)−4−66−76−80PEO1/PEG2/Eastar 147764 (40/30/30 blend)−3−15−69−73PEO1/PEG2/BAK 4043 (40/30/30 blend)−6−19−73−77PEO1/PEG2/BAK 4043 (40/40/20 blend)−12 −61−100 −100 PEO1/PEG2/BAK3/P-6457 (36/27/27/10 blend)  6−22−61−67PEO1/PEG2/BAK3/P-41418 (36/27/27/10 blend)  1−18−60−65PEO1/PEG2/PLA 44D9 (40/30/30 blend)  3 −7−51−56PEO1/PEG2/PLA 62-50D9 (40/30/30 blend)  1−11−52−56PEO1/PEG2/Eastar4/P-6457/CaCO310 (11/9/20/10/50 blend)−2 −8−11−21PEO1/PEG2/Eastar4/P-6457/CaCO310 (24/18/18/10/30 blend)−1 −6−37−39PEO1/PEG2/Eastar4/P-6457/CaCO310 (29/21/10/10/30 blend)−2−22−77PEG2/PEG11/Eastar4/P-6457/CaCO310 (20/5/40/5/30 blend)−3 −6−18−20PEO1/PEG2/Eastar4/P-6457/CaCO310 (16/12/12/10/50 blend)−2−10−34−35PEO1/PEG2/Eastar4/P-6457/Talc12 (17/13/10/10/50 blend)−3 −8−29−30PEO1/PEG2/Eastar4/P-6457/Talc12 (24/18/18/10/30 blend)  0 −5−40−41



Disintegration Rate

[0101] The flushable tampon applicators of the present invention are constructed of water-dispersible and biodegradable components to provide for applicators that readily lose their structural integrity and disintegrate in water, especially in water from a waste disposal system. It has been shown that the flushable tampon applicators of the present invention can soften and disintegrate into unrecognizable pieces in about an hour of exposure to wastewater. Prolonged exposure which is indicative of municipal waste disposal means results in further disintegration of these flushable tampon applicators.


[0102] To test the disintegration rate of a flushable tampon applicator comprising thermoplastic materials, the applicator is initially weighed to obtain an initial dry weight, and then the applicator is exposed to wastewater at time intervals of 1 hour, 6 hours, 24 hours, and 48 hours. Suitable wastewater that can be used in the disintegration test include influent wastewater that can be obtained from a municipal waste treatment plant.


[0103] Thermoplastic tampon applicator products and control samples are each submerged in about one liter of wastewater and allowed to shake using any suitable rotary floor shaker capable of shaking the control/wastewater and applicator/wastewater test samples at a shaker rate of 150 revolutions per minute (rpm). Control samples which can be used for this disintegration test include about 3-5 grams of fluted or folded Whatman #41 filter paper (i.e., about 3-4 pieces of the filter paper for each control sample).


[0104] After a shaking period of one hour, visual observations of the test sample are recorded for any noticeable structural differences in the tampon applicator. After shaking periods of 6 hour, 24 hours, and 48 hours the test sample is filtered using sieves arranged from top to bottom in the following order: 8 millimeter (mn) sieve, 4 mm sieve, 2 mm sieve, 1 mm sieve, and a 0.5 mm sieve. The remaining solids of the test sample captured on the 8 mm sieve is then gently rinsed for 5 minutes using a hand-held showerhead spray nozzle while minimizing the passage of retained remaining solids to the next smaller sieve. The 8 mm sieve is removed, and the remaining solids on the next smaller sieve is rinsed for 5 minutes. The 5 minute rinsing cycle is performed on each sieve containing retained remaining solids.


[0105] After rinsing, the retained test sample from each sieve is transferred using forceps or commercial paint brushes to individual aluminum pans, and the aluminum pans are placed in a Blue M oven at 40° C. to dry overnight. The dried test sample is weighed, and the retained fraction of each control and applicator product is determined using the following calculation:
1%ofRetainedFraction=Driedretainedfractiononsieve(gm)Initialweightofsample(gm)×100


[0106] It has been found that the tampon applicators of the present invention readily soften and disintegrate after being submerged in wastewater for one hour with substantially increased disintegration after only 6 hours of exposure. These tampon applicators are suitable for flushing in a sewage system such as a toilet due to their ability to readily break apart and dissolve in wastewater produced from toilet septic tanks. Data showing the disintegration rate of flushable tampon applicators of the present invention is exemplified hereinbelow.
5PEO1/PEG2/Eastar4 (40/30/30 blend)8 mm4 mm2 mm1 mm0.5 mmDisintegration Ratesievesievesievesievesieve% Initial Fraction100 6 hour % Retained Fraction40.790.000.000.030.0824 hour % Retained Fraction30.710.190.000.000.1048 hour % Retained Fraction32.310.000.030.030.07


[0107]

6











PEO1/PEG2/BAK 4043 (40/30/30 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






 6 hour % Retained Fraction
10.61
3.89
0.25
0.08
2.33


24 hour % Retained Fraction
7.63
1.91
0.36
0.50
3.43


48 hour % Retained Fraction
4.48
2.09
0.89
0.91
2.62










[0108]

7











PEO/PEG/Bionelle 30015 (40/30/30 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






6 hour % Retained Fraction
56.35
0.00
0.00
0.00
0.00


24 hour % Retained Fraction
51.40
0.00
0.00
0.00
0.00


48 hour % Retained Fraction
42.46
0.00
0.00
0.00
0.11










[0109]

8











PEO1/PEG2/PLA 44D9 (40/30/30 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






6 hour % Retained Fraction
2.06
2.96
3.82
5.58
0.07


24 hour % Retained Fraction
1.39
3.58
2.25
3.93
5.06


48 hour % Retained Fraction
2.82
6.56
5.44
5.16
5.32










[0110]

9











PEO1/PEG2/Biomer 209H6 (40/30/30 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






6 hour % Retained Fraction
0.00
0.08
0.00
0.08
0.52


24 hour % Retained Fraction
0.00
0.10
0.04
0.25
0.66


48 hour % Retained Fraction
0.00
0.00
0.00
0.27
1.36










[0111]

10











PEO1/PEG2/Eastar4/AB13/wood flour14/TiO215/Kemamide E16


(17/17/25/5/30/5/1 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






6 hour % Retained Fraction
23.54
0.00
0.83
1.26
1.87


24 hour % Retained Fraction
6.31
2.39
3.34
3.11
3.31


48 hour % Retained Fraction
0.00
3.71
2.75
2.73
3.63










[0112]

11











PEO1/PEG2/Eastar4/Starch17/P-6457/Kemamide E16


(18/13/13/50/5/1 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






6 hour % Retained Fraction
4.36
1.56
7.65
4.77
4.53


24 hour % Retained Fraction
0.00
0.64
3.37
6.72
10.88 


48 hour % Retained Fraction
0.00
0.00
2.18
5.36
9.14










[0113]

12











PEO1/PEG2/Eastar4/P-6457/Talc12 (24/18/18/10/30 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






6 hour % Retained Fraction
66.68
0.00
0.00
0.00
0.00


24 hour % Retained Fraction
57.24
0.00
1.17
0.47
0.30


48 hour % Retained Fraction
55.44
0.19
1.86
1.03
0.97










[0114]

13











PEO1/PEG2/Eastar4/P-6457/CaCO310 (11/9/20/10/50 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






6 hour % Retained Fraction
5.25
5.41
21.32
12.08
 3.94


24 hour % Retained Fraction
2.73
2.51
 7.09
16.71
10.51


48 hour % Retained Fraction
0.00
0.89
 4.67
 8.83
11.53










[0115]

14











PEO1/PEG2/Eastar4/P-6457/CaCO310 (24/18/18/10/30 blend)













8 mm
4 mm
2 mm
1 mm
0.5 mm


Disintegration Rate
sieve
sieve
sieve
sieve
sieve















% Initial Fraction
100






6 hour % Retained Fraction
9.72
12.69
20.19
 4.17
2.35


24 hour % Retained Fraction
2.17
 3.90
16.02
12.87
3.53


48 hour % Retained Fraction
0.00
13.41
11.36
 9.52
3.19











Optional Components

[0116] The flushable tampon applicators of the present invention can comprise optional ingredients in combination with the water-dispersible and biodegradable components wherein the optional ingredients provide benefits to the final product or to the thermoplastic materials used in making the final product. Such benefits include, but are not limited to, stability including oxidative stability, brightness, flexibility, resiliency, toughness, workability, odor control, improved strength, improved modulus, improved melt flow characteristics, and/or distensibility of the thermoplastic compositions. The flushable tampon applicators typically comprise from about 0.05% to about 25% of optional ingredients by weight of the applicator. The optional ingredients include plasticizing agents, antioxidants, slip agents, optical brighteners, crystallization accelerators or retarders, flow promoters, processing aids, pigments or colorants, mold release agents, nucleating agents, coating agents, gelling agents, antistatic agents, dispersing agents, compatibilizers, lubricants, surfactants, heat stabilizers including magnesium stearate, odor masking agents, opacifying agents such as aluminum oxide, dyes, viscosity modifiers, ester waxes, elastomers, and mixtures thereof. The optional plasticizing agents, coating agents, viscosity modifiers, and lubricants, are described in detail hereinbelow.


[0117] A specific example of a slip agent is Kemamide E Ultra which is commercially available from the Crompton Corporation (Taft, Los Angeles).


[0118] pecific examples of optional processing aids include, but are not limited to, the acrylic polymers commercially available from the ATOFINA Chemicals Incorporation (Philadelphia, Pa.) under the Metablen P-550, Metablen P-710 SD, and Metablen C-303 tradenames.


[0119] Specific examples of optional nucleating agents include, but are not limited to, Licomont CaV 102 and Licomont NaV 101, both of which are commercially available from the Clariant Corporation (Coventry, R.I.); and Millad 3988 which is commercially available from Milliken Chemical (Inman, S.C.).


[0120] A specific example of an optional heat stabilizer is Thermolite 890S which is commercially available from the ATOFINA Chemicals Incorporation.


[0121] Specific examples of optional elastomers include, but are not limited to, Kraton L207, Kraton L1203, Kraton L2203, and Kraton G 1652, all of which are commercially available from Kraton Polymers (Houston, Tex.).


[0122] Optional Plasticizing Agent


[0123] If a plasticizing agent is included with thermoplastic polymers for making the flushable tampon applicators of the present invention, the plasticizer is included at concentrations ranging from about 1% to 20 about 25% by weight of the applicator. In this context, the term “plasticizing agent” refers to any organic compound that, when added to a thermoplastic polymer, can provide modification to the polymer's morphology to result in increased ease of processing of the polymer and increased toughness and flexibility of the polymer after processing. Examples of optional plasticizing agents include glycerin, glycerin derivatives such as triacetin and glycerol monostearate, sorbitol, eritol, glucidol, mannitol, sucrose, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, diethylene glycol dibenzoate, dipropylene glycol dibenzoate, triethylene glycol caprate-caprylate, butylene glycol, pentamethylene glycol, hexamethylene glycol, diisobutyl adipate, oleic amide, erucic amide, pannitic amide, dimethyl acetamide, dimethyl sulfoxide, methyl pyrrolidone, tetramethylene sulfone, oxa monoacids, oxa diacids, polyoxa diacids, diglycolic acids, triethyl citrate, acetyl triethyl citrate, tri-n-butyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n-hexyl citrate, alkyl lactates, phthalate polyesters excluding the aromatic terephthalate polyesters suitable for use as a biodegradable polymer herein, adipate polyesters, glutate polyesters, diisononyl phthalate, diisodecyl phthalate, dihexyl phthalate, alkyl alylether diester adipate, dibutoxyethoxyethyl adipate, and mixtures thereof.


[0124] Examples of commercially available plasticizers include the adipate polyesters sold under the Plasthall P-645, Plasthall P-643, Plasthall HA7A, Paraplex G-54, and Paraplex G-50 tradenames; triethylene glycol caprate-caprylate sold under the Plasthall 4141 tradename; the polyesters sold under the Paraplex A-8200 and Paraplex A-8040 tradenames; the polyester glutarate sold under the Plasthall P-550 tradename; diisononyl phthalate sold under the Plasthall DINP tradename; dibutoxyethoxyethyl adipate sold under the Plasthall 226 tradename; and the Supermix Plasthall 226 and Supermix Paraplex G-50; all of which are available from the C. P. Hall Corporation (Chicago, Ill.).


[0125] Optional Coating Agent


[0126] The flushable tampon applicators of the present invention preferably comprise from about 0.05% to about 10% of a coating agent by weight of the applicator. The coating agent provides stability to the final applicator product by serving as a moisture barrier, and is considered to be effective in reducing or eliminating the sticky or slippery film feel that can occur when the applicator comes in contact with air-laden or human moisture. The coating agent can be applied using any suitable coating technique known in the art for effectively applying a coating material on the outer or exterior surface of a thermoplastic material used to form a flushable tampon applicator. Some known effective coating methods can be typically described as tumbling coating, spray coating, brushing, dip coating, slot coating, gravure coating, extrusion coating, co-extrusion coating, and the like.


[0127] While the coating material can be applied directly to the outer or exterior surface of a thermoplastic material described herein, the coating material can also be applied as a coating solution. The coating solution comprises the coating solubilized in a volatile solvent, wherein suitable volatile solvents include saturated and unsaturated hydrocarbons such as heptane, cyclohexane, and toluene; halogenated hydrocarbons such as chlorobenzene, chloroform, and methylene chloride; hydrocarbon alcohol ethers; and mixtures thereof.


[0128] Optional preferred coating agents suitable for use herein include waxes, hydrogenated vegetable oils, food grade shellac, epoxy resins, vinylidene chloride copolymer latexes, polysiloxanes, sucrose fatty acid esters, and mixtures thereof. A specific example of a vinylidene chloride copolymer latex is Daran SL 143 which is commercially available from the Hampshire Chemical Corporation.


[0129] Specific nonlimiting examples of waxes suitable for use as an optional preferred coating agent include animal waxes (e.g., beeswax, spermaceti, lanolin, and shellac wax); vegetable waxes (e.g., carnauba, candelilla, bayberry, and sugar cane); mineral waxes (e.g., fossil or earth waxes such as ozokerite, ceresin, and montan, or petroleum waxes such as paraffin, microcrystalline, petrolatum, slack and scale wax); chlorinated naphthalenes (e.g., “Halowax”); and mixtures thereof. A specific example of a paraffin wax is Paraflint H-1 which is commercially available from the Moore & Munger Incorporation located in Shelton, Conn.


[0130] Optional Viscosity Modifiers


[0131] The flushable tampon applicators of the present invention can optionally comprise viscosity modifiers to increase the viscosity of the water-dispersible and biodegradable thermoplastic polymers described herein so that they can be molded using a preferred injection molding or any other molding technique described herein. Such viscosity modifiers are typically included at concentrations ranging from about 0.1% to about 5%, preferably from about 0.1% to about 2% by weight of the applicator. Nonlimitng examples of suitable viscosity modifiers include trifunctional alcohols such as trimethylolpropane, tetrafunctional alcohols such as pentaerythritol, trifunctional carboxylic acids such as citric acid, and the like.


[0132] Optional Lubricants


[0133] The flushable tampon applicators of the present invention can optionally comprise lubricants to increase the overall rate of processing and to improve surface properties. Therefore, lubricants are also referred to as mold release agents and slip/anti-blocking agents, and provide for improved product properties such as brightness, heat stability during processing, light stability, better dispersion of additives, and improved optical and mechanical properties). It is believed that the optional lubricants provide these processing and product surface properties due to the migration of the lubricants to the surface of the processed products where they resist adhesion to processing equipment.


[0134] Examples of optional lubricants suitable for use herein include, but are not limited to, metal soaps (e.g., stearate soaps), hydrocarbon waxes including polyethylene wax, fatty acids, long-chain alcohols, fatty acid esters (e.g., ester waxes), fatty acid amides, silicones, fluorochemicals, acrylics, and mixtures thereof.


[0135] Specific examples of metal soaps suitable for use as an optional lubricant herein include, but are not limited to, calcium stearate commercially available from the Ferro Corporation (Cleveland, Ohio,) under the Synpro Calcium Stearate 392A tradename; magnesium stearate commercially available from the Aldrich Chemical Company (Milwaukee, Wis.); and the stearates commercially available from the Norac Incorporation (Helena, Ark.) such as calcium stearate commercially available under the COAD10 and COAD10LD tradenames, zinc stearate commercially available under the COAD21 and COAD23 tradenames, and magnesium stearate commercially available under the MATBHE magnesium stearate tradename.


[0136] Specific examples of fatty acid esters suitable for use as an optional lubricant herein include, but are not limited to, the fatty acid esters commercially available from Cognis-Plastics Technology (Amber, Pa.) under the Loxiol G33, Loxiol G60, Loxiol G71S, and Loxiol HOB7111 tradenames; the ester waxes commercially available from the Clariant Corporation under the Licowax E, Licolub WE 4, and Licowax OP tradenames; and the ester waxes commercially available from the Fanning Corporation under the Natralube 120 and Natralube 125 tradenames.


[0137] Specific examples of silicones suitable for use as an optional lubricant herein include, but are not limited to, the silicones commercially available from the Dow Corning Corporation (Midland, Mich.) under the Dow Corning MB50-002, Dow Corning MB50-010, Dow Corning 4-7051, and Dow Corning 9506 tradenames.


[0138] Specific examples of fluorochemicals suitable for use as an optional lubricant herein include, but are not limited to, the fluoropolymers commercially available from the AG Fluoropolymers Incorporation (Downingtown, Pa.) under the Whitcon Tl-5 and Whitcon TL-155 tradenames; and the fluoropolymers commercially available from Dyneon LLC (Oakdale, Minn.) under the Dynamar FX 9613, Dynamar FX 5920A, Dynamar FX 5911X, Dynamar FX 5912X, Dynamar PPA 790, and Dynamar PPA 791 tradenames.


[0139] A specific example of an acrylic suitable for use as an optional lubricant herein is the white powder acrylic commercially available from the ATOFINA Chemicals Incorporation under the Metablen L-1000SD tradename.


[0140] Method of Manufacture


[0141] The flushable tampon applicators of the present invention may be prepared by any known or otherwise effective technique for providing a disposable tampon applicator provided that the article is made to contain water-dispersible and biodegradable materials described herein, preferably a blend of water-dispersible and biodegradable materials. Typically, the flushable tampon applicators are molded in a desired shape or configuration using a variety of molding techniques to provide a thermoplastic applicator comprising an outer tubular member and a plunger. Such molding techniques include injection molding, extrusion molding, blow molding, compression molding, and cast film. These molding techniques can be used alone or in combination to make the flushable tampon applicators of the present invention. For example, the outer tubular member and plunger components of the flushable tampon applicators herein can be made using an injection molding apparatus, or the outer tubular member and plunger can be made using an extrusion molding apparatus, or the outer tubular member can be made using injection molding and the plunger made using extrusion molding, or the outer tubular member made by extrusion molding and the plunger made by injection molding, or the outer tubular member and/or plunger are made using a combination of extrusion and injection molding.


[0142] Generally, the process of making flushable tampon applicators of the present invention involves charging one or more high molecular weight polyethylene oxides, one or more low molecular weight polyethylene glycols, one or more aliphatic/aromatic copolyesters, and any other ingredients such as plasticizers and/or filler into an injection molding apparatus, and molding the melt blended mixture comprising uniformly dispersed filler into the desired flushable tampon applicator. Alternatively, a blend of the thermoplastic materials, optional plasticizer, and uniformly dispersed filler can be compounded into pellets by means of an extruder, and the pellets are then constructed into flushable tampon applicators using an injection molding apparatus.


[0143] One example of a procedure of making flushable tampon applicators of the present invention involves mixing the thermoplastic polymers, optional plasticizer, and filler in a variable speed, high intensity blender, extruding the mixture at a temperature above the melting temperature of the thermoplastic polymers to form a rod, chopping the rod into pellets, and injection molding the pellets into the desired flushable tampon applicator form.


[0144] The extruders which are commonly used to melt process thermoplastic compositions into compounded pellets are generally single-screw extruders, twin-screw extruders, and kneader extruders. Examples of commercially available extruders suitable for use herein include the Black-Clawson single-screw extruders, the Werner and Pfleiderer co-rotating twin-screw extruders, the HAAKE Polylab System counter-rotating twin screw extruders, and the Buss kneader extruders. A typical extrusion process can be described as compounding blended components using a twin-screw extruder having a screw diameter of 30 mm, a feed section, and a die tip. The blend is compounded at about 100 revolutions per minute (rpm) at a temperature ranging from about 60° C. at the feed section to about 130° C. at the die tip. The final product is a compounded rod that is chopped into pellets suitable for molding into desired flushable tampon applicators using an injection molding apparatus. General discussions of extrusion molding are disclosed in the Encyclopedia of Polymer Science and Engineering; Volume 6, pp. 571-631, 1986, and Volume 11, pp. 262-285, 1988; John Wiley and Sons, New York; which disclosures are incorporated by reference herein.


[0145] Injection molding is the most commonly used process for constructing and configuring tampon applicators into a desired shape of form. This process is typically carried out under controlled temperature, time, speed and pressure, and involves melt processing pellets or blends of thermoplastic compositions wherein the melted thermoplastic composition is injected into a mold, cooled, and molded into a desired plastic object.


[0146] An example of a suitable injection molding machine is the Engel Tiebarless ES 60 TL apparatus having a mold, a nozzle, and a barrel that is divided into zones wherein each zone is equipped with thermocouples and temperature-control units. The zones of the injection molding machine can be described as front, center, and rear zones whereby the pellets are introduced into the front zone under controlled temperature. The temperature of the nozzle, mold, and barrel components of the injection molding machine can vary according to the melt processing temperature of the pellets and the molds used, but will typically be in the following ranges:
15ComponentTemp (° C.)Nozzle135-230Front Zone 70-200Center Zone100-225Rear Zone120-225Mold20-50


[0147] Other typical processing conditions include an injection pressure of from about 300 pounds per square inch (psi) to about 3000 psi (about 2 MPa to about 21MPa), a holding pressure of about 400 psi to about 2000 psi (about 3 Mpa to about 14MPa), a hold time of about 2 seconds to about 25 seconds, and an injection speed of from about 0.98 inches per second (in/sec) to about 8 in/sec.


[0148] Other suitable injection molding apparatus are the injection molding machines made by Battenfeld, Brabender, Killion, Demag and Arburg, Windsor, Hesas, Boy, Van Dorn, Engel, and the Fischer companies. Specific examples of other suitable injection molding machines include the Van Dom Model 150-RS-8F, the Battenfeld Model 1600, and the Engel Model ES80. A general discussion of injection molding is disclosed in the Encyclopedia of Polymer Science and Engineering, Volume 8, pp. 102-138, John Wiley and Sons, New York, 1987, which disclosure is incorporated by reference herein.


[0149] The flushable tampon applicators of the present invention are generally made using the extrusion and injection molding techniques described hereinabove. These techniques involve melt processing the thermoplastic polymers, filler, and any optional ingredients wherein the thermoplastic polymers, filler, and optional ingredients have melting temperatures typically ranging from about 25° C. to about 350° C., more typically from about 40° C. to about 300° C., even more typically from about 50° C. to about 200° C. Therefore, the thermoplastic polymers suitable for use in making the flushable tampon applicators of the present invention desirably have individual melt flow rates of from about 0.1 gram/10 minutes to about 600 grams/10 minutes, preferably from about 1 gram/10 minutes to about 400 grams/10 minutes, more preferably from about 5 grams/10 minutes to about 200 grams/10 minutes, even more preferably from about 10 grams/10 minutes to about 150 grams/10 minutes, as determined according to the ASTM Test Method D1238-E.


[0150] The final products of flushable tampon applicators of the present invention are packaged in moisture-proof wrappers for storage prior to use. The moisture-proof wrappers prevents moisture from contacting the applicator or tampon pledget, and therefore aids in the assurance of shelf-stabilily for the tampon and provides an asethetically pleasing and acceptable tampon product prior to actual use. The flushable tampon applicators of the present invention can be packaged in any suitable wrapper provided that the wrapper is soil proof and disposable with dry waste. Preferred wrappers are those made from biodegradable materials which create minimal or no environmental concerns for their disposal. It is contemplated, however, that the tampon applicators of the present invention can be packaged in flushable wrappers made from paper, nonwoven, cellulose, thermoplastic, or any other suitable flushable material, or combinations of these materials.



EXAMPLES

[0151] The following examples further describe and demonstrate embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention. All exemplified concentrations are weight-weight percents, unless otherwise specified.



Example 1

[0152] Flushable tampon applicators of the present invention are made by a melt extrusion process of blending water-dispersible polymers, biodegradable polymers, fillers, and any optional ingredient using a Werner Pfleiderer ZSK-30 co-rotating twin screw extruder having a screw diameter of 30 mm, six heating zones, a four hole die plate, two feeding hoppers, and a liquid pump which is connected to the extruder through a hole located between heating zones 3 and 4. For example, powder ingredients are dry blended together wherein the powder ingredients include water-dispersible polymers such as high molecular weight polyethylene oxide commercially available as POLYOX® WSR-80 and low molecular weight polyethylene glycol commercially available as PEG-8000; fillers such as calcium carbonate (commercially available as Vicron 15-15), talc (commercially available as ABT 2500), starch granule materials (commercially available as Staley Pure Food Powdered Starch and National Starch Melojel), and wood flours (commercially available as Pine Wood Flour Grade 10020); and optional ingredients such as ester wax (commercially available as Loxiol G33), magnesium stearate, and Kemamide E. Likewise, ingredients in pellet form are dry blended together such as a dry blend pellet mixture of biodegradable polymers. Any ingredients added in liquid form are mixed with other liquids prior to extrusion, for example, any liquid plasticizes and any other liquid optional ingredient are mixed together. Next, the powder dry blend mixture is fed into the extruder through one feeding hopper while the pellet formed mixture is fed into the extruder through the other feeding hopper. The optional liquid mixture is pumped into the extruder through the liquid pump. During the extrusion process, the water-dispersible polymers, biodegradable polymers, optional plasticizers and any other optional ingredient form a melt-blended mixture. The fillers including inorganic and organic fillers are not melted and remain in their particle forms during the extrusion process and, therefore are uniformly dispersed throughout the melt blend mixture. Then, the melt blend mixture containing uniformly dispersed filler particles is extruded to the end of the extruder to the die to form four rods. The rods are carried on a conveyor, air cooled, and pelletized using a pelletizer for injection molding into a desired flushable tampon applicator. Compositions for forming flushable tampon applicators of the present invention and extrusion settings are further described hereinbelow in Table 5 and Table 6.
16TABLE 5Extrusion Molded Thermoplastic CompositionsZone 1Zone 2Zone 3Zone 4Zone 5Zone 6DieScrew SpeedComposition(° C.)(° C.)(° C.)(° C.)(° C.)(° C.)(° C.)(rpm)PEO1/PEG2/BAK 4043Off80101128141114120100(40/30/30 blend)PEO1/PEG2/BAK 40436070110118122103105250(40/40/20 blend)PEO1/PEG2/Eastar 147764Off8099130140115120100(40/30/30 blend)PEO1/PEG2/Bionolle 300156070110113122109103300(66/17/17 blend)PEO1/PEG2/Bionolle 30015Off50125130145125116100(40/30/30 blend)PEO1/PEG2/Biomer 209H6758598146161148130300(40/30/30 blend)PEO1/PEG2/BAK 4043/Off80101128141114120100P-6457 (36/27/27/10 blend)PEO1/PEG2/BAK 4043/Off80101128141114120100P-41418(36/27/27/10 blend)PEO1/PEG2/Eastar4/75809614816411391275P-6457/CaCO310(11/9/20/10/50 blend)PEO1/PEG2/Eastar4/75801001251458990275P-6457/CaCO310(24/18/18/10/30 blend)PEO1/PEG2/Eastar4/758010012514510095275P-6457/CaCO310(29/21/10/10/30 blend)PEG2/PEG11/Eastar4/75809912114410684275P-6457/CaCO310(20/5/40/5/30 blend)PEO1/PEG2/Eastar4/758010012514410093275P-6457/CaCO310(16/12/12/10/50 blend)PEO1/PEG2/Eastar4/7580991481625090300P-6457/Talc12(17/13/10/10/50 blend)rpm —revolutions per minute 1polyethylene oxide available as POLYOX ® WSR-80 from the Union Carbide Corporation 2polyethylene glycol available as PEG-8000 from Union Carbide 3aliphatic polyesteramide available as BAK 404 from Bayer Aktiengesellschaft 4aliphatic-aromatic copolyester available as Eastar Biodegradable Copolyester 14776 from Eastman Chemical 5diacid-diol aliphatic polyester available as BIONOLLE 3001 from the Showa Highpolymer Company, Ltd. 6polyhydroxyalkanoate available as Biomer 209H from Biomer Frost-Kasten-Str., Krailling, Germany 7adipate polyester plasticizer available as Plasthall 645 from C. P. Hall 8triethylene glycol caprate-caprylate plasticizer available as Plasthall 4141 from C. P. Hall 10calcium carbonate available as Vicron 15-15 from Specialty Mineral 11polyethylene glycol available as PEG-600 from Union Carbide 12talc available as ABT 2500 from Specialty Mineral


[0153]

17





TABLE 6










Extrusion Molded Thermoplastic Compositions
















Zone 1
Zone 2
Zone 3
Zone 4
Zone 5
Zone 6
Die
Screw Speed


Composition
(° C.)
(° C.)
(° C.)
(° C.)
(° C.)
(° C.)
(° C.)
(rpm)


















PEG2/PEG11/Eastar4/
75
80
99
121
144
106
84
275


P-6457/CaCO310


(20/5/40/5/30 blend)


PEO1/PEG2/Eastar4/
75
80
100
125
144
100
93
275


P-6457/CaCO310


(16/12/12/10/50 blend)


PEO1/PEG2/Eastar4/
75
80
99
148
162
50
90
300


P-6457/Talc12


(17/13/10/10/50 blend)


PEO1/PEG2/Eastar4/
75
80
100
125
145
90
91
275


P-6457/Talc12


(24/18/18/10/30 blend)


PEO1/PEG2/Eastar4/AB13/
70
70
90
115
135
135
95
60


wood flour14/TiO215/


Kemamide E16


(17/17/25/5/30/5/1 blend)


PEO1/PEG2/Eastar4/
70
75
90
115
135
110
100
150


Starch17/P-6457/Kemamide


E16 (18/13/13/50/5/1 blend)


PEO1/PEG2/Eastar4/
50
70
102
122
134
110
92
260


Starch18/P-6457/Kemamide


E16/MgSt19


(15/10/37/30/5/1/2 blend)


PEO1/Eastar4CaCO310/
50
70
115
137
153
91
114
250


P-6457 (18/15/65/4 blend)


PEO1/PEG2/Eastar4/
50
70
121
124
140
105
95
250


CaCO310/P-6457/Kemamide


E16 (15/10/29/40/5/1 blend)


PEO1/PEG2/Eastar4/
50
70
110
133
137
115
105
250


CaCO310/P-6457/MgSt19/


Loxiol G3320


(15/10/26/40/5/2/2 blend)


PEO1/PEG2/Eastar4/
50
70
120
125
140
105
95
250


CaCO310/P-6457/Kemamide


E16 (15/10/39/30/5/1 blend)


PEO1/Eastar4/CaCO310/
50
70
120
133
138
107
99
250


P-6457/Kemamide E16


(25/39/30/5/1 blend)


PEO1/PEG2/Eastar4/
50
70
115
128
141
112
95
250


CaCO310/P-6457/Kemamide


E16/Paraffin wax21


(15/10/34/30/5/1/5 blend)


PEG2/Eastar4/CaCO310/Mg
70
85
110
133
140
123
106
250


St19 (17.5/64/17.5/1 blend)


PEG2/Eastar4/CaCO310/
70
85
110
135
157
118
114
252


MgSt19/P-64322/


DC4-705125


(15/62/15/1/5/2 blend)


PEO1/PEG2/Eastar4/
50
70
110
134
139
121
105
250


CaCO310/P-6457/MgSt19/


DC950623


(15/10/26/40/5/2/2 blend)


PEO1/PEG2/Eastar4/
50
70
110
133
138
117
102
250


CaCO310/P-6457/MgSt19/


Loxiol G3320/Kraton G


165224


(14.5/9.5/25.5/39.5/5/2/2/2


blend)








13
AB anti-block processing aid available from Eastman Chemical







14
pine wood flour available as Pine Wood Flour Grade 10020 from American Wood Fibers







15
titanium dioxide available from DuPont White Pigment & Mineral Products







16
euracamide available as Kemamide E Ultra from Crompton Corpration







17
Food grade corn starch available as Staley Pure Food Powdered from A. E. Staley Manufacturing Co.







18
Food grade corn starch available as National Starch Melojel from National Starch & Chemical







19
Magnesium Stearate available from Aldrich Chemical Company







20
ester wax of fatty acid and fatty alcohol available as Loxiol 033 from Cognis Plastics Technology







21
paraffinic hydrocarbon wax available as Paraflint H-1 from Moore & Munger Inc







22
adipate polyester plasticizer available as Plasthall 643 from C. P. Hall







23
silicone elastomer powder available as DC 9506 from Dow Corning







24
SEBS, tri-block copolymer of styrene and ethylene-butylene with poly(ethylene-butylene) in the center available as Kraton G 1652 from Kraton Polymers







25
silicone resin modifier available as DC4-7051 from Dow Corning










Example 2

[0154] Flushable tampon applicators of the present invention are made by dry blending a mixture of water-dispersible and biodegradable polymers, and then feeding this dry blended mixture of polymers into a HAAKE Polylab System counter-rotating twin screw extruder. The extruder is equipped with a single hole die plate for compounding the dry blended mixture into a single strand of molten plastic that is air-cooled and then chopped into small discs having a diameter of 20 mm and a thickness of 0.5 mm. The small discs are grounded using an IMS LP-288SC Grinder for injection molding into a desired flushable tampon applicator. The dry blended thermoplastic compositions of water-dispersible polymers and biodegradable polymers, in addition to the extrusion apparatus settings, are described hereinbelow in Table 7.
18TABLE 7Extrusion Molded Thermoplastic CompositionsPEO1/PEG2/PLA 44D9PEO1/PEG2/PLA 62-50D9Extruder Settings(40/30/30 blend)(40/30/30 blend)Zone 1 (° C.) 80 80Zone 2 (° C.)200200Zone 3 (° C.)210210Die (° C.)130120Screw Speed 30 25(rpm)9polylactic acids available as PLA 44D grade and PLA 62-50D grade from Cargill-Dow Polymers, LLC


[0155] Injection Molding


[0156] An Engel Tiebarless ES 60 TL injection molding machine is suitable for manufacturing the final product of thermoplastic pellets of Examples 1 and 2 into flushable tampon applicators of the present invention. The injection molding process involves using a 25 mm screw and controlled processing conditions of controlled temperature, time, speed, and pressure, wherein the pellets are melt processed, injected into a mold, cooled, and then molded into the desired flushable tampon applicator.


[0157] The Engel injection molding machine is also suitable for manufacturing composite paper flushable tampon applicators. Typically, spiral-wound paper is formed into paper tubes having a length of about 35 mm, inside diameter of about 10.8 mm, outside diameter of about 11.2 mm, and a weight of about 0.25 grams. The paper tube is positioned over a mold core pin, the mold is clamped shut, and a thermoplastic composition is injected into the mold. The paper tube is positioned over the mold core pin such that the thermoplastic composition is melt processed to flow over the entire length of the outer surface of the paper tube. Therefore, the resultant composite paper tampon applicator comprises a paper inner surface, thermoplastic resin outer surface, and thermoplastic petals and grip components.


[0158] Examples of thermoplastic compositions and injection molding settings are described hereinbelow in Table 8 through Table 15.
19TABLE 8Injection Molded Thermoplastic CompositionsPEO1/PEG2/PEO1/PEG2/PEO1/PEG2/PEO/PEG/Injection MoldingBAK 4043BAK 4043Eastar 147764Bionolle 30015Settings(40/30/30 blend)(40/40/20 blend)(40/30/30 blend)(66/17/17 blend)Nozzle (° C.)177163149135Zone 1 (° C.)149107127 74Zone 2 (° C.)160135138107Zone 3 (° C.)168149143121Mold (° C.) 21 21 21 21Screw Speed (rpm)120192120192Injection Speed (in/sec) 4 4 4 4Injection Pressure (psi)8434181562 1302 Hold Time (sec) 4 12 8 5Hold Pressure (psi)5008006501250 Cool Time (sec) 30 30 25 30psi—pounds per square inch in/sec—inches per second sec—seconds


[0159]

20





TABLE 9










Injection Molded Thermoplastic Compositions














PEO1/PEG2/
PEO1/PEG2/



PEO1/PEG2/
PEO1/PEG2/
BAK 4043/P-6457
BAK 4043/P-41418


Injection Molding
Bionolle 30015
Biomer 209H6
(36/27/27/10
(36/27/27/10


Settings
(40/30/30 blend)
(40/30/30 blend)
blend)
blend)





Nozzle (° C.)
221
149
149
149


Zone 1 (° C.)
193
 65
 65
 65


Zone 2 (° C.)
216
 79
 79
 79


Zone 3 (° C.)
216
143
121
121


Mold (° C.)
 21
 21
 21
 21


Screw Speed (rpm)
120
192
192
192


Injection Speed (in/sec)
 4
 4
 4
 4


Injection Pressure (psi)
641
388
405
564


Hold Time (sec)
 4
 15
 8
 8


Hold Pressure (psi)
1100 
500
500
500


Cool Time (sec)
 35
 60
 40
 40










[0160]

21





TABLE 10










Injection Molded Thermoplastic Compositions











PEO1/PEG2/
PEO1/PEG2/




PLA 44D9
PLA 62-50D9
Composite Paper


Injection Molding
(40/30/30
(40/30/30
with 40/30/30 blend of


Settings
blend)
blend)
PEO1/PEG2/BAK 4043





Nozzle (° C.)
199
199
163


Zone 1 (° C.)
149
149
121


Zone 2 (° C.)
149
149
140


Zone 3 (° C.)
177
177
152


Mold (° C.)
 32
 32
 24


Screw Speed
120
120
160


(rpm)


Injection Speed
 4
 4
 3


(in/sec)


Injection Pressure
348
315
400


(psi)


Hold Time (sec)
 5
 5
 5


Hold Pressure
800
800
300


(psi)


Cool Time (sec)
 30
 30
 4










[0161]

22





TABLE 11










Injection Molded Thermoplastic Compositions












PEO1/PEG2/
PEO1/PEG2/
PEO1/PEG2/
PEG2/PEG11/



Eastar4/P-6457/
Eastar4/P-6457/
Eastar4/P-6457/
Eastar4/P-6457/



CaCO310
CaCO310
CaCO310
CaCO310


Injection Molding
(11/9/20/10/50
(24/18/18/10/30
(29/21/10/10/30
(20/5/40/5/30


Settings
blend)
blend)
blend)
blend)














Nozzle (° C.)
163
163
163
163


Zone 1 (° C.)
121
121
121
121


Zone 2 (° C.)
135
135
135
135


Zone 3 (° C.)
149
149
149
149


Mold (° C.)
24
24
24
24


Screw Speed (rpm)
192
192
192
192


Injection Speed (in/sec)
4
4
4
4


Injection Pressure (psi)
700
510
576
410


Hold Time (sec)
7.5
5
5
7.5


Hold Pressure (psi)
500
500
500
500


Cool Time (sec)
45
45
45
45










[0162]

23





TABLE 12










Injection Molded Thermoplastic Compositions















PEG2/PEG11/



PEO1/PEG2/
PEO1/PEG2/
PEO1/PEG2/
Eastar4/AB13/wood



Eastar4/P-6457
Eastar4/P-6457/
Eastar4/P-6457/
flour14/TiO215/



CaCO310
Talc12
Talc12
Kemamide E16


Injection Molding
(16/12/12/10/50
17/13/10/10/50
24/18/18/10/30
17/17/25/5/30/5/1


Settings
blend)
blend)
blend)
blend)














Nozzle (° C.)
163
163
163
174


Zone 1 (° C.)
121
121
121
149


Zone 2 (° C.)
135
135
135
168


Zone 3 (° C.)
149
149
149
171


Mold (° C.)
21
24
24
38


Screw Speed (rpm)
192
192
192
192


Injection Speed (in/sec)
4
4
4
2


Injection Pressure (psi)
744
410
451
1750


Hold Time (sec)
10
7.5
5
20


Hold Pressure (psi)
750
500
500
750


Cool Time (sec)
30
45
45
70










[0163]

24





TABLE 13










Injection Molded Thermoplastic Compositions












PEO1/PEG2/

PEO1/PEG2/
PEG2/PEG11/



Eastar4/Starch17/
PEO1/Eastar4/
Eastar4/CaCO310/
Eastar4/CaCO310/



P-6457/
CaCO310/
P-4657/
P-6457/



Kemamide E16
P-6457
Kemamide E16
Kemamide E16


Injection Molding
(18/13/13/50/5/1
(18/15/65/4
(15/10/29/40/5/1
(15/10/39/30/5/1


Settings
blend)
blend)
blend
blend)














Nozzle (° C.)
149
171
135
182


Zone 1 (° C.)
93
104
93
104


Zone 2 (° C.)
121
160
121
171


Zone 3 (° C.)
141
166
127
177


Mold (° C.)
22
19
21
24


Screw Speed (rpm)
192
240
240
360


Injection Speed (in/sec)
2
3
3
3


Injection Pressure (psi)
1880
2820
625
1530


Hold Time (sec)
20
15
5
15


Hold Pressure (psi)
750
2000
500
1000


Cool Time (sec)
60
40
30
30










[0164]

25





TABLE 14










Injection Molded Thermoplastic Compositions












PEO1/PEG2/




PEO1/Eastar4
Eastar4/CaCO310/



CaCO310/
P-6457/
PEG2/Eastar4/



P-6457/
Kemamide E16/
CaCO310/


Injection
Kemamide E16
Paraffin wax21
MgSt19


Molding
(25/39/30/5/1
(15/10/34/30/5/1/5
(17.5/64/17.5/1


Settings
blend)
blend)
blend)













Nozzle (° C.)
135
135
163


Zone 1 (° C.)
93
93
82


Zone 2 (° C.)
121
121
121


Zone 3 (° C.)
127
127
143


Mold (° C.)
24
18
18


Screw Speed
240
360
360


(rpm)


Injection Speed
3
4
5


(in/sec)


Injection Pressure
898
566
640


(psi)


Hold Time (sec)
15
10
10


Hold Pressure
1500
500
1000


(psi)


Cool Time (sec)
20
20
35










[0165]

26





TABLE 15










Injection Molded Thermoplastic Compositions















PEG2/Eastar4/
PEO1/PEG2/Eastar4/CaCO310/



CaCO310/MgSt19/
P-6457/MgSt19/Loxiol G3320/


Injection
P-64322/DC4-705125
Kraton G 165224


Molding
(15/62/15/1/5/2
(14.5/9.5/25.5/39.5/5/2/2/2


Settings
blend)
blend)












Nozzle (° C.)
163
163


Zone 1 (° C.)
82
99


Zone 2 (° C.)
121
143


Zone 3 (° C.)
143
157


Mold (° C.)
18
18


Screw Speed
360
360


(rpm)


Injection Speed
5
5


(in/sec)


Injection Pressure
567
714


(psi)


Hold Time (sec)
10
5


Hold Pressure
1000
500


(psi)


Cool Time (sec)
35
45










Claims
  • 1. A flushable tampon applicator comprising: (a) from 0% to about 90% by weight of a water-dispersible polymer; (b) from about 10% to about 50% by weight of a biodegradable polymer; and (c) from 0% to about 50% by weight of a filler.
  • 2. The flushable tampon applicator of claim 1 wherein the water dispersible polymer is selected from the group consisting of high molecular weight polyethylene oxides, low molecular weight polyethylene glycols, polyethylene/polypropylene oxide copolymers, polyethylene/polybutylene oxide copolymers polyethylene/polypropylene glycol copolymers, thermoplastic starch polymers, polyvinyl alcohols, partially hydrolyzed polyvinyl alcohols, modified polyvinyl alcohols, infrared treated polyvinyl alcohols, cross-linked polyvinyl alcohols, alkali metal sulfonate thermoplastic polyesters, hydroxyethyl celluloses, hydroxypropyl celluloses, methylated hydroxypropyl celluloses, polyacrylic acids, polyaspartic acids, polymethacrylic acids, polysaccharides, proteins, polyvinyl pyrrolidone homopolymers, polyvinyl pyrrolidone copolymers, polyvinyl methyl ether homopolymers, polyoxazolines, polyvinyl methyl oxazolidones, polyvinyl methyl oxazolidimones, polyethylenimines, polyacrylamides, polyvinyl methyl ether/maleic anhydride copolymers, water-dispersible polyurethanes, water-dispersible sulfonate polyesters, and mixtures thereof.
  • 3. The flushable tampon applicator of claim 2 wherein the water dispersible polymer is selected from the group consisting of high molecular weight polyethylene oxides having a weight average molecular weight of from about 65,000 daltons to about 8,000,000 daltons, low molecular weight polyethylene glycols having a number average molecular weight of from about 500 daltons to about 20,000 daltons, and mixtures thereof.
  • 4. The flushable tampon applicator of claim 1 wherein the biodegradable polymer is selected from the group consisting of aliphatic polyesteramides, diacid/diol-based aliphatic polyesters, aromatic polyesters, aliphatic/aromatic copolyesters, polycaprolactones, polycaprolactone copolymers, poly(3-hydroxyalkanoates), poly(3-hydroxyalkanoates) copolymers, dialkanoyl polymers, polyvinyl acetates, polyethylene/vinyl alcohol copolymers, lactic acid polymers, lactide polymers, glycolide polymers, and mixtures thereof.
  • 5. The flushable tampon applicator of claim 1 wherein the filler is selected from the group consisting of inorganic fillers, organic fillers, and mixtures thereof.
  • 6. The flushable tampon applicator of claim 5 wherein the inorganic filler is selected from the group consisting of clays, silica, mica, wollastonite, calcium hydroxide, calcium carbonate, sodium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, kaolin, calcium oxide, magnesium oxide, aluminum hydroxide, talc, titanium dioxide, and mixtures thereof.
  • 7. The flushable tampon applicator of claim 5 wherein the organic filler is selected from the group consisting of wood flour, walnut shell flour, alpha cellulose floc, cellulose fibers, chitin, chitosan powders, organosilicone powders, nylon powders, polyester powders, polypropylene powders, starch granules, and mixtures thereof.
  • 8. The flushable tampon applicator of claim 1 wherein the applicator further comprises a lubricant selected from the group consisting of metal soaps, hydrocarbon waxes, fatty acids, long-chain alcohols, fatty acid esters, fatty acid amides, silicones, fluorochemicals, acrylics, and mixtures thereof.
  • 9. The flushable tampon applicator of claim 1 wherein the applicator further comprises a plasticizer selected from the group consisting of glycerin, triacetin, glycerol, monostearate, sorbitol, erythritol, glucidol, mannitol, sucrose, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, diethylene glycol dibenzoate, dipropylene glycol dibenzoate, triethylene glycol caprate-caprylate, butylene glycol, pentamethylene glycol, hexamethylene glycol, diisobutyl adipate, oleic amide, erucic amide, palinitic amide, dimethyl acetamide, dimethyl sulfoxide, methyl pyrrolidone, tetramethylene sulfone, oxa monoacids, oxa diacids, polyoxa diacids, diglycolic acids, triethyl citrate, acetyl triethyl citrate, tri-n-butyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n-hexyl citrate, alkyl lactates, phthalate polyesters, adipate polyesters, glutate polyesters, diisononyl phthalate, diisodecyl phthalate, dihexyl phthalate, alkyl alylether diester adipate, dibutoxyethoxyethyl adipate, and mixtures thereof.
  • 10. A thermoplastic composite comprising: (a) from 0% to about 90% by weight of a water-dispersible polymer; (b) from about 10% to about 50% by weight of a biodegradable polymer; and (c) from 0% to about 50% by weight of a filler.
  • 11. The thermoplastic composite of claim 10 wherein the water dispersible polymer is selected from the group consisting of high molecular weight polyethylene oxides, low molecular weight polyethylene glycols, polyethylene/polypropylene oxide copolymers, polyethylene/polybutylene oxide copolymers polyethylene/polypropylene glycol copolymers, thermoplastic starch polymers, polyvinyl alcohols, partially hydrolyzed polyvinyl alcohols, modified polyvinyl alcohols, infrared treated polyvinyl alcohols, cross-linked polyvinyl alcohols, alkali metal sulfonate thermoplastic polyesters, hydroxyethyl celluloses, hydroxypropyl celluloses, methylated hydroxypropyl celluloses, polyacrylic acids, polyaspartic acids, polymethacrylic acids, polysaccharides, proteins, polyvinyl pyrrolidone homopolymers, polyvinyl pyrrolidone copolymers, polyvinyl methyl ether homopolymers, polyoxazolines, polyvinyl methyl oxazolidones, polyvinyl methyl oxazolidimones, polyethylenimines, polyacrylamides, polyvinyl methyl ether/maleic anhydride copolymers, water-dispersible polyurethanes, water-dispersible sulfonate polyesters, and mixtures thereof.
  • 12. The thermoplastic composite of claim 11 wherein the water dispersible polymer is selected from the group consisting of high molecular weight polyethylene oxides having a weight average molecular weight of from about 65,000 daltons to about 8,000,000 daltons, low molecular weight polyethylene glycols having a number average molecular weight of from about 500 daltons to about 20,000 daltons, and mixtures thereof.
  • 13. The thermoplastic composite of claim 10 wherein the biodegradable polymer is selected from the group consisting of aliphatic polyesteramides, diacid/diol-based aliphatic polyesters, aromatic polyesters, aliphatic/aromatic copolyesters, polycaprolactones, polycaprolactone copolymers, poly(3-hydroxyalkanoates), poly(3-hydroxyalkanoates) copolymers, dialkanoyl polymers, polyvinyl acetates, polyethylene/vinyl alcohol copolymers, lactic acid polymers, lactide polymers, glycolide polymers, and mixtures thereof.
  • 14. The thermoplastic composite of claim 10 wherein the filler is selected from the group consisting of inorganic fillers, organic fillers, and mixtures thereof.
  • 15. The thermoplastic composite of claim 14 wherein the inorganic filler is selected from the group consisting of clays, silica, mica, wollastonite, calcium hydroxide, calcium carbonate, sodium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, kaolin, calcium oxide, magnesium oxide, aluminum hydroxide, talc, titanium dioxide, and mixtures thereof.
  • 16. The thermoplastic composite of claim 14 wherein the organic filler is selected from the group consisting of wood flour, walnut shell flour, alpha cellulose floc, cellulose fibers, chitin, chitosan powders, organosilicone powders, nylon powders, polyester powders, polypropylene powders, starch granules, and mixtures thereof.
  • 17. The thermoplastic composite of claim 10 wherein the composite further comprises a lubricant selected from the group consisting of metal soaps, hydrocarbon waxes, fatty acids, long-chain alcohols, fatty acid esters, fatty acid amides, silicones, fluorochemicals, acrylics, and mixtures thereof.
  • 18. The thermoplastic composite of claim 10 wherein the composite further comprises a plasticizer selected from the group consisting of glycerin, triacetin, glycerol, monostearate, sorbitol, erythritol, glucidol, mannitol, sucrose, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, diethylene glycol dibenzoate, dipropylene glycol dibenzoate, triethylene glycol caprate-caprylate, butylene glycol, pentamethylene glycol, hexamethylene glycol, diisobutyl adipate, oleic amide, erucic amide, palmitic amide, dimethyl acetamide, dimethyl sulfoxide, methyl pyrrolidone, tetramethylene sulfone, oxa monoacids, oxa diacids, polyoxa diacids, diglycolic acids, triethyl citrate, acetyl triethyl citrate, tri-n-butyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n-hexyl citrate, alkyl lactates, phthalate polyesters, adipate polyesters, glutate polyesters, diisononyl phthalate, diisodecyl phthalate, dihexyl phthalate, alkyl alylether diester adipate, dibutoxyethoxyethyl adipate, and mixtures thereof.
  • 19. A method of making a flushable tampon applicator wherein the method comprises the steps of: (a) preparing a thermoplastic composite comprising: (i) from 0% to about 90% by weight of a water-dispersible polymer; (ii) from about 10% to about 50% by weight of a biodegradable polymer; and (iii) from 0% to about 50% by weight of a filler; and (b) injection molding the thermoplastic composite into molded thermoplastic components used to construct the flushable tampon applicator.
  • 20. The method of claim 19 wherein the filler is selected from the group consisting of inorganic fillers, organic fillers, and mixtures thereof.
Parent Case Info

[0001] This is a continuation-in-part application of application Ser. No. 09/810,292, filed on Mar. 16, 2001, which is currently pending.

Continuation in Parts (1)
Number Date Country
Parent 09810292 Mar 2001 US
Child 09944672 Aug 2001 US