The present invention relates to a flywheel joined to the end surface of a crankshaft through bolts.
In a case of the prior art, the crankshaft of an internal combustion engine has the amount of imbalance due to the functional property, so that a counterweight is provided in order to negate this amount of imbalance. However, depending on an arrangement of engine cylinders, there is a case that it is impossible to negate the amount of imbalance in a certain order to the rotating speed of an engine. This inertia force plus the explosion pressure from the piston act on the crankshaft as twisting and bending force, so that there are generated the bending and twisting of the crankshaft itself. Accordingly, due to the generation of beating noise on the bearing portion of the crankshaft and the increase of the amount of swinging on the end surface of the crankshaft, the transmission connected to the crankshaft through a clutch was in danger of causing a vibration.
On this account, the rigidity of the crankshaft is improved so as to reduce the amount of imbalance to the utmost. However, in order to improve the rigidity of the crankshaft, it is required to increase the diameter of the bearing for the crankshaft. As a result, there arise problems such as a gain in the weight, an increase of the friction loss due to a rise of the sliding speed of the bearing portion, a drop of the engine output, and the like. Further, when the number of the counterweights is increased in order to reduce the amount of the imbalance, the crankshaft has become larger in the size. Accordingly, there arises a problem that the positioning of the connecting rod, piston, etc is restricted, so that it becomes impossible to make an engine smaller in the size.
Then, in the prior art, a flywheel is constructed in a structure as shown in
Incidentally,
The plate portion 3 of the flywheel 2 is made of a thin plate, so that a circular reinforcement 6 is used in order to make the tightening force of the flywheel fitting bolts 7, 7 act uniformly. The plate portion 3 is clamped between the reinforcement 6 and the end surface of the crankshaft so as to be joined thereto.
Around the circumference of the crankshaft 1, a rip seal 8 is provided in order to seal the lubricating oil from the inside of the engine, and a rip-seal retainer 9 is provided in order to fix this rip seal 8.
Besides, for the purpose of avoiding the interference with this rip seal 8 and rip-seal retainer 9 and of making efficient use of the space, the plate portion 3 is bent toward the engine body at a position spaced slightly away from the end surface of the crankshaft 1.
In this manner, the flywheel 2 having the plate portion 3 made of a thin plate is designed so as to absorb the vibration due to the bending and twisting generated on the crankshaft 1 by means of this thin plate portion 3.
However, for the large bending and twisting of the crankshaft 1, as shown in
As a way of dealing with this problem, as shown in
However, for the structure shown in
Therefore, it is an object of the present invention to provide a flywheel that is capable of being efficiently assembled with preventing the number of parts from increasing and capable of controlling the vibration of the flywheel mass portion effectively.
In order to achieve the above object, in a flywheel defined in claim 1 of the present invention, a central part of a thin plate portion having a flywheel mass provided on an outer peripheral side of the plate portion is joined to an end surface of a crankshaft through a plurality of bolts disposed annularly at intervals. Within a contact zone of a substantially polygon defined by linking each center of the bolts with straight lines excluding the bearing surfaces of the bolts, the plate portion has a non-contacting part set not to contact with the end surface of the crankshaft, and the area of the non-contacting part is set to be 40% to 75% of the whole area of the contact zone.
According to claim 1 of the present invention, the load fluctuating area between the plate portion and the end surface of the crankshaft is enlarged, so that it becomes possible to control the vibration and amplitude on the outer peripheral side of the plate portion, and to obtain the stable effect of damping the amplitude.
In a flywheel defined in claim 2 of the present invention, a central part of a thin plate portion having a flywheel mass provided on an outer peripheral side of the plate portion is clamped between a reinforcement and an end surface of a crank shaft and is joined thereto through a plurality of bolts disposed annularly at intervals. Within a contact zone of a substantially polygon defined by linking each center of the bolts with straight lines excluding the bearing surfaces of the bolts, the reinforcement has a non-contacting part set not to contact with the plate portion, and the area of the non-contacting part is set to be 40% to 75% of the whole area of the contact zone.
According to claim 2 of the present invention, the load fluctuating area between the reinforcement and the plate portion is enlarged, so that it becomes possible to control the vibration and amplitude on the outer peripheral side of the plate portion.
Further, in claim 3 of the present invention, the plate portion is provided with a non-contacting part that does not contact with the end surface of the crankshaft.
According to claim 3 of the present invention, the load fluctuating areas between the plate portion and the end surface of the crankshaft and between the reinforcement and the plate portion are enlarged, so that it becomes possible to control the vibration and amplitude on the peripheral side of the plate portion, and to obtain the stable effect of damping the amplitude.
Other advantageous features of the invention will be obvious after a reading of the following detailed description of the preferred embodiment shown in the drawings as follows.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A flywheel 2 is composed of a plate portion 3, on the outer peripheral side of which a flywheel mass portion 4 is mounted through bolts 5. The plate portion 3 is made of a plate having a thickness of about 6 mm. In case of this embodiment, the plate portion 3 is joined to the end surface of a crankshaft 1 through a plurality of flywheel fitting bolts 7, 7 without use of a reinforce 6.
A cylindrical projection la is provided on the central portion of the end surface of the crankshaft 1 and is fitted into a central hole 3a formed in the center of the plate portion 3. On the outer peripheral side of the central hole 3a of the plate portion 3, six bolt holes 3b, 3b are formed therethrough and arranged annularly at designated intervals to let the bolts 7, 7 fit through.
The flywheel fitting bolt 7 is inserted into each bolt hole 3b from the outside and tightened to the end surface of the crankshaft 7. Through a plurality of the flywheel fitting bolts 7, 7 the plate portion 3 of the flywheel 2 is joined to the end surface of the crankshaft 1.
In the central portion of the backside of the plate portion 3, that is, in the surface to be joined to the end surface of the crank shaft 1, there is formed a non-contacting part S2 in hollow fashion. The depth of the hollow of this noncontacting surface S2 is set to be 0.5 mm.
Accordingly, in the state that the plate portion 3 is joined to the end surface of the crankshaft 1, this non-contacting surface S2 is set to be floating up so as not to contact with the end surface of the crankshaft 1.
In this embodiment, as shown in
The area of this non-contacting part S2 is set to be 40% to 75% of the whole area of the contact zone S1 that is a substantially hexagon and is formed by linking the centers of the flywheel fitting bolts 7, 7, excluding the bearing surfaces of the flywheel fitting bolts 7.
As shown in
According to the result of this actual measurement, the area ratio of the non-contacting part S2 to the whole contact zone S1 is set within the range between 40% and 75% where the damping effect of the amplitude of the flywheel mass portion 4 is great and stable.
It is conceivable that such a damping effect of the amplitude has resulted from increase of the load fluctuating area E corresponding to the amplitude fluctuation because the noncontacting part S2 is formed in hollow fashion in the backside of the plate portion 3.
Namely, in a conventional structure, as shown in
In this load fluctuating area E, a minute relative displacement between the contact surface of the plate portion 3 and the end surface of the crankshaft 1 generates a friction force, by which is obtained the amplitude damping effect of the flywheel mass portion 4. Namely, since the load fluctuating area E is increased more than the prior art, it is conceivable that the amplitude can be effectively reduced as compared with the prior art.
Namely, as shown in
One of those elastic recovery globes 103, 103 will be described in the enlarged view of
In the elastic recovery glove 103, the contact region (the circle of diameter 2ai) is firmly fixed, but the outside annular region 104 of diameter 2bi is elastically deformed toward outside when depressed by a load.
When the load fluctuation occurs in such a state, the region that is not fixed and elastically deformed toward outside, is changed, so that between this region and the inside contact region is produced a relative displacement. Accordingly, a slide occurs between the surfaces due to the elastic deformation, and here is generated a friction force, so that the force acts in the direction to prevent the elastic deformation.
Conversely, in the case that the load has decreased according to the amplitude, as shown in
In this manner, according to the load fluctuation due to the amplitude, a friction force acts between the surfaces, and the force serves in the direction to prevent the load fluctuation. As a result, it becomes possible to obtain an effect of damping the vibration, namely controlling the vibration and amplitude of the periphery of the plate portion 3. Further, it becomes possible to lower the stress in the region of stress concentration P of the plate portion 3 in the vicinity of the end surface of the crankshaft 1.
Namely, according to this embodiment, the non-contacting part S2 is formed in the plate portion 3 so that the load fluctuation area E may be increased between the plate portion 3 and the end surface of the crankshaft 1. As a result, the amplitude damping effect of the flywheel mass portion 4 is obtained by a friction force due to a minute relative displacement between these surfaces.
Next,
In
According to this embodiment, the non-contacting part S2 is formed in hollow fashion in the back of the reinforcement 6, namely in the central portion of the surface to be in contact with the plate portion 3.
Namely, this noncontacting part S2 is a portion of the reinforcement 6 that is not in contact with the plate portion 3. The area of this noncontacting part S2 is set to be 40% to 75% to the whole area of the contact zone S1 as shown in
Accordingly, in
Further,
In this embodiment, the non-contacting part S2 is formed in hollow fashion in the back of the plate portion 3, namely in the surface facing the end surface of the crankshaft 1, and further another non-contacting part S2 is formed in hollow fashion in the back of the reinforcement 6, namely in the surface to be in contact with the plate portion 3.
In this manner, the plate portion 3 and the reinforcement 6 are respectively provided with the non-contacting parts S2, S2, so that the load fluctuation area E can be enlarged more effectively. As a result, it becomes possible to reduce the vibration and the amplitude of the periphery of the plate portion 3.
Further, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2002-353150 | Dec 2002 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/15048 | 11/25/2003 | WO | 3/18/2005 |