The present invention relates to a foam generator for inverted compression receptacles, and more particularly to a foam generator for inverted compression receptacles that mixes liquid contents with air and discharges the mixture in the form of foam when an inverted compression receptacle is directly compressed.
In general, a foam generator mixes liquid contents stored in a receptacle with air in an air and liquid mixing chamber and then forms and discharges uniform foam liquid through a filtration net. Such a foam generator is used for various purposes, such as shampoos, hair cosmetics, or cleansers used in bathrooms, kitchens, and restrooms.
A conventional foam generator is used to mix liquid contents with an appropriate amount of air and to extrude the mixture in the form of foam. In products to which such a foam generator is applied, a receptacle must be filled with compressed gas, making it technically difficult to manufacture the receptacle. The receptacle must be shaken whenever the receptacle is used. Also, in the state in which the product receptacle is inclined, the liquid filling the receptacle cannot be ejected in the form of foam, and only the compressed gas is ejected.
In order to solve the above problem, a foaming pump assembly that appropriately mixes liquid contents with external air and ejects the mixture in the form of foam without filling the foaming pump assembly with compressed air or without shaking the foaming pump assembly is disclosed in Korean Registered Utility Model No. 20-0169773 (Title of the Device: Air valve device of foam generator).
As shown in
In the conventional foaming pump assembly, when the nozzle 3 is repeatedly pushed, the (liquid) contents filling the receptacle A are suctioned/pumped through the liquid cylinder 2c. At the same time, air is ejected from the air cylinder 2a. As a result, foam is generated. The foam is uniformly filtered through the filtration net 9 and is then ejected to the outside through the outlet 3a in the nozzle 3.
In the conventional foaming pump assembly, however, not only the structure for compressing and discharging air but also the structure for mixing suctioned liquid contents with the air and discharging the mixture in the form of foam are more complicated than necessary, whereby assembly productivity is lowered and costs are also increased. In addition, it is necessary for a user to receive foam discharged through the outlet 3a in the nozzle 3 with one hand while repeatedly pushing the nozzle 3 with another hand, which is inconvenient.
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a foam generator for inverted compression receptacles simply configured such that liquid contents in a compression receptacle having the liquid contents stored therein are mixed with air and the mixture is discharged in the form of foam by the pressure generated in the compression receptacle when the compression receptacle is compressed, wherein an inverted compression receptacle is used as the compression receptacle such that foam can be directly ejected to a target, thereby achieving convenient use thereof using one hand.
It is another object of the present invention to provide a foam generator for inverted compression receptacles having a discharge blocking function, whereby it is possible to more stably use the product and to prevent the leakage of liquid from the product during the distribution of the product.
It is a further object of the present invention to provide a foam generator for inverted compression receptacles including a massage member such that a user can directly and uniformly apply the ejected foam to his/her skin without using the palms of his/her hands.
In order to accomplish the above objects, the present invention provides a foam generator for inverted compression receptacles including: an inverted compression receptacle having liquid contents stored therein, the inverted compression receptacle being provided at the lower part thereof with a neck having screw threads formed therein; a cap main body including a large cap part fastened to the neck of the inverted compression receptacle in a screw coupling manner, an upward and downward movement guide wall disposed at the outside of the large cap part, the upward and downward movement guide wall being formed in the shape of a cylinder, and a foam discharge part protruding from the lower part of the large cap part in the shape of a pipe having a reduced diameter while a step is formed at the upper end thereof, the lower part of the foam discharge part being open, an air hole for allowing external air to be introduced therethrough being formed in the step; a content discharge guide configured such that the edge thereof is fitted, received, and disposed in the lower side of the large cap part of the cap main body so as to be spaced apart from the upper part of the step of the cap main body, the content discharge guide including a discharge guide part having a liquid discharge port formed in the central region thereof so as to be recessed concavely and a cylindrical discharge channel protruding from the upper part of the center of the discharge guide part for guiding the discharge of the liquid contents, the discharge guide part being provided at the edge thereof with an air discharge port, through which air in the inverted compression receptacle can move to the lower side of the discharge guide part when the inverted compression receptacle is compressed, and with an air introduction port, through which external air is introduced into the inverted compression receptacle when the inverted compression receptacle is restored to the original state thereof; a valve housing including a cylindrical coupling part fitted and coupled into the upper part of the content discharge guide so as to cover the upper part of the content discharge guide such that an air compartment, which communicates with the air discharge port and the air introduction port, is defined in the cylindrical coupling part, the cylindrical coupling part being provided in the central region thereof with a content suction port, the cylindrical coupling part being coaxially fitted and coupled into the discharge channel defined in the content discharge guide, a content check valve, for selectively opening and closing the content suction port depending on whether the inverted compression receptacle is compressed, being received and disposed in the cylindrical coupling part, a tube fitting port protruding from the upper surface of the valve housing so as to communicate with the air compartment; an air tube, having a lower end fitted and coupled into the tube fitting port of the valve housing and an upper end extending toward the upper part of the inverted compression receptacle, for allowing the upper space in the inverted compression receptacle, in which air remains, and the air compartment to communicate with each other therethrough; an air check valve unit made of an elastic material, the air check valve unit including a ring-shaped partition wall, having an upper end disposed in tight contact with the lower surface of the content discharge guide and a lower end disposed in tight contact with the upper part of the step of the cap main body, for defining an air and liquid mixing chamber in the foam discharge part, a first check valve part disposed inside the partition wall so as to extend upward toward the central part thereof, an end of the first check valve part being disposed in elastically tight contact with the discharge guide part of the content discharge guide, the first check valve part being configured to allow the air in the inverted compression receptacle to move to the air and liquid mixing chamber through the air discharge port when the inverted compression receptacle is compressed, and a second check valve part disposed outside the partition wall so as to extend downward toward the outside, an end of the second check valve part being disposed in elastically tight contact with the outside of the step of the cap main body, the second check valve part being configured to close the air hole when the inverted compression receptacle is compressed and to open the air hole when the inverted compression receptacle is restored to the original state thereof such that external air can be introduced; a filtration member fitted, received, and disposed in the foam discharge part of the cap main body, the filtration member being formed in the shape of a cylinder having open upper and lower parts, the filtration member being provided at the upper and lower surfaces thereof with filtration nets, the filtration member being configured to guide the discharge of foam formed as the result of the liquid contents being mixed with air in the air and liquid mixing chamber while homogenizing the foam; and an upward and downward movement cap including a cylindrical wall surface having an upper end received in and coupled to the upward and downward movement guide wall of the cap main body so as to be movable upward and downward and a lower surface configured to cover the lower part of the cap main body, the lower surface being provided with a plurality of foam distribution holes, through which the foam that has passed through the filtration member is discharged to the outside in a distributed manner, the upward and downward movement cap being provided at the center of the lower surface thereof with a cylindrical blocking wall in a protruding manner for selectively opening and closing the foam discharge part according to the upward and downward manipulation thereof.
In addition, the content check valve may include: a valve body disposed in the coupling part of the valve housing so as to be slidable vertically for opening and closing the content suction port, the upper end of the valve body being formed in a conical shape; and an elastic member for elastically supporting the valve body upward in the coupling part of the valve housing.
In addition, the foam generator for inverted compression receptacles may further include a massage member, wherein the massage member may include: a base fitted and mounted in the lower part of the upward and downward movement cap, the base being provided therein with a plurality of communication ports, which communicate with the respective foam distribution holes; and massage bristles provided at the lower surface of the base for uniformly applying foam discharged through the communication ports to the skin of a user.
In addition, support shafts may be formed inside the upward and downward movement guide wall in a protruding manner such that the support shafts are opposite each other, and the upward and downward movement cap may be provided at the outside of the wall surface thereof with spiral grooves for receiving the support shafts, the spiral grooves being formed so as to be opposite each other over a predetermined region, the upward and downward movement cap being disposed so as to move upward or downward to the regular positions thereof by rotating the upward and downward movement cap in a forward direction or a reverse direction, whereby, when the upward and downward movement cap is moved maximally downward as the result of the rotation of the upward and downward movement cap in the forward direction, the cylindrical blocking wall may open the foam discharge part, and when the upward and downward movement cap is moved maximally upward as the result of the rotation of the upward and downward movement cap in the reverse direction, the cylindrical blocking wall may close the foam discharge part.
In the foam generator for inverted compression receptacles according to the present invention having the above-stated structure, liquid contents, discharged out of the inverted compression receptacle having the liquid contents stored therein through the content check valve opened by the pressure generated in the inverted compression receptacle when the inverted compression receptacle is directly compressed, are mixed with air in the air and liquid mixing chamber, and the mixture is directly discharged in the form of foam. Consequently, the mechanical structure for instantly discharging the liquid contents in the form of foam when the inverted compression receptacle is compressed is configured so as to be simpler than the conventional art, and product responsiveness is improved. In particular, the inverted compression receptacle can be directly compressed by a user using one hand such that the contents are discharged in the form of foam, whereby it is possible to improve user convenience.
Also, in the foam generator for inverted compression receptacles according to the present invention, the user can apply the ejected foam to his/her skin or can cleanse his/her skin using the massage member. In particular, the user can directly and uniformly apply the ejected foam (the contents) to his/her skin using the massage member, akin to massaging the skin of the user without using the palms of the hands.
Furthermore, in the foam generator for inverted compression receptacles according to the present invention, the upward and downward movement cap can be moved upward and downward to easily open and close the foam discharge part by manipulating the upward and downward movement cap in the forward direction and the reverse direction, whereby it is possible to more stably use the product and to prevent the leakage of liquid from the product during the distribution of the product.
100 . . . Inverted compression receptacle 110 . . . Neck 200 . . . Cap main body
210 . . . Large cap part 220 . . . Upward and downward movement guide wall 230 . . . Step
240 . . . Foam discharge part 250: Air hole 260: Support shafts
300 . . . Content discharge guide 310 . . . Edge 320 . . . Discharge guide part
330 . . . Liquid discharge ports 340 . . . Discharge channel 350 . . . Air discharge ports
360 . . . Air introduction ports 400 . . . Valve housing 410 . . . Air compartment
420 . . . Content suction port 430 . . . Content check valve 431 . . . Valve body
432 . . . Elastic member 440 . . . Coupling part 450 . . . Tube fitting port
500 . . . Air tube 600 . . . Air check valve unit 610 . . . Partition wall
620 . . . First check valve part 630 . . . Second check valve part 700 . . . Filtration member
710 . . . Body 720, 730 . . . Filtration nets 800 . . . Upward and downward movement cap
810 . . . Wall surface 820 . . . Lower surface 830 . . . Filtration distribution holes
840 . . . Cylindrical blocking wall 850 . . . Spiral grooves 900 . . . Massage member
910 . . . Base 920 . . . Communication ports 930 . . . Massage bristles
S . . . Air and liquid mixing chamber
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. Briefly describing the accompanying drawings,
The foam generator for inverted compression receptacles according to the present invention is mounted to a neck of an inverted compression receptacle having contents stored therein such that liquid contents are discharged out of the inverted compression receptacle in the form of foam while the liquid contents are mixed with air using the pressure generated in the inverted compression receptacle when the inverted compression receptacle is directly compressed. As shown in
First, the inverted compression receptacle 100 has liquid contents stored therein. As shown in
The cap main body 200 is made of hard synthetic resin. As shown in
The content discharge guide 300 is also made of hard synthetic resin. As shown in
As shown in
The air check valve unit 600 is made of an elastic rubber material (silicone or NBR). As shown in
As shown in
The upward and downward movement cap 800 is configured to guide the discharge of the foam in the foam generator for inverted compression receptacles according to the present invention to the outside and to lock the foam generator for inverted compression receptacles according to the present invention. As shown in
The upward and downward movement of the upward and downward movement cap 800 is achieved by rotating the upward and downward movement cap 800 in the forward direction and the reverse direction. That is, the upward and downward movement cap 800 is provided at the outside of the wall surface 810 thereof with spiral grooves 850 inclined upward from the lower part thereof for receiving the support shafts 260. The spiral grooves 850 are formed so as to be opposite each other in a predetermined region (a 90-degree region in the present invention). Consequently, the upward and downward movement cap 800 is moved downward or upward to the regular positions thereof by rotating the upward and downward movement cap 800 in the forward direction or the reverse direction. When the upward and downward movement cap 800 is moved maximally downward as the result of the rotation of the upward and downward movement cap 800 in the forward direction (in the direction indicated by the arrow A in
Meanwhile, as shown in
Next, the operation and effects of the foam generator for inverted compression receptacles according to the present invention will be described with reference to
First, as shown in
When a user presses the inverted compression receptacle 100 in order to compress the inverted compression receptacle 100 (see the direction indicated by the arrow in
Consequently, some of the liquid contents stored in the inverted compression receptacle 100 move to the air and liquid mixing chamber S through the liquid discharge ports 330 as the result of opening of the content check valve 430 (see the direction indicated by the solid arrow in
In the air and liquid mixing chamber S, the compressed air and the liquid contents are mixed with each other to form foam. Since the liquid contents are discharged while being distributed through the liquid discharge ports 330, the liquid contents can be more smoothly mixed with the air to instantly form foam. The foam is homogenized while passing through the filtration member 700. The homogenized foam is discharged to the outside via the foam distribution holes 830 in the upward and downward movement cap 800 and the communication ports 920 in the massage member 900.
When the artificial force applied to the inverted compression receptacle 100 is removed, as shown in
This series of processes may be repeated in order to eject and use the liquid contents stored in the inverted compression receptacle 100 in the form of foam. That is, in the foam generator for inverted compression receptacles according to the present invention, the inverted compression receptacle 100 having the contents stored therein is directly compressed. As a result, the liquid contents are mixed with air due to the pressure in the inverted compression receptacle 100, and the mixture is directly discharged in the form of foam. In addition, even when the user directly compresses the inverted compression receptacle 100 using one hand, the contents are discharged to the outside in the form of foam, thereby improving user convenience. Furthermore, the user can uniformly apply the foam discharged to the outside to his/her skin or can cleanse his/her skin using the massage member 900 without using his/her hands. In particular, the user can uniformly apply the foam to his/her skin while pushing the massage bristles 930 of the massage member 900 onto his/her skin in the manner of massaging the skin of the user.
Meanwhile, when the upward and downward movement cap 800 is rotated by 90 degrees in the reverse direction (in the direction indicted by the arrow B in
The present invention is widely applicable to the field of a foam generator for inverted compression receptacles that is capable of mixing contents with air and discharging the mixture in the form of foam when an inverted compression receptacle is directly compressed.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0142549 | Oct 2015 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2016/011077 | 10/4/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/065439 | 4/20/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3345673 | Schwartzman | Oct 1967 | A |
4531659 | Wright | Jul 1985 | A |
6082586 | Banks | Jul 2000 | A |
9566595 | Tepas | Feb 2017 | B2 |
20020153389 | Creaghan | Oct 2002 | A1 |
20090001100 | van der Heijden | Jan 2009 | A1 |
20120228332 | Huang | Sep 2012 | A1 |
20140061247 | Arminak | Mar 2014 | A1 |
20140096786 | Nuzzo | Apr 2014 | A1 |
20140110434 | Ciavarella | Apr 2014 | A1 |
20150173568 | Harris | Jun 2015 | A1 |
20160029855 | Harris | Feb 2016 | A1 |
20180326434 | Aoyama | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2014-046943 | Mar 2014 | JP |
2014-105030 | Jun 2014 | JP |
20-0169773 | Feb 2000 | KR |
10-2010-0137407 | Dec 2010 | KR |
10-2011-0039000 | Apr 2011 | KR |
10-1517825 | May 2015 | KR |
Number | Date | Country | |
---|---|---|---|
20200085669 A1 | Mar 2020 | US |