Foam-dispensing pumps are constructed and arranged for enabling the mixture of air and a selected liquid, in a desired ratio, for the production of foam. This mixture of air and a selected liquid is pushed through a screen or mesh layer of some suitable material and construction in order for aeration of this mixture to occur. The charge of air is divided into smaller bubbles which are coated with a thin film of the selected liquid. The opening size of the screen (or mesh) and the number of passes through other (optional) downstream screens, typically with smaller openings, influences the “quality” of the foam which is ultimately dispensed to the user. The mixture ratio of the charge of air and the charge of liquid also influences the “quality” of the foam relative to whether the foam is considered too wet and thus runny or too dry and unacceptable.
While the selection of a proper mixture ratio of air and liquid is important, it is also important to have a pump mechanism which is cost-effective to manufacture and is reliable. The concept of “reliable” is embodied, at least in part, in the accuracy of the metering of air and the delivery of liquid for the mixture. “Reliable” is also embodied in the valve structures which perform their metering and delivery responsibilities as intended, and without any noticeable leakage or malfunction.
The air valve structure which is included as part of this disclosed foam-dispensing pump provides a reliable valve structure for use in this type of pump.
An air valve structure is disclosed which is constructed and arranged for use as part of a foam-dispensing pump. The pump includes an air cylinder for use in delivering a charge of air to a mixing chamber which is upstream from a mesh insert. The air cylinder includes a housing and a reciprocating air piston and the combination defines an interior air chamber. The pump also includes a liquid cylinder for use in delivering a charge of liquid to the mixing chamber. The liquid cylinder includes a portion of the housing and a reciprocating liquid piston.
In one embodiment, as disclosed herein, the pump is assembled to a container which includes a volume of the selected liquid. The representative container has an externally-threaded neck and the pump includes an internally-threaded collar which securely attaches the pump to the container. Other container constructions and other means of connection or attachment are contemplated. In this assembled and attached condition one portion of the pump extends in an axially downward direction into the interior of the container. Another portion of the pump extends in an axially upward direction and protrudes beyond the upper surface of the collar. This “another portion” includes an actuator which defines a dispensing passage and outlet opening for the foam which is produced as the air and liquid mixture passes through and exits from the mesh insert.
The actuator is constructed and arranged to reciprocate axially through an upper opening in the collar. The downward travel of the actuator is the result of manual depression (i.e. a manual downward force on the upper surface of the actuator). The upward travel of the actuator is the result of a spring and a spring-biasing arrangement within the pump. As the actuator is manually pushed in an axially downward direction, an air piston and a liquid piston are each driven axially as the initiating steps in the delivery of air and liquid, respectively. With each stroke of the actuator a charge of air and a charge of liquid are delivered into a mixing area or chamber which is upstream from the mesh insert used for aeration. The flow of air is dependent on the opening of the disclosed air valve so that a portion of the air which is within the air chamber is able to escape as the air chamber volume is reduced by the downward travel of the air piston, as driven by the actuator. When the pressure level within the air chamber is below the resiliency force of the air valve in order to remain open, the mixing air side of the air valve closes.
As the spring arrangement acts on the air piston and thereby pushes upwardly on the actuator, the pump components return to what is best described as their “starting position”, ready for another manual actuation (i.e. stroke) and for the delivery of another charge or dose of foam. This upward travel of the air piston creates a vacuum within the air chamber and this negative pressure needs to be relieved by the introduction of make-up air. The disclosed air valve is constructed and arranged to allow the introduction of make-up air into the air chamber. Once the negative pressure within the air chamber returns to a pressure which is near atmospheric pressure, the make-up air side of the air valve closes.
In order to provide these described air valve functions, the disclosed foam-dispensing pump includes an air valve structure which includes an annular sleeve component and an annular valve element. The annular sleeve component is assembled around and rests on a portion of the liquid piston. The valve element is received within the air piston. The sleeve component is used in cooperation with the valve element to control the delivery and amount of air for mixing with the liquid. The valve element is used independently of the sleeve, though in cooperation with the housing, to control the entry of make-up air into the air chamber.
The disclosed air valve structure provides an improved construction which is easy to fabricate and easy to install and which is reliable and accurate in terms of air-flow management. The concept of air-flow management includes both timing and volume.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates. One embodiment of the invention is shown in great detail, although it will be apparent to those skilled in the relevant art that some features that are not relevant to the present invention may not be shown for the sake of clarity.
Referring to
The structural details of actuator 22 are illustrated in
With continued reference to
In use, the pump 20 is assembled to a suitable dispensing container which is holding a supply of a selected liquid product, and the initial step which needs to be performed by a user is to manually push in a downward direction on the upper surface 22a of actuator 22. Considering the mechanical configuration and arrangement of the cooperating component parts, see
As the air piston 26 travels within housing 30, the interior volume of their defined space 56 is reduced thereby resulting in an increase in the interior air pressure within space 56. This increased interior air pressure causes a radially inner portion of the air valve structure 40 to “open” in order to force a dose or charge of air into a mixing area such as mixing chamber 58 which is adjacent the entry end 60 of the mesh insert 32. A radially outer portion of the air valve structure 40 remains “closed”. Downward axial travel of the actuator 22 also effects downward axial travel of the liquid piston 28. The movement of the liquid piston 28 reduces the volume of space 62 which includes a charge of the liquid product. Concurrently with this downward movement, the upper end 64 of the liquid piston 28 separates from the enlarged head 66 of the pull stick 38. This separation creates a liquid flow path for liquid to flow into mixing chamber 58. The dose or charge of air and the dose or charge of liquid are combined within mixing chamber 58 before that air-liquid mixture is pushed into and through the mesh insert 32. The passage of the mixture through the mesh insert 32 results in the production of foam. The dose of foam which is produced is pushed out through the nozzle portion 68 of actuator 22.
The downward axial movement of the actuator 22 which in turn causes the downward axial movement of the air piston 26 and of the liquid piston 28 also causes the compression (i.e. shortening) of spring 34. When the manual force on the upper surface of the actuator 22 is relieved or released, the spring 34 is allowed to return to its extended starting condition. The spring force which is released as the spring returns to its starting condition causes the air piston 26 to move in an axially upward direction. This upward travel creates a negative pressure (i.e. a vacuum or suction) within defined space 56. This negative pressure causes the radially outward portion of the air valve structure 40 to “open” in order to admit make-up air into the defined space 56. While the air pressure within defined space 56 is being adjusted back to something close to atmospheric pressure, the radially inner portion of the air valve structure 40 begins to close. As soon as the positive pressure is lowered below the valve-open force level, the radially inner portion is closed.
The spring return force also drives the liquid piston 28 in an axially upward direction and the suction created opens the ball valve 70 and draws a new charge or dose of liquid up through the dip tube 50 from the liquid supply within the container. When the pressure within the defined space 56 is restored to substantially atmospheric pressure, the pump 20 is ready for another dispensing cycle (stroke) and the dispensing of another dose or charge of foam.
Referring now to
Referring now to
The annular lower portion 90 of inner wall 88 fits within annular channel 92 of air piston 26. The space 94 between inner wall 88 and outer wall 86 received the upper portion 96 of housing 30, including radial flange 96a. Flange 96a seats up against annular ledge 98 of collar 24. Opening 100 receives the outer wall 78 of the actuator 22. The notch 101 receives wall projection 79.
Referring now to
The annular sleeve component 42, see
The construction and arrangement of sleeve component 42, including its material selection, provides an improved air-flow for delivery of mixing air for the foam production. The flow openings and passages created by notches 42c in cooperation with passages 110, and the elastomeric properties of lip 184, result in larger openings and more air flow at a lower pressure. The positive pressure required to open or raise lip 184 is comparatively low as compared to prior art air valve structures and this construction facilitates the adequacy of the flow of mixing air and the responsiveness of the air valve structure 40.
Annular wall portion 80 includes an annular inner wall 80a and an annular outer wall 80b. Walls 80a and 80b are substantially concentric and cooperatively define therebetween annular groove 80c. Groove 80c receives an annular upper wall 112 of valve element 44 (see
Air piston wall 114 is constructed and arranged for a tight sliding fit within housing 30. Wall 114 fits tightly up against the inner surface 116a of housing wall 116. The tight fit is for sealing, while still being at a force level which permits the sealing lips 114a of wall 114 to slide over the inner surface 116a. This sliding movement causes the volume of the defined space 56 to change in a controlled manner for both the delivery of mixing air and for drawing in make-up air.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
With continued reference to
When a positive pressure is present within defined space 56, due to the axial movement of actuator 22 and thereby the movement of air piston 26, lip 184 is pushed upwardly (i.e. raised) off of edge 186a. The resulting separation between lip 184 and edge 186a creates an air-flow passage for air within defined space 56 to be delivered to the mixing chamber 58 for mixing with the charge of liquid for foam production. When the positive pressure is removed (due to the entry of make-up air) lip 184 closes back against edge 186a.
The air valve structure 40 provides a simple and reliable air valve for the delivery of mixing air and the receipt of make-up air. The structural shapes and cooperative interfit of lip 184 onto edge 186a provide added simplicity to the other component parts of pump 20.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application is a continuation of PCT/US2013/071245 filed Nov. 21, 2013 and also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/740,023 filed Dec. 20, 2012, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3527242 | Ansite | Sep 1970 | A |
5271530 | Uehira et al. | Dec 1993 | A |
5443569 | Uehira | Aug 1995 | A |
6290145 | Mizushima et al. | Sep 2001 | B1 |
6398079 | Garcia et al. | Jun 2002 | B1 |
6536685 | Bennett | Mar 2003 | B2 |
6612468 | Pritchett et al. | Sep 2003 | B2 |
6644516 | Foster et al. | Nov 2003 | B1 |
6840408 | Foster et al. | Jan 2005 | B1 |
6868990 | Cater et al. | Mar 2005 | B2 |
7004356 | Sayers | Feb 2006 | B1 |
7048153 | Gentile | May 2006 | B2 |
7198177 | Ganzeboom | Apr 2007 | B2 |
7802701 | Jahan et al. | Sep 2010 | B2 |
8056767 | Mizushima et al. | Nov 2011 | B2 |
8113389 | Lewis et al. | Feb 2012 | B2 |
20050115988 | Law | Jun 2005 | A1 |
20050205600 | Ophardt | Sep 2005 | A1 |
20050224519 | Law | Oct 2005 | A1 |
20090020552 | van der Heijden | Jan 2009 | A1 |
20090166382 | Snodgrass | Jul 2009 | A1 |
20100111735 | Tu | May 2010 | A1 |
20110031276 | Mizushima | Feb 2011 | A1 |
20120241477 | Uehira | Sep 2012 | A1 |
20130221553 | Chen | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
102712397 | Oct 2012 | CN |
102689734 | Mar 2016 | CN |
1911525 | Apr 2008 | EP |
2011-156445 | Aug 2001 | JP |
2008-136904 | Jun 2008 | JP |
2012-012079 | Jan 2012 | JP |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2013/070977, dated Mar. 4, 2014. |
International Search Report and Written Opinion issued in PCT/US2013/071245, dated Mar. 4, 2014. |
Number | Date | Country | |
---|---|---|---|
20150258559 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61740023 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2013/071245 | Nov 2013 | US |
Child | 14723591 | US |