The present invention relates to a foam generating spray device. The invention relates more particularly to a foam generating spray device intended for use in producing so-called “snow-foam”. The invention also relates to a foam generating spray head for use in such device.
Snow-foam is a relatively thick, liquid foam which, as its name suggests, is white and which has special application for the cleaning of cars and other vehicles. Snow foam is applied to the vehicle surface as a cleaning agent for use during the main washing operation. Due to its relatively thick nature, the snow foam clings to the vehicle surface and serves to lift and loosen dirt, grime etc. from the body surface (with mechanical agitation using a wash sponge). Subsequently, the snow foam is washed from the vehicle using a copious supply of water, taking with it the lifted dirt, grime etc.
At present, generation of snow foam requires high pressure water. As such, snow foam is mainly used in commercial vehicle washing installations e.g., (so called “car-washes”) which have the necessary apparatus for generating high pressure water streams for admixture with a detergent concentrate to produce the snow foam for application to a vehicle.
Apparatus for generating snow foam for domestic use is also available. However such systems (e.g., as available from Karcher) do still require an arrangement for generating a high pressure water flow for mixture with the detergent solution to produce the snow foam. The means required for generating the high pressure water flow adds considerably to the cost of the apparatus, and as a result snow foam generating apparatus for domestic use is relatively expensive.
Therefore, at present, a person who wishes to use snow foam as a pre-wash for cleaning their vehicle effectively only has the choice of travelling to a car-wash or making a relatively expensive purchase of equipment for domestic use.
There will be a considerable advantage if it were possible to generate snow foam from a water supply at normal mains pressure. The present invention is addressed to this need.
According to a first aspect of the present invention there is provided a spray device comprising a container for holding detergent, a spray head for mounting on the container, and a liquid supply arrangement for transferring liquid from the container to the spray head, wherein the spray head comprises:
According to a second aspect of the present invention there is provided a foam generating spray head comprising:
We have found, in accordance with the invention, that snow foam may be generated from water at normal mains pressure by means of a spray head which incorporates, firstly, a mixing arrangement whereby an incoming water stream causes detergent to be drawn into the spray head for mixture with the water, and secondly an outlet bore with an inner surface configured as an aeration surface to introduce air into the detergent water mixture to produce snow foam. More particularly, the mixing arrangement is such that an inlet water jet passes over the detergent inlet aperture to generate a venturi effect that causes detergent solution to be drawn (from a container on which the spray head is mounted) into the spray head for mixture with the water. The continuing passage of water through the head causes the mixture to pass into the outlet bore where the aforementioned aerating surface introduces air into the mixture to produce the snow foam which is projected as a jet from the outlet of the body. The aeration surface may be formed in various ways (see below) but should be one which does not provide any significant interruption in at least the central region of the bore, since such interruption can adversely affect production of the snow foam and/or its projection from the spray head. Preferably, the bore is uninterrupted along its length and across the major part of its cross-sectional area, save for the provision of the aeration surface. Put another way, the bore is preferably uninterrupted along its length at regions between the aeration surface and the centre line of the bore.
The aerating surface of the outlet bore may be provided by virtue of the bore (which is preferably cylindrical) being lined at least partly with a mesh structure, preferably one that is tubular (most preferably cylindrical). More particularly, the bore is lined along its length and around its periphery with the mesh structure. The mesh structure may be tubular (most preferably of circular cross-section). The mesh may be metallic and may for example have diamond-shaped apertures which measure about 1.5 mm across their diagonals. The mesh structure may be of an expanded metal. Such an expanded metal may be formed from a sheet of aluminium or other metal which has been perforated and expanded to form a lattice (“mesh”) structure, e.g., one with diamond shaped openings. It is particularly preferred that the mesh structure is a double-walled structure. Such a structure may be formed by spirally winding a mesh sheet. Whilst a double-walled mesh structure is preferred, it is however also possible to use such a structure having only a single wall or three or more walls. Additionally, other forms of aerating surface are possible. Thus, for example, the outlet bore of the spray head may comprise particulate material projecting from its surface. Such particulate material may be abrasive.
In a particularly preferred embodiment of the invention, the surface of the chamber in which the detergent inlet aperture is provided has a configuration that causes a diverging flow of detergent into the chamber towards the foam generating outlet bore. Such a configuration may be provided by a recess (e.g., generally triangular) having two sides diverging from the detergent inlet aperture towards the foam generating outlet bore.
It is also preferred that the surface of the chamber in which the detergent inlet aperture is provided is inclined such that a notional line drawn through the centre of the water inlet and extending in the first direction (i.e., the direction in which the outlet bore extends) meets the surface of the chamber in which the detergent inlet aperture is provided at a point downstream of that aperture.
Preferably also a downstream region of the chamber is in the form of a passageway (e.g., a “tunnel”) that converges towards the outlet bore. At its junction with the upstream end of the outlet bore, the downstream end of the chamber is preferably of smaller cross-section than the outlet bore so there can be some expansion of the water/detergent mixture as it enters the bore. Preferably the increase in cross-section in going from the downstream end of the chamber to the upstream end of the bore is in the form of a step.
The spray head may be formed with a connector onto which a hose of standard dimensions may be. Such a hose will usually be of somewhat larger cross-section than the diameter of the water inlet to the chamber. Therefore, the incoming water stream may be passed along a converging pathway so that the water flow is reduced to the required cross section (and its velocity increased) to issue from the water inlet to the chamber as a fine jet capable of generating a venturi effect to cause detergent to be drawn into the spray head.
A further preferred feature of the spray head is that it is provided with a valve that may be operated so as selectively to allow or prevent communication between the spray head and the detergent formulation from which the snow foam is to be generated. With the valve in an open position, snow foam may be generated by the procedure described above. With the valve in the closed position, a stream of only water issues from the spray head. It will therefore be appreciated that, with the valve in the open position, snow foam is generated and may be applied to a vehicle being cleaned. Once sufficient snow foam has been applied to the vehicle, the valve may be closed and a stream of water used for rinsing the snow foam (with lifted dirt, grime etc.) from the vehicle.
The liquid supply arrangement of the spray device may be a dip tube arrangement. Preferably, the outlet of the container accommodates a bung having a bore and the dip tube arrangement comprises a first dip tube extending from the bore downwardly into the container and a second dip tube extending between the bore and the spray head. The spray head may be fixed to the second dip tube.
The container of the spray device may have a side wall formed with a recess in which the spray head may be located. The spray device may be supplied to a customer as a package comprising packaging material and a spray device in said package with the spray head being located in said recess. Alternatively, the device may be supplied to the customer with the spray head already mounted on the container.
The snow foam concentrate that is provided in the container (for generation of snow foam by admixture with water in the manner described more fully above) may for example comprise:
The invention will be further described, by way of example only, with reference to the accompanying drawings, in which:
As shown in
Referring now to
A further feature of the spray head 4 relates to the outlet bore 8. As represented by the “dashed-lines” shown along the outlet bore 8 (see
Hose connector 6 is intended to connect the spray head 4 directly to a source of mains water without intermediate pressurisation equipment by means of a hose (not shown), the downstream end of which is a secure fit onto the connector 6. Within the spray head 5 (and to be described in more detail below) is the chamber 12. When valve plug 16 is in its open position, water can be introduced into the spray head 5 through hose connector 6 and issues into the chamber 12 as a fine jet that passes just over the outlet of passageway 14. This jet causes surfactant composition in container 2 to be drawn upwardly by means of a venturi effect into the chamber 12 where it is mixed with the water, the resultant mixture then being passed along the outlet bore 8. As mentioned above, the inner surface of the bore 8 is configured along its length and around its circumference to provide an aerating surface. This surface serves to introduce air into the water/detergent mixture on its passage from the chamber region 12d to the outlet 7 to result in the production of a stream of snow foam 19 issuing from the head 4.
Reference is now made to the cut-away views of
Within spray head 4 is the chamber which, in its entirety, is designated herein by reference numeral 12 but which, for convenience, is defined as comprising upstream and downstream portions 12u and 12d respectively. Common to the chamber regions 12u and 12d is a floor 20 which (again for convenience of terminology) is referenced as having a portion 20u in the upstream region 12u of the chamber and a portion 20d in the downstream region 12d of the chamber (see particularly
As most clearly seen in
Formed in the floor 20d in the region of the mouth of the tunnel 23 is a triangular recess 24 with two sides that diverge from an apex of the recess, at which the outlet of passageway 14 is provided (see
An orifice 25 (see
Provided beneath the tube 26 is an aperture 28 in the outer casing of the spray head 4 whereby the interior of the chamber 12 communicates with the ambient atmosphere via the aperture 28 and the aforementioned gap between the upper longitudinal edge of wall 22 and the undersurface of casing portion 5a.
As indicated above, the outlet bore 8 of spray head 4 is of circular cross-section and is formed around its circumference and along its length with an aeration surface for the purpose of aerating a mixture of water and detergent produced within the chamber 12. This aeration surface in the embodiment illustrated in
To use the spray device 1 to produce snow foam, the container 2 is charged with a solution of a detergent (capable of generating snow foam), a hose (not shown) connected to a mains water supply is located on the connector 6 and the valve plug 16 is located in its open position. The detergent solution charged into the container 2 is aqueous and preferably comprises olefin sulfonates as the foaming component and may also incorporate ancillary ingredients such as fragrances, dyes, biocides and corrosion inhibitors. The olefin sulfonates will generally be present in an amount of about 5-10%, e.g. about 8%, by weight and will usually be used in the form of sodium salts.
Water entering hose connector 6 issues as the aforementioned fine jet 27 from the orifice 25 in wall 22. As indicated previously, this jet 27 passes closely over the top of passageway 14 and in doing so creates a venturi effect whereby a low pressure region is generated at the outlet of passageway 14 causing detergent solution to be drawn upwardly through the dip tube arrangement 10 and issue upwardly out of passageway 14. During this process, air is drawn into the chamber 12 via the aperture 28 and the gap between the upper surface of the wall 22 and the undersurface of cover element 5a. The detergent solution and water mix and are caused by the triangular recess 24 in the floor 20d to form a diverging mixture that “fans-out” going downstream along the tunnel 23. This mixture then enters the outlet bore 8. In going from the chamber region 12d into the outlet bore 8, the detergent/water mixture undergoes an abrupt expansion since the cross-section of the downstream end of chamber 12d is less than that of the outlet bore 8, there being the shoulder 40 which provides for the abrupt step-like expansion. Within the outlet bore 8, the detergent water mixture is converted to a thick, foamy mixture (i.e. snow foam) which issues as a stream from the outlet 7 of the spray head 4. The thick foamy mixture is generated in the outlet bore 8 by a combination of foamed detergent that fills the outlet bore 8 being forced along the bore by the production of more foaming detergent and the interruption of the flow by the mesh structure 30 as compared to the flow that would occur if the outlet bore 8 were smooth-walled. The high surface area of the expanded metal surface (mesh) allows for increased contact with the detergent/water/air mixture. The arrangement creates a rich foam (snow foam) without restricting the distance over which the dispensed snow foam is projected.
Therefore, as described more fully above, the spray device 1 is able to generate a stream of snow foam purely from mains pressure water without the need for pressurising equipment. The spray device is therefore a cost-effective device for snow foam generation for domestic use.
In use for cleaning a car or other vehicle, the outlet 7 of the device is, of course, directed at the vehicle body work so that the snow foam is applied thereto. Once the snow foam has been applied, the valve plug 16 can be rotated (using the tab 17) so as to close-off the supply of detergent to the chamber 12. As such, a water (rather than foam) stream now issues from the outlet 7 and may be used to rinse the vehicle body work as required.
We have found that optimum generation of snow foam is achieved with the double-walled mesh structure 30 but a number of variations are possible. Thus, for example, a single-walled mesh structure may be used or one with three or (possibly) more walls. An alternative to a mesh structure, another form of aeration surface may be provided for the outlet bore 8. Possibilities include particulate (e.g., abrasive) material embedded in the inner wall of the outlet bore and projecting into the bore thereof. Further means for providing an aeration surface for the bore 8 include synthetic foams, metal foams, wire and wire wool.
Further features of the illustrated embodiment relate to packaging and assembly of the spray device 1.
It will be noted from
A further feature facilitating packaging and assembly of the spray device 1 is that the dip tube arrangement 10 is formed in two parts, namely an upper dip tube section 32 and a lower dip tube section 33 which (in the assembled spray device) both extend into the aperture in bung 11 (see
For the purposes of packaging the assembly, the spray head 4 (incorporating dip tube 32) is positioned in the recess 31 in the face of container 2. As such, a considerably lower volume of packaging is required than would be the case if the spray device 1 were to be supplied with the spray head 4 mounted in position on container 2.
Additionally, the container 1 is supplied with bung 11 in position in the neck 3 of container 2, the dip tube 33 having its upper end located in the aperture of the bung 11.
When it is desired to use the device, the bung 11 with attached dip tube 33 may be removed from the neck 3 of container 2 which can then be filled with the aforementioned detergent solution. Bung 11 (with attached dip tube 33) may now be located back in the neck of the container. Subsequently, the spray head 4 (with attached dip tube 32) is fitted by positioning the lower end of dip tube 32 into the aperture of bung 11 and rotating the boss 9 relative to the neck 3 to locate the spray head 4 in its operative position.
Number | Date | Country | Kind |
---|---|---|---|
1302449.2 | Feb 2013 | GB | national |
1302455.9 | Feb 2013 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2310633 | Heimburger | Feb 1943 | A |
2965309 | Parrott | Dec 1960 | A |
3547709 | Petit et al. | Dec 1970 | A |
4207202 | Cole, Jr. | Jun 1980 | A |
5383603 | Englhard et al. | Jan 1995 | A |
5445226 | Scott | Aug 1995 | A |
6578776 | Shanklin et al. | Jun 2003 | B1 |
20020070246 | Barriac | Jun 2002 | A1 |
20050184171 | Shanklin | Aug 2005 | A1 |
20060226259 | Lund | Oct 2006 | A1 |
20070267519 | Laible | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
1090796 | Aug 1994 | CN |
2411939 | Dec 2000 | CN |
201353544 | Dec 2009 | CN |
1 205 253 | May 2002 | EP |
2 316 893 | Mar 1998 | GB |
2316893 | Mar 1998 | GB |
WO 0130507 | May 2001 | WO |
Entry |
---|
English Translation of CN 1 090 796 A. |
English translation of CN 2 411 939 Y. |
English Translation of CN 201 353 544 Y. |
First Office Action in related CN 2014800085239 dated Dec. 2, 2016. |
International Preliminary Report and Written Opinion of the Inernational Searcing Authority dated Feb. 12, 2013. |
Number | Date | Country | |
---|---|---|---|
20150375271 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/GB2014/050415 | Feb 2014 | US |
Child | 14824140 | US |