The invention relates to permanent magnet brush-type DC motors and, more particularly, to wound field coils combined with permanent magnets in a stator structure.
A significant challenge of permanent magnet DC brush-type motors is to achieve different speeds of operation. Wound Field type motors generally have speed controlled by altering the field flux. This is done by changing the current or the number of coil turns of the field winding. Since permanent magnet motors have a constant field flux, they cannot achieve speed control by field flux variation.
Often, permanent magnet motors used in automotive applications require the use of more than one speed, usually a lower speed for general purpose operation and a maximum speed for worst case operation. For example, multiple speed operation of a vehicle cooling system module provides a more optimized engine temperature and operation, which consequently contributes to improved fuel economy.
For permanent magnet DC brush-type motors, historically lower speeds (multiple speed operation) have been achieved by the following methods:
The magnetic flux can be produced using either a wound field stator or permanent magnet stator.
In examination of conventional speed control methods another method to vary the motor flux is to combine permanent magnets with field wound coils to produce the desired level of flux.
An object of the invention is to fulfill the need referred to above. In accordance with the principles of the present invention, this objective is achieved by providing a stator and armature assembly for a permanent magnet DC motor. The assembly includes an armature having a lamination core and windings, and a stator structure associated with the armature. The armature is constructed and arranged to rotate with respect to the stator structure. The stator structure includes at least one permanent magnet providing a certain flux, and at least one wound core structure having a core and a coil wound about the core so as to define an alternate pole with respect to the permanent magnet. When current to the coil is controlled, flux of the stator structure can be increased or decreased relative to the stator flux. In this way a motor can operate at different speeds.
In accordance with another aspect of the invention, a method of controlling speed of a permanent magnet DC motor is provided. The motor includes an armature having a lamination core and windings; and a stator structure associated with the armature. The armature is constructed and arranged to rotate with respect to the stator structure. The stator structure includes at least two permanent magnets of the same polarity that provide a certain flux; and at least two wound core structures of the same polarity. Each wound core structure has a core and a coil wound about the core. The wound core structures define alternate poles with respect to the permanent magnets. The method provides switches operatively associated with the motor and coils. The switches are controlled so that 1) no current is provided to the coils so that the armature rotates at a certain speed based on the certain flux of the permanent magnets, 2) current is provided to the coils in one direction so that flux increases relative to the certain flux, causing the armature to rotate, for example, at a speed less than the certain speed or 3) current is provided to the coils in a direction opposite the one direction so that flux decreases relative to the certain flux, causing the armature to rotate, for example, at a speed greater than the certain speed.
Other objects, features and characteristics of the present invention, as well as the methods of operation and the functions of the related elements of the structure, the combination of parts and economics of manufacture will become more apparent upon consideration of the following detailed description and appended claims with reference to the accompanying drawings, all of which form a part of this specification.
The invention will be better understood from the following detailed description of the preferred embodiments thereof, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts, in which:
In
As shown in
The two coils 19 are wound similarly to a wound field motor. The coils 19 are each wound with “N” turns of “X” gauge wire and are wound in the same direction and are of the same polarity when coils are energized. The polarity of the wound cores is determined by the direction of the wire winding in coils 19 and the direction of current flowing through the coils 19. The coils 19 are wound either in a Clockwise (CW) or Counter-Clockwise (CCW). The coils 19 are installed around the ferrite core 18 at alternate positions relative to the permanent magnets 22 and 24.
The motor and permanent magnet circuits are configured so that the motor's magnetic field is significantly below the magnetic saturation point for the closed loop magnetic circuits. This will likely be the case since the number of permanent magnets has been reduced by half as compared to a conventional permanent magnet motor. Hence, each magnetic circuit (Pole) is only supported by one permanent magnet and not by two, as in a conventional permanent magnet motor. This results in a lower operating point for the magnet (due to a lower slope on the magnet load line, Pc Line).
When there is no flux intervention from the stator coils 19, the motor 11 operates at a certain speed (Medium Speed). The motor operation characteristics are illustrated in
Therefore, three different operating speeds (Medium, Low and High) can be accomplished. A switching scheme for three-speed operation is tabulated in
Additional speed variation can be achieved by selectively energizing (switching) coils 19 independently from each other or together in combination in series and parallel connection. An example of this switching method is tabulated in
It can be appreciated that the core 18 can be a separate part that is assembled to the stator structure housing and thereafter wound. Alternatively, the separate core 18 can be wound and then mounted to the stator structure housing. Another option is to create the core integral with the wall of the stator structure housing and then wind the coil thereabout.
Thus, permanent magnets are combined with field wound coils to produce the overall flux level of the stator structure 16. Furthermore the basic motor 11 has a fixed flux level due to the two permanent magnets 22, 24 and the two field-wound coils 19. When the coils are energized they can add to or cancel out the flux in the stator structure 16. The flux change in the motor will provide a variable operating speed.
Advantages of the stator structure 16 include:
Other features of the stator structure 16 include:
The foregoing preferred embodiments have been shown and described for the purposes of illustrating the structural and functional principles of the present invention, as well as illustrating the methods of employing the preferred embodiments and are subject to change without departing from such principles. Therefore, this invention includes all modifications encompassed within the spirit of the following claims.
This application is based on U.S. Provisional Application No. 60/529,191, filed on Dec. 12, 2003 and claims the benefit thereof for priority purposes. This application is a division of U.S. application Ser. No. 10/842,872, filed on May 11, 2004.
Number | Name | Date | Kind |
---|---|---|---|
5389862 | Tominaga | Feb 1995 | A |
6342746 | Flynn | Jan 2002 | B1 |
6563248 | Fujita | May 2003 | B2 |
6838848 | Shindo | Jan 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050253479 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60529191 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10842872 | May 2004 | US |
Child | 11145715 | US |