Foam core sandwich splint

Information

  • Patent Grant
  • 9295748
  • Patent Number
    9,295,748
  • Date Filed
    Friday, March 15, 2013
    11 years ago
  • Date Issued
    Tuesday, March 29, 2016
    8 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Brown; Michael
    Agents
    • Knobbe, Martens Olson & Bear, LLP
Abstract
A multi-layered composite material suitable for use in orthopedics includes a foam core layer bonded between two layers of thermoformable polymer material. The thermoformable material is heat formable within a target temperature range allowing for rapid heating and application to a patient such as in the form of a splint. While within the target temperature range, the composite material includes a dwell time sufficiently long to enable proper fitment and adjustment, yet not overly long requiring extended periods of holding the composite material in place. The composite material is very light yet extremely rigid and easily conformable to patients.
Description
FIELD OF THE INVENTION

The present invention related generally to orthopedic braces. More specifically, the present invention relates to a thermoformable splint having a composite material construction.


BACKGROUND OF THE INVENTION

Orthopedic splints are typically used during the first few days of a serious injury such as a fracture, ligament tear or other injury that needs to be stabilized while swelling subsides. Splints are typically partially circumferential or they may wrap around an elbow or ankle and extend up both sides allowing a space on either side. They allow for swelling to occur and are typically wrapped with an Ace-type bandage or the like, which is elastic and may provide compression, yet stretches to accommodate swelling. A complication, Compartment Syndrome, may occur if an injury is casted too soon or splinted too tightly which causes tissue to rapidly die from pressure buildup. Temporary proper splinting mitigates most complications in this regard. Typically, after 4-10 days, the splint is removed for procedures to reduce fractures, surgery or the like.


Conventional splints may be constructed from uncured plaster-impregnated fabric, or fiberglass impregnated with resin that is water activated. They are initially pliable and soaked in water to activate the curing process. Such conventional splints typically come in rolls or pre sized blanks.


While conventional splints are sufficient for their intended purpose, they do exhibit a number of drawbacks which can be improved upon. For example, some sort of padding must be applied to the limb prior to applying the splint. The splint material must be soaked in water to begin the curing process, and variables such as water temperature and room humidity can alter the cure time for the splint material. Once wetted, the splint material is applied over the padding, which must be kept in proper alignment to be effective. Prior to wetting, the splint material is trimmed to a rough desired shape, but upon wetting and application to a patient, additional trimming of the material is often needed. The process is quite messy, and must be carried out very quickly before the splint material begins to cure. Initial curing can start in 2-5 minutes depending on the product and water temperature used. Once initiated, there is no stopping it and the application process must be completed with precise timing to allow for the body part to be aligned, reduced in fracture or otherwise completed before the splint cures. This process requires considerable training and the practitioner must have the splint in place in time to make the final alignment while the splint is still soft enough. Often, there is a minor complication or the splint is wetted too early or too warm and the curing starts during application so there is not enough time to finish the job properly before curing. In this case, the splint must be discarded and the process started over. This not uncommon occurrence is very wasteful, time consuming and costly, not to mention uncomfortable for the injured patient. Wrapping the padding and splint material can often take two people to support and wrap, and the manipulation is often painful to the patient.


On occasion, for a complicated reduction or alignment of a fracture or other injury, an X-Ray or fluoroscope view is needed during the procedure to see through the body to accomplish the correct procedure. Fiberglass and plaster materials tend to scatter X-rays and are somewhat impenetrable, so the view is typically obscured. These poor images can pose problems and the images must often be made with the patient at odd angles so as to image through the body without imaging through much of the splint. This can require complicated alignment of the machinery and patient which can cause great discomfort and complication.


Additionally, complicated reduction and alignment procedures may require a short period of sedation of the patient as the pain is too great to endure. The patient could react and possibly spoil the procedure. All of this can require a number of qualified people in close proximity doing several procedures at once. Along with the usual practitioners, the group can grow quite large. Everything must be orchestrated precisely and timed with the curing of the splint.


Another concern with conventional splinting materials and techniques is the wet environment created during their use. Because plaster and fiberglass splints will typically remain damp for 12 hours or more as the moisture slowly dissipates from the splint and padding through the Ace-type wrap, the moist environment from the splint combined with the body's heat and moisture provides the ideal place for bacterial reproduction.


This wet insulated environment also can provide a great deal of discomfort to the patient, especially in warm climates. Additionally, both fiberglass and plaster are virtually sealed against moisture passing through them so the splints do not breath or allow moisture to easily escape from inside near the body. Any moisture management must be provided by the thick padding or other wrapping.


In view of the drawbacks of conventional splints, a need exists for an improved splint which is less messy, requires fewer personnel to apply, has less likelihood of wasted material due to improper application, and is more comfortable and hygienic for the patient.


One proposed improvement on conventional splints is described in commonly assigned U.S. Published Patent Application No. 2012/0101417 to Joseph, which describes a splint having a composite laminate construction, consisting of thermoformable middle layer, and outer layers of foam and/or fabric which represents an improvement on conventional splints. Opportunities for improvement on the splints described therein still exist, however.


Additionally, prior splint constructions utilizing one or more polymer layers for rigidity typically include either a thin layer of polymer sheet material which is prone to flexing and twisting, or a thicker layer which can provide sufficient rigidity but is unable to be formed into complex shapes or contours and is unacceptably heavy.


A need exists, therefore, for an improved construction for splints which is lightweight, formable to the contours of a patient's anatomy, and which is sufficiently rigid to support the injury.


SUMMARY OF THE INVENTION

In one embodiment, the present invention comprises a composite material including a first layer of thermoformable material, a second layer of thermoformable material, and a foam layer disposed between, and bonded to, the first and second layers of thermoformable material, wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit.


In another embodiment, the present invention comprises a method including causing a composite material to be manufactured and made available to a user, and providing instructions to the user for creating a splint with the composite material. The composite material comprises a first layer of thermoformable material, a second layer of thermoformable material, and a foam layer disposed between, and bonded to, the first and second layers of thermoformable material, wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit. The instructions for creating a splint with the composite material include heating the composite material such that the layers of thermoformable material are above the minimum formable temperature, forming the composite material about a body part while the layers of thermoformable material are above the minimum formable temperature, and holding the composite material in place until expiration of the dwell time such that the layers of thermoformable material are below the minimum formable temperature.


In another embodiment, the present invention comprises a method of applying a splint to a patient, comprising providing a composite material including a first layer of thermoformable material, a second layer of thermoformable material, and a foam layer disposed between, and bonded to, the first and second layers of thermoformable material, wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit. The method further comprises heating the composite material such that the layers of thermoformable material are above the minimum formable temperature, forming the composite material about a body part while the layers of thermoformable material are above the minimum formable temperature, and holding the composite material in place until expiration of the dwell time such that the layers of thermoformable material are below the minimum formable temperature.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:



FIG. 1 is a schematic cross-section of the composite material according to an embodiment of the present invention.



FIG. 2 is a table depicting suitable material properties of a thermoformable material layer of the composite material according to an embodiment of the present invention.



FIG. 3 is a table depicting suitable material properties of a foam layer of the composite material according to an embodiment of the present invention.





While the various embodiments of the invention are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the inventions as may be claimed.


DETAILED DESCRIPTION OF THE DRAWINGS

The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the inventions as claimed.


Although embodiments of the present invention are described chiefly in context of a splint, it should be appreciated that the materials, construction techniques, and methods described herein are also applicable to other orthopedic products such as braces, or for use as supports in combination with other orthopedic products.


The splints described in U.S. Pat. No. 8,303,527 to Joseph and U.S. Published Patent Application No. 2012/0101417 to Joseph, the disclosures of which are incorporated herein by reference, present a significant improvement over conventional wet lay-up splints but room for further improvement still exists. For example, certain splinting situations may call for a more rigid structure than is possible with the materials and structures described in these publications.


Referring now to FIG. 1, embodiments of the present invention generally comprise a composite sandwich material 20, having two layers of thermoformable material 22, 24, separated by a foam core layer 26, and optionally one or more finishing layers 28, 30.


The thermoformable material 22, 24 may include material properties as depicted in FIG. 2. Thermoformable material 22, 24 is preferably rigid at room temperatures, and more preferably rigid at temperatures below about 130 degrees Fahrenheit. Thermoformable material 22, 24 may be heat formable within a target temperature range of about 160-240 degrees Fahrenheit, and more suitably within a range of 190-225 degrees Fahrenheit. The minimum heat formable temperature may be about 160 degrees Fahrenheit, or about 150 degrees Fahrenheit, or about 140 degrees Fahrenheit. Advantageously, the target temperature range is relatively low, allowing quicker heating times, while the minimum heat formable temperature is high enough to prevent unintended alterations of shape during normal use if accidentally exposed to high temperatures.


Within the target temperature range, thermoformable material 22, 24 is pliable and shapeable to the profile of a patient. Thermoformable material 22, 24 may include a dwell time of about three minutes to ten minutes, or of about five minutes to ten minutes. Dwell time refers to the amount of time that thermoformable material 22, 24, once heated to within its target temperature range, is at least partially shapeable. In one embodiment, after being heated to within the target temperature range, thermoformable material 22, 24 is at least partially rigid after five minutes such that during a fitting process, a healthcare professional may cease applying pressure to the splint after five minutes and allow thermoformable material 22, 24 to fully cure without further intervention for the remainder of the dwell time. As utilized in composite material 20, a suitable thickness range of thermoformable layers 22, 24 is from about 0.030 inch to about 0.075 inch for each layer, with a more suitable range from about 0.035 inch to about 0.045 inch for each layer. In another embodiment, the thermoformable material may include glass strand added to the polymer to further increase modulus.


Foam layer 26 preferably comprises a closed cell foam, and is of a relatively high density. Suitable materials for construction of foam layer 26 in whole or in part may include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), polyethylene terephtalate glycol-modified (PETG), polyolefin blends, optionally any of these blended with ethylene-vinyl acetate (EVA), and any of which may or may not be crosslinked. One preferred density of foam layer 26 is from about 150 to 300 kg/m^2 or about 16 to 20 lbs/sq. ft. Suitable thickness of foam layer 26 is from about 1 mm to about 3 mm, with a more suitable range from about 1.5 mm to about 2 mm. In one embodiment, the thickness of foam layer 26 is about double the thickness of one layer of thermoformable material 22, 24. In one embodiment, the foam layer has properties as listed in FIG. 3, and is available under the name Microzote which is a LDPE fine celled closed cell foam blown with an inert gas and lacking reactive agents as are commonly used. Foam layer 26 thus provides a connective layer between thermoformable layers 22, 24 that is somewhat compliant and formable when heated, yet rigid and connected enough to resist compression and shearing thus allowing multi-layered composite material 20 to act as a unitized structure.


The combination of two layers of thermoformable material 22, 24 and foam core 26 results in a very light, thin, and rigid piece of composite material 20 which is extremely rigid when formed into a three dimensional shape.


Finishing layers 28, 30 may be selected from a variety of materials. Typically, one of layers 28, 30 will be positioned against the skin of the patient thereby comprising an inner layer, and therefore suitable materials will be comfortable, breathable, antimicrobial, and/or padded, and may comprise closed cell foam, open cell foam, an insulating fabric, a multilayer or lofted insulating fabric layer, or any other suitable material. While open cell foam is desirable for breathability, a closed cell may be advantageous for waterproof characteristics. Optionally, an additional layer may be included which is configured to be in contact with the skin of the patient, the additional layer comprising a fabric that is comfortable on the skin and wicks moisture into the layer 28, 30 for dissipation.


The other of layers 28, 30 will typically comprise an outer layer, and suitable materials will be durable, such as knit nylon spandex blend, knit polyester spandex blend, nylon fabrics, polyester or other fibers that stretch due to the design of the knit, rubberized materials, or foams such as urethane foam, foam rubber or EVA foam. Additionally, unbroken loop fabric, which is operably coupleable to hook-type fasteners, may be included as part of one of layers 28, 30 so as to provide functionality for hook-and-loop (VELCRO) type fastening arrangements.


Referring now to construction of an embodiment of composite material 20, the multiple layers may be bonded together by means of hot melt, PSA adhesive, or even by heat and pressure alone. In one embodiment, layers 22, 24, 26, 28 and 30 are laminated together at a temperature of 250-300 degrees Fahrenheit, under pressure. Variations on the construction of composite material 20 described herein may be made in order to alter the characteristics of composite material 20. For example, the thickness of the layers of thermoformable material 22, 24 may be varied such that each layer has a unique thickness. The hardness of foam layer 26 may be increased, to increase rigidity. The thickness of foam layer 26 may be varied to vary the dwell time of thermoformable layers 22, 24.


Additional layers of material may also be added as desired, such as spacer fabric, reinforcing material, waterproofing material, and/or additional foam layers for padding. The outer, middle and inner layers may be joined at their edges, such as by sewing, gluing, thermal or chemical bonding, or other suitable methods. Composite material 20 may be perforated with ventilation holes to aid in evaporation and cooling so transport occurs along foam layer 26 and out the vents.


In one embodiment, composite material 20 is provided for splinting, which can be fitted to a patient as follows. Composite material 20 is heated, preferably with a dry heat source such as an oven, microwave, heat gun, radiant lamp heat sources, infrared heaters, a heating bag, pouch, or other heat enclosure, or an exothermic heat source. Wet heat may also be utilized by immersing composite material 20 into a container of hot liquid such as water, or by placing composite material 20 within a liquid-filled bag and placing the bag in a microwave. Composite material 20 is heated for a length of time sufficient to bring the temperature of the layers of thermoformable material 22, 24 within their target temperature range such that composite material is pliable and formable to the patient. In one embodiment, composite material 20 is constructed such that the layers of thermoformable material 22, 24 are within their target temperature range after ten minutes of heating. In another embodiment, composite material 20 is constructed such that the layers of thermoformable material 22, 24 are within their target temperature range after about five minutes of heating.


Once thermoformable material 22, 24 is within its target temperature range, composite material 20 is removed from the heat source and applied to the desired location on the patient. While working in the dwell time of the material, the material is shapeable as desired to the patient, yet will somewhat hold its shape. During heating of the composite material, the thin layers of thermoforable material tend to warm comparatively faster than the foam and fabric layers, reducing the amount of time necessary to heat composite material 20 to its target temperature. Foam layer 26, having a lower density than the thermoformable layers 22, 24, does not retain as much heat as the thermoformable layers 22, 24 so heat dissipates more quickly from thermoformable layers 22, 24 and composite material 20 hardens more rapidly.


An outer bandage wrap may be utilized to retain the material in a desired shape, and/or the physician may hold the material in place with his/her hands while the material cools. In another embodiment, a universal closure system may be provided, such as those described in U.S. Pat. No. 8,303,527 to Joseph and U.S. Published Patent Application No. 2012/0101417 to Joseph. A suitable closure system includes a plurality of attachment members configured to releasably couple to composite material 20 such as by hook-and-loop fasteners, an elongated flexible member configured to be routed through one or more guide elements affixed to the attachment members, and a tensioning mechanism configured to be operable so as to engage the flexible member and tighten the fit of composite material 20.


In another embodiment, the present invention comprises a kit including composite material 20 according to one or more of the embodiments described herein, and a set of instructions recorded on a tangible medium for fitting composite material 20 to a patient as a splint according to the methods described herein. In one embodiment, the instructions may comprise instructions for use (IFU) or directions for use, according to the requirements of one or more regulatory bodies and/or government agencies. The instructions may be intended for a patient, or for a health care professional. Alternatively, the kit may include indications which link a user to electronically accessible instructions.


The composite material 20 described herein may be used in conjunction with other orthopedic products, such as those described in U.S. Pat. No. 8,303,527 to Joseph, U.S. Published Patent Application No. 2012/0101417 to Joseph, and application Ser. No. 13/674,613 to Joseph et al., the disclosures of which are incorporated by reference herein. Composite material 20 may be utilized in place of previously-disclosed rigid supports, or may be used selectively as a supplemental support such as to provide additional support and rigidity in select locations on an orthopedic product.


Various modifications to the embodiments of the inventions may be apparent to one of skill in the art upon reading this disclosure. For example, persons of ordinary skill in the relevant art will recognize that the various features described for the different embodiments of the inventions can be suitably combined, un-combined, and re-combined with other features, alone, or in different combinations, within the spirit of the invention. Likewise, the various features described above should all be regarded as example embodiments, rather than limitations to the scope or spirit of the inventions. Therefore, the above is not contemplated to limit the scope of the present inventions.


Persons of ordinary skill in the relevant arts will recognize that the inventions may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the inventions may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the inventions may comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art.


Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.


For purposes of interpreting the claims for the embodiments of the present inventions, it is expressly intended that the provisions of Section 112, sixth paragraph of 35 U.S.C. are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.

Claims
  • 1. A composite material, comprising: a first layer of thermoformable material;a second layer of thermoformable material; anda foam layer disposed between, and bonded to, the first and second layers of thermoformable material,wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit, andwherein the first and second layers of thermoformable material have a density which is about three to five times greater than a density of the foam layer.
  • 2. The composite material of claim 1, wherein the density of the first and second layers of thermoformable material is about 1200 kg/m^3 and the density of the foam layer is about 300 kg/m^3.
  • 3. A composite material, comprising: a first layer of thermoformable material;a second layer of thermoformable material; anda foam layer disposed between, and bonded to, the first and second layers of thermoformable material,wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit, andwherein the first and second layers of thermoformable material each have a thickness which is about one-half of a thickness of the foam layer.
  • 4. A composite material, comprising: a first layer of thermoformable material;a second layer of thermoformable material; anda foam layer disposed between, and bonded to, the first and second layers of thermoformable material,wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit, andwherein the first and second layers of thermoformable material each have a thickness of about 0.03 to 0.045 inches, and wherein the foam layer has a thickness of about 0.06 to 0.09 inches.
  • 5. A composite material, comprising: a first layer of thermoformable material;a second layer of thermoformable material;a foam layer disposed between, and bonded to, the first and second layers of thermoformable material, wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit;an inner layer coupled to the first layer of thermoformable material; andan outer layer coupled to the second layer of thermoformable material.
  • 6. The composite material of claim 5, wherein the inner layer comprises materials suitable for comfortable contact with skin.
  • 7. The composite material of claim 5, wherein the inner layer comprises a fabric that wicks moisture into the inner layer.
  • 8. The composite material of claim 5, wherein the outer layer comprises durable materials.
  • 9. The composite material of claim 5, wherein the outer layer comprises unbroken loop fabric suitable for hook-and-loop fastening arrangements.
  • 10. A composite material, comprising: a first layer of thermoformable material;a second layer of thermoformable material; anda foam layer disposed between, and bonded to, the first and second layers of thermoformable material,wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit, andwherein the first and second layers of thermoformable material have a hardness within a range of Shore 65D-80D in accordance with ASTM D2240, a tensile strength in the range of 6000-9000 psi in accordance with ASTM D638, an elongation at break of 5% in accordance with ASTM D638, and a flexural modulus of between 270,000-340,000 psi in accordance with ASTM D5023.
  • 11. A method, comprising: causing a composite material to be manufactured and available to a user, the composite material including: a first layer of thermoformable material,a second layer of thermoformable material, anda foam layer disposed between, and bonded to, the first and second layers of thermoformable material, wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit; andproviding instructions to the user for creating a splint with the composite material, the instructions including: heating the composite material such that the layers of thermoformable material are above the minimum formable temperature,forming the composite material about a body part while the layers of thermoformable material are above the minimum formable temperature, andholding the composite material in place until expiration of the dwell time such that the layers of thermoformable material are below the minimum formable temperature.
  • 12. The method of claim 11, wherein the dwell time is between five and ten minutes.
  • 13. The method of claim 11, wherein heating the composite material such that the layers of thermoformable material are above the minimum formable temperature further comprises: heating the composite material such that the layers of thermoformable material are within the target temperature range, the target temperature range being between 160-240 degrees Fahrenheit.
  • 14. The method of claim 11, wherein heating the composite material such that the layers of thermoformable material are above the minimum formable temperature further comprises: heating the composite material such that the layers of thermoformable material are within the target temperature range, the target temperature range being between 190-225 degrees Fahrenheit.
  • 15. The method of claim 11, wherein the first and second layers of thermoformable material have a density which is about three to five times greater than a density of the foam layer.
  • 16. The method of claim 11, wherein the instructions further include joining or bonding the layers at their edges.
  • 17. A method of applying a splint to a patient, comprising: providing a composite material including:a first layer of thermoformable material;a second layer of thermoformable material; anda foam layer disposed between, and bonded to, the first and second layers of thermoformable material, wherein the first and second layers of thermoformable material are heat formable within a target temperature range and substantially rigid at temperatures below a minimum formable temperature of about 130 degrees Fahrenheit; andheating the composite material such that the layers of thermoformable material are above the minimum formable temperature;forming the composite material about a body part while the layers of thermoformable material are above the minimum formable temperature; andholding the composite material in place until expiration of the dwell time such that the layers of thermoformable material are below the minimum formable temperature.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/677,779, filed Jul. 31, 2012, entitled “Foam Core Sandwich Splint.”

US Referenced Citations (297)
Number Name Date Kind
57283 Brown Aug 1866 A
D19360 Sanders Oct 1889 S
482647 Obear Sep 1892 A
D35545 Schaefer Dec 1901 S
975734 Tebeau Nov 1910 A
1082542 Manson Dec 1913 A
1360840 White Nov 1920 A
1471948 Cox et al. Oct 1923 A
1583606 Roussel May 1926 A
2070810 Saling Feb 1937 A
2181689 Bell Nov 1939 A
2206404 Jones Jul 1940 A
2477040 Brown et al. Mar 1945 A
2554337 Lampert May 1951 A
2736314 Hale Feb 1956 A
2759475 Swaay Aug 1956 A
2818063 Smith et al. Dec 1957 A
2904040 Hale Sep 1959 A
D198069 Connelly Apr 1964 S
D203018 Helferich Nov 1965 S
3302642 Allen Feb 1967 A
3306284 McKinley Feb 1967 A
3313297 Applegate et al. Apr 1967 A
3320950 McElvenny May 1967 A
3420231 Edenbaum Jan 1969 A
3490444 Larson Jan 1970 A
3512523 Barnett May 1970 A
3692023 Phillips et al. Sep 1972 A
3788307 Kistner Jan 1974 A
3896843 Millar et al. Jul 1975 A
3906943 Arluck Sep 1975 A
3916885 Gaylord, Jr. Nov 1975 A
3924272 Allen et al. Dec 1975 A
4006741 Arluck Feb 1977 A
4019505 Wartman Apr 1977 A
4136686 Arluck Jan 1979 A
4169469 Arluck Oct 1979 A
4193395 Gruber Mar 1980 A
D256055 Finnieston Jul 1980 S
4235228 Gaylord et al. Nov 1980 A
4240415 Wartman Dec 1980 A
D259955 Helferich Jul 1981 S
4286586 Potts Sep 1981 A
4316457 Liegeois Feb 1982 A
D266288 Coon Sep 1982 S
4379463 Meier et al. Apr 1983 A
D270284 Lindh et al. Aug 1983 S
4427002 Baron et al. Jan 1984 A
4441711 Dubar et al. Apr 1984 A
4442834 Tucker et al. Apr 1984 A
4454873 Laufenberg et al. Jun 1984 A
4471993 Watson Sep 1984 A
4473671 Green Sep 1984 A
4483333 Wartman Nov 1984 A
4510927 Peters Apr 1985 A
4531241 Berger Jul 1985 A
4572167 Brunswick Feb 1986 A
4584993 Nelson Apr 1986 A
4600618 Raychok, Jr. et al. Jul 1986 A
D287640 Primiano Jan 1987 S
4661535 Borroff Apr 1987 A
4765319 Finnieston et al. Aug 1988 A
4770299 Parker Sep 1988 A
4784123 Robeson Nov 1988 A
4827915 Gorsen May 1989 A
4872448 Johnson Oct 1989 A
4888225 Sandvig et al. Dec 1989 A
4912174 Grouiller Mar 1990 A
4946726 Sandvig et al. Aug 1990 A
4955368 Heimann Sep 1990 A
5031607 Peters Jul 1991 A
5038759 Morgenstern Aug 1991 A
5058576 Grim et al. Oct 1991 A
D326719 Eghamn Jun 1992 S
5158098 Jalalian Oct 1992 A
5180361 Moore et al. Jan 1993 A
5230698 Garth Jul 1993 A
5316604 Fell May 1994 A
RE34714 Burns et al. Aug 1994 E
5364693 Moren et al. Nov 1994 A
5366439 Peters Nov 1994 A
D357745 Radwell Apr 1995 S
5409761 Langley Apr 1995 A
5415622 Kelley May 1995 A
D363780 Darby et al. Oct 1995 S
5454780 Duback et al. Oct 1995 A
5520529 Heckel May 1996 A
D373639 McKie Sep 1996 S
5554104 Grim Sep 1996 A
5599288 Shirley et al. Feb 1997 A
5624386 Tailor et al. Apr 1997 A
5632722 Tweardy et al. May 1997 A
5688229 Bauer Nov 1997 A
5737774 Petty-Saphon et al. Apr 1998 A
5752873 Morris May 1998 A
5752926 Larson et al. May 1998 A
D395514 Stano Jun 1998 S
5763047 Green Jun 1998 A
5769804 Harris et al. Jun 1998 A
5807291 Larson et al. Sep 1998 A
5819312 Snyder et al. Oct 1998 A
5823984 Silverberg Oct 1998 A
5826304 Carlson Oct 1998 A
5830167 Jung Nov 1998 A
D405180 Reina Feb 1999 S
5865778 Johnson Feb 1999 A
5882322 Kim et al. Mar 1999 A
5902259 Wilkerson May 1999 A
5926843 Winchester Jul 1999 A
5934599 Hammerslag Aug 1999 A
5951504 Iglesias et al. Sep 1999 A
5971946 Quinn et al. Oct 1999 A
5982285 Bueche et al. Nov 1999 A
6042557 Ferguson et al. Mar 2000 A
6053884 Peters Apr 2000 A
6056671 Marmer May 2000 A
6056713 Hayashi May 2000 A
RE36745 Rudy, Jr. et al. Jun 2000 E
6093161 Vlaeyen et al. Jul 2000 A
6110134 Clark, Jr. et al. Aug 2000 A
6146240 Morris Nov 2000 A
D436177 Miller Jan 2001 S
D437416 Slautterback Feb 2001 S
6186966 Grim et al. Feb 2001 B1
6202953 Hammerslag Mar 2001 B1
6254560 Tweardy et al. Jul 2001 B1
6289558 Hammerslag Sep 2001 B1
6322529 Chung Nov 2001 B1
6325772 Scheuermann et al. Dec 2001 B1
6358220 Langen et al. Mar 2002 B1
6416074 Maravets et al. Jul 2002 B1
6423020 Koledin Jul 2002 B1
D463565 Slautterback Sep 2002 S
6509078 Beckmann Jan 2003 B1
6520925 Thibodo, Jr. Feb 2003 B1
D473653 Weaver, II et al. Apr 2003 S
D477088 Brown et al. Jul 2003 S
D477409 Mills et al. Jul 2003 S
D477410 Wiggins et al. Jul 2003 S
6602215 Richie, Jr. Aug 2003 B1
6663581 Calabrese Dec 2003 B1
D492787 Weaver, II et al. Jul 2004 S
6779282 Grohninger Aug 2004 B2
D496465 Weaver, II Sep 2004 S
D500855 Pick et al. Jan 2005 S
6843190 LaPierre-McAfee Jan 2005 B1
6872188 Caille et al. Mar 2005 B2
D505727 Krahner et al. May 2005 S
6893410 Hely May 2005 B1
6922917 Kerns et al. Aug 2005 B2
6960176 Hely et al. Nov 2005 B1
7001348 Garth et al. Feb 2006 B2
D518895 Weaver, II et al. Apr 2006 S
D519211 Doty et al. Apr 2006 S
7025737 Modglin Apr 2006 B2
7041073 Patron May 2006 B1
7056298 Weber Jun 2006 B1
7082701 Dalgaard et al. Aug 2006 B2
7083585 Latham Aug 2006 B2
7090653 Moeller Aug 2006 B2
D530016 Sroufe et al. Oct 2006 S
7141031 Garth et al. Nov 2006 B2
7182741 Porrata et al. Feb 2007 B2
7204817 Toronto et al. Apr 2007 B1
D542919 Leatt May 2007 S
7217060 Ingimarsson May 2007 B2
D550370 Peters et al. Sep 2007 S
D552743 Verkade et al. Oct 2007 S
D552744 Verkade et al. Oct 2007 S
D558883 Ortiz Jan 2008 S
7316660 Modglin Jan 2008 B1
7329229 Scheinberg et al. Feb 2008 B2
D565189 Gramza et al. Mar 2008 S
7392602 Reagan et al. Jul 2008 B2
7399288 Chao Jul 2008 B2
D580064 Lin et al. Nov 2008 S
D580555 Lin et al. Nov 2008 S
7449006 Wolanske Nov 2008 B2
7470243 Garth Dec 2008 B2
D584822 Weber Jan 2009 S
7507215 Ryan Mar 2009 B2
7591050 Hammerslag Sep 2009 B2
7597671 Baumgartner et al. Oct 2009 B2
7608052 Baker Oct 2009 B1
7645250 Koby et al. Jan 2010 B2
7674234 Calco et al. Mar 2010 B2
D616556 Hu May 2010 S
D617464 Weaver, II et al. Jun 2010 S
7727172 Wang Jun 2010 B2
D626242 Sagnip et al. Oct 2010 S
D626244 Sagnip et al. Oct 2010 S
D628300 Caden Nov 2010 S
D628696 Robertson Dec 2010 S
D629115 Robertson Dec 2010 S
7846118 Sandhu Dec 2010 B2
7854714 Weber et al. Dec 2010 B1
7874997 Jaccard Jan 2011 B2
D632401 Stevens Feb 2011 S
7883485 Moenning et al. Feb 2011 B2
D633622 Chiang Mar 2011 S
D633623 Leatt et al. Mar 2011 S
D635269 Franke et al. Mar 2011 S
D635270 Chiang Mar 2011 S
D635682 Chiang Apr 2011 S
D636494 Garth et al. Apr 2011 S
D638948 Janzon May 2011 S
7942837 Clark et al. May 2011 B2
7950112 Hammerslag et al. May 2011 B2
D639965 Wehsely-Swiczinsky Jun 2011 S
7954204 Hammerslag et al. Jun 2011 B2
7955287 Frangi Jun 2011 B2
D641482 Robertson et al. Jul 2011 S
D641483 Robertson et al. Jul 2011 S
D643978 Abajo Alonso et al. Aug 2011 S
7992261 Hammerslag et al. Aug 2011 B2
D647623 Thorgilsdottir et al. Oct 2011 S
D647624 Thorgilsdottir et al. Oct 2011 S
D649648 Cavalieri et al. Nov 2011 S
D649649 Leatt et al. Nov 2011 S
D649650 Wehsely-Swiczinsky Nov 2011 S
8057417 Imai Nov 2011 B2
D650485 Jaccard Dec 2011 S
D652937 Robertson et al. Jan 2012 S
8091182 Hammerslag et al. Jan 2012 B2
D654180 Weaver, II Feb 2012 S
D657062 Chiang Apr 2012 S
D657063 Chiang Apr 2012 S
D663850 Joseph Jul 2012 S
D663851 Joseph Jul 2012 S
D663852 Joseph Jul 2012 S
D664259 Joseph Jul 2012 S
D665088 Joseph Aug 2012 S
D666301 Joseph Aug 2012 S
D666302 Joseph Aug 2012 S
8246560 Gaylord et al. Aug 2012 B2
8277401 Hammerslag et al. Oct 2012 B2
8303527 Joseph Nov 2012 B2
D687556 Joseph Aug 2013 S
8856972 Kirshon Oct 2014 B2
20020068890 Schwenn et al. Jun 2002 A1
20020095750 Hammerslag Jul 2002 A1
20020148461 Heinz et al. Oct 2002 A1
20020161114 Gunatillake et al. Oct 2002 A1
20030178404 Dimartino et al. Sep 2003 A1
20030204938 Hammerslag Nov 2003 A1
20040024337 Tseng et al. Feb 2004 A1
20040034316 Castro Feb 2004 A1
20050033207 Anders Feb 2005 A1
20050034686 Spatt Feb 2005 A1
20050043664 Reaux Feb 2005 A1
20050101898 Cohen May 2005 A1
20050197606 Preire Sep 2005 A1
20050273030 Koby et al. Dec 2005 A1
20050281999 Hofmann et al. Dec 2005 A1
20060051402 Bogardus et al. Mar 2006 A1
20060052730 Hargrave et al. Mar 2006 A1
20060062991 Sendijarevic et al. Mar 2006 A1
20060129075 Scheinberg et al. Jun 2006 A1
20060155226 Grim et al. Jul 2006 A1
20060156517 Hammerslag et al. Jul 2006 A1
20060173390 Van Wyk et al. Aug 2006 A1
20070004993 Coppens et al. Jan 2007 A1
20070077393 Chiang et al. Apr 2007 A1
20070179417 Schwenn et al. Aug 2007 A1
20080060167 Hammerslag et al. Mar 2008 A1
20080060168 Hammerslag et al. Mar 2008 A1
20080066272 Hammerslag et al. Mar 2008 A1
20080066345 Hammerslag et al. Mar 2008 A1
20080066346 Hammerslag et al. Mar 2008 A1
20080082033 Ortiz Apr 2008 A1
20080083135 Hammerslag et al. Apr 2008 A1
20080177210 McDevitt Larson Jul 2008 A1
20080262400 Clark et al. Oct 2008 A1
20090082707 Rumsey Mar 2009 A1
20090192425 Garth et al. Jul 2009 A1
20090192427 Brown et al. Jul 2009 A1
20090204047 MacArthur Aug 2009 A1
20090264802 Chen Oct 2009 A1
20100168630 Cropper et al. Jul 2010 A1
20100185130 Rizo Patron Jul 2010 A1
20100262054 Summit et al. Oct 2010 A1
20100268139 Garth Oct 2010 A1
20100268140 Berlese Oct 2010 A1
20100268141 Bannister Oct 2010 A1
20100299959 Hammerslag et al. Dec 2010 A1
20100318010 Sandifer et al. Dec 2010 A1
20110034844 Thorgilsdottir et al. Feb 2011 A1
20110082402 Oddou et al. Apr 2011 A1
20110130694 Livolsi et al. Jun 2011 A1
20110213284 Garth et al. Sep 2011 A1
20110313389 Wood et al. Dec 2011 A1
20120065562 Kaphingst Mar 2012 A1
20120101417 Joseph Apr 2012 A1
20130102940 Joseph Apr 2013 A1
20140039367 Boraas et al. Feb 2014 A1
20140135672 Joseph et al. May 2014 A1
20150119775 Gildersleeve et al. Apr 2015 A1
Foreign Referenced Citations (13)
Number Date Country
2902232 May 2007 CN
101279110 Oct 2008 CN
0 393 003 Oct 1990 EP
0 401 883 Dec 1990 EP
0 625 342 Nov 1994 EP
0 795 307 Apr 2004 EP
09-234241 Sep 1997 JP
2004-065912 Mar 2004 JP
WO 9321967 Nov 1993 WO
WO 2007035875 Mar 2007 WO
WO 2010099130 Sep 2010 WO
WO 2011071264 Jun 2011 WO
WO 2012138523 Oct 2012 WO
Non-Patent Literature Citations (2)
Entry
Johnson & Johnson Orthoplast Splinting Materials, http://www.medco-school.com/Supply/Product.asp?Leaf—Id-80365, archived 2007.
Aquaplast Splinting Materials, http://www.wisdomking.com/aquaplast-splinting, archived 2008.
Related Publications (1)
Number Date Country
20140039366 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61677779 Jul 2012 US