Foam introduction system including modified port geometry

Information

  • Patent Grant
  • 8795289
  • Patent Number
    8,795,289
  • Date Filed
    Monday, June 10, 2013
    11 years ago
  • Date Issued
    Tuesday, August 5, 2014
    10 years ago
Abstract
A surgical apparatus for positioning within a tissue tract accessing an underlying body cavity includes a seal anchor member including leading portion, a trailing portion, and an intermediate portion disposed between the leading and trailing portions. The leading portion of the seal anchor member is configured and adapted to ease insertion of the seal anchor member into the tissue tract. Subsequent to insertion of the seal anchor member, the leading portion of the seal anchor member is also configured and adapted to facilitate securing and/or anchoring of the seal anchor member within the tissue tract.
Description
BACKGROUND

1. Technical Field


The present disclosure relates generally to a seal for use in a surgical procedure. More particularly, the present disclosure relates to a seal anchor member adapted for insertion into an incision, or a naturally occurring bodily orifice, in tissue, and, for the sealed reception of one or more surgical objects such that a substantially fluid-tight seal is formed with both the tissue and the surgical object or objects.


2. Background of Related Art


A minimally invasive surgical procedure is one in which a surgeon enters a patient's body through a small opening in the skin or through a naturally occurring opening (e.g., mouth, anus, or vagina). Such procedures have several advantages over traditional open surgeries. In particular, as compared to traditional open surgeries, minimally invasive surgical procedures result in reduced trauma and recovery time for patients. Generally, such procedures are referred to as “endoscopic”, unless performed on the patient's abdomen, in which case the procedure is referred to as “laparoscopic”. Throughout the present disclosure, the term “minimally invasive” should be understood to encompass both endoscopic and laparoscopic procedures.


During a typical minimally invasive procedure, surgical objects, such as surgical access devices (e.g., trocar and cannula assemblies) or endoscopes, are inserted into the patient's body through the incision in tissue. In general, prior to the introduction of the surgical object into the patient's body, insufflation gases are used to enlarge the area surrounding the target surgical site to create a larger, more accessible work area. Accordingly, the maintenance of a substantially fluid-tight seal is desirable so as to prevent the escape of the insufflation gases and the deflation or collapse of the enlarged surgical site.


To this end, various valves and seals are used during the course of minimally invasive procedures and are widely known in the art. However, a continuing need exists for a seal anchor member that can be inserted directly into the incision in tissue and that can accommodate a variety of surgical objects while maintaining the integrity of an insufflated workspace.


SUMMARY

Disclosed herein is a surgical apparatus for positioning within a tissue tract accessing an underlying body cavity. The surgical apparatus includes a seal anchor member including a leading portion, a trailing portion, and an intermediate portion disposed between the leading and trailing portions. One or more lumens longitudinally extend between the leading and trailing portions. The one or more lumens are configured and adapted to receive instrumentation therein in a substantially sealed relation.


The leading portion of the seal anchor member is transitionable between a first configuration and a second configuration. The arrangement and/or interrelationship between the elements, e.g., the elements of the leading portion of the seal anchor member may be different in the first and second configurations. For example, the positioning of elements with respect to each other may differ in the first and second configurations. The leading portion may define a radial dimension, diameter or a width that corresponds to each of the first and second configurations. In an embodiment, the leading portion includes a plurality of positioning members defining at least one gap between adjacent positioning members to facilitate compression of the leading portion in a transverse direction. The at least one gap facilitates transitioning the leading portion to the second configuration in which the leading portion has a substantially flat profile, thereby facilitating insertion of the seal anchor member within the tissue tract.


In another embodiment, the leading portion of the seal anchor member may include one or more positioning segments that are radially coupled to the intermediate portion of the seal anchor member, e.g., the one or more positioning members are operably connected to the intermediate portion. To facilitate insertion of the seal anchor member within the tissue member the one or more positioning members are inwardly directed to minimize the size of the leading portion of the seal anchor member. Once inserted into the tissue tract, the one or more positioning members may deploy outwardly, thereby increasing the size of the leading portion of the seal anchor member and facilitating stabilization and/or anchoring of the seal anchor member within the tissue tract. The one or more positioning members may be biased inwardly, and may deflect outwardly in response to insertion of instrumentation through the lumens of the seal anchor member.


In yet another embodiment, a seal anchor member may include a leading portion, a trailing portion, and an intermediate portion disposed therebetween. A first positioning member may be associated with the trailing portion, and a second positioning member may be associated with the leading portion. The second positioning member may have a non-circular, e.g., an oblong shape or configuration. The non-circular shape of the second positioning member facilitates insertion by guiding the seal anchor member to a proper position within the tissue tract. Once positioned within the tissue tract, the non-circular shape of the second positioning member also facilitates anchoring and/or securing of the seal anchor member within the tissue tract. The seal anchor member may also include one or more longitudinally extending lumens between the leading and trailing portions of the seal anchor member.


These and other features of the apparatus disclosed herein will become more readily apparent to those skilled in the art from the following detailed description of various embodiments of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described hereinbelow with reference to the drawings, wherein:



FIG. 1 is a perspective view of a seal anchor member in accordance with the principles of the present disclosure shown in a first condition positioned relative to tissue;



FIG. 2 is a bottom view of the seal anchor member of FIG. 1;



FIG. 3 is a bottom view of the seal anchor member of FIG. 1 shown in a second condition;



FIG. 3A is a bottom view of a seal anchor member having a single annular positioning member;



FIG. 4 is a perspective view of another embodiment of a seal anchor member in accordance with the principles of the present disclosure shown in a first condition;



FIG. 5 is a perspective view of the seal anchor member of FIG. 4 shown partially inserted within tissue;



FIG. 6A is a perspective view of yet another embodiment of a seal anchor member in accordance with the principles of the present disclosure shown in a first condition;



FIG. 6B is a perspective view of the seal anchor member of FIG. 6A shown in a second condition;



FIG. 7A is perspective view of the seal anchor member of FIG. 6A, shown placed within a wound within a tissue, while in the first condition;



FIG. 7B is a perspective view of the seal anchor member of FIG. 6A, shown placed within a wound within a tissue, while in the second condition;



FIG. 8 is a top perspective view of yet another embodiment of a seal anchor member in accordance with the present disclosure;



FIG. 9 is a bottom perspective view of the seal anchor member of FIG. 8;



FIG. 10 is a top view of the seal anchor member of FIG. 8;



FIG. 11 is a side view of the seal anchor member of FIG. 8;



FIG. 12 is a top, partially cut-away view of the seal anchor member of FIG. 8;



FIG. 13 is a side cross-sectional view of the seal anchor member of FIG. 8 taken along section-line 13 as shown in FIG. 12;



FIG. 14 is a perspective view of the seal anchor member of FIG. 8 shown placed within an incision in a first condition;



FIG. 15 is a side cross-sectional view, taken along section-line 15-15, of the seal anchor member of FIG. 8 as shown in FIG. 14; and



FIG. 16 is a side cross-sectional view of the seal anchor member of FIG. 8 as shown in FIG. 15 in a second condition.





DETAILED DESCRIPTION OF EMBODIMENTS

In the figures and in the description that follows, in which like reference numerals identify similar or identical elements, the term “proximal” will refer to the end of the apparatus that is closest to the clinician during use, while the term “distal” will refer to the end that is farthest from the clinician, as is traditional and known in the art.


With reference to FIGS. 1-3, a seal anchor member 100 will now be described. Seal anchor member 100 includes a body 112 defining a longitudinal axis “A” and having respective trailing (proximal) and leading (distal) portions 102, 104, and an intermediate section 106 having a continuous outer wall disposed between the trailing and leading portions 102, 104. Seal anchor member 100 includes one or more ports 108a, 108b, 108c that extend generally longitudinally between trailing and leading portions 102, 104, respectively, and through seal anchor member 100.


Associated with trailing and leading portions 102, 104 are positioning members 116 and 114a-d, respectively. Positioning members 116, 114a-d may be composed of any suitable material that is at least semi-resilient to facilitate resilient deformation of the positioning members 116, 114a-d. The positioning members 116, 114a-d may exhibit any suitable configuration and may be, for example, substantially annular-shaped or oval-shaped arrangement. As shown in FIG. 2, a diameter of the leading portion 104, when in its initial, expanded, condition, has dimension “De”.


As shown best in FIG. 2, associated with the leading portion 104 are positioning members 114a-d that are separated by surfaces 115a-d that define gaps among positioning members 114a-d. While four positioning members 114a-d are depicted in FIGS. 1-3, a greater or lesser number of positioning members, configured to define gaps therebetween, may be utilized to achieve a desired configuration of the seal anchor member 100 when compressed.


For insertion of seal anchor member 100 within a tissue tract 12, positioning members 114a-d are brought in closer proximity to one another to facilitate placement of the seal anchor member 100 within the tissue tract. The separation between the positioning members 114a-d facilitates transition of the distal portion 104 between a substantially annular profile (FIG. 2) to a substantially rectangular profile (FIG. 3). The gaps between the positioning members 114a-d help facilitate the transition of leading portion 104 to a substantially flatter profile, such that distal portion 104 has a dimension “Dc”, as shown in FIG. 3, upon application of a force “F” than may have been achievable in the absence of such gaps. In particular, if the distal portion 104 included only a single annular positioning member, compression of the distal end 104 would result in a non-uniform contour (FIG. 3A) of the seal anchor member 100, e.g., the seal anchor member 100 would be compressed more greatly, e.g., would be flatter, at the point of the application of the force and less greatly farther away from that point.


Subsequent to insertion of the seal anchor member 100 within the tissue tract, the resilient nature of the positioning members 114a-d, 116 allows the positioning members to expand to approximate the tissue tract 12 when seal anchor member 100 is inserted. Positioning members 114a-d, 116 may engage walls defining the body cavity to further facilitate securement of seal anchor member 100 within the body tissue “T”. For example, positioning members 114a-d at leading portion 104 may engage the internal peritoneal wall and positioning member 116 adjacent trailing portion 102 may engage the outer epidermal tissue adjacent the incision 12 within tissue “T”.


The use and function of seal anchor member 100 during the course of a typical minimally invasive procedure will now be discussed. Initially, an incision is made through the tissue. Such an incision is typically made with a scalpel or the like, resulting in a generally slit-shaped opening. Next, a body cavity, e.g., the peritoneal cavity, is insufflated with a suitable biocompatible gas such as, e.g., carbon dioxide, such that the cavity wall is raised and lifted away from the internal organs and tissue housed therein, providing greater access thereto. Insufflation of the body cavity may be performed with an insufflation needle or similar device, as is conventional in the art.


The seal anchor member 100 is in an expanded state at rest, as shown in FIG. 2. Insertion of the seal anchor member 100 within the tissue tract 12 is achievable by compressing the leading portion 104 of the seal anchor member 100. Positioning member 114 is adapted and configured to become substantially flat (when viewed from below) upon the application of a force “F” as seen in FIG. 3. Compression of the seal anchor member 100 facilitates insertion of the seal anchor member 100 into the tissue tract 12. Subsequent to the insertion of the seal anchor member 100, leading portion 104, positioning members 114a-d and at least a section 112 of intermediate portion 106 are disposed beneath tissue “T”. Seal anchor member 100 is caused to transition from the compressed state as shown in FIG. 3 towards the expanded state (FIG. 1) by removing force “F” therefrom. Expansion of the section 112 of the intermediate portion 106 is limited by the tissue surfaces 14 (FIG. 1) defining tissue tract 12, thereby subjecting intermediate portion 106 to an external force “F” that is directed inwardly. The internal biasing force of seal anchor member 100 is outwardly directed and is exerted upon tissue surfaces 14 upon insertion of the seal anchor member 100 within tissue tract 12, thereby facilitating a substantially fluid-tight seal between the seal anchor member 100 and tissue surfaces 14 and substantially preventing the escape of insufflation gas around seal anchor member 100 and through tissue tract 12.


In the expanded condition, the respective radial dimensions D1, D2 of the trailing and leading portions 102, 104 are substantially larger than the radial dimension R of the intermediate portion 106 thereby giving seal anchor member 100 an “hour-glass” configuration. Subsequent to insertion, the radial dimension D2 of distal portion 104 increases to provide an interference fit with the tissue tract 12. Consequently, seal anchor member 100 resists removal from tissue tract 12 when in the expanded condition and thus, seal anchor member 100 will remain anchored within the tissue “T” until it is returned to its compressed condition and is pulled out of the tissue tract 12.


Optionally, as shown in FIGS. 1-2, each of the positioning members 114a-d at the distal portion 104 of the seal anchor member 100 may include a lumen 118a, 118b, 118c, 118d, respectively. Lumens 118a-d are configured and adapted to receive a drawstring 117 therein. Seal anchor member 100 may further include a longitudinally extending lumen 119 adapted for reception of the drawstring 117. During a procedure, the surgeon may move the drawstring 117 through lumen 119 by pulling the drawstring 117 in a proximal direction thereby reducing the length of the drawstring 117 positioned within lumens 118a-d. Moving the drawstring 117 through lumen 119 forces the positioning members 114a-d to move toward one another thereby reducing the gaps defined among the positioning members 114a-d.


During a surgical procedure, the surgeon places the seal anchor member 100 relative to the tissue tract 12 of the tissue “T”, as shown in FIG. 1. As discussed above, the size of the distal portion (leading portion) 104 is reduced by proximally pulling the drawstring 117. Once the distal portion 104 is sufficiently compressed (FIG. 3), the surgeon inserts the distal portion 104 into the tissue tract 12. With the distal portion 104 compressed, the seal anchor member 100 may taper from the proximal (trailing) to the distal (lead) portions of the seal anchor member 100. Both the reduced cross-section of the distal portion 104 and the resulting taper of the seal anchor member 100 facilitate the surgeon's insertion of the seal anchor member 100 into the tissue tract 12.


The internal bias of the seal anchor member 100 will apply a force to transition the distal portion 104 back to its initial dimension “De”. Therefore, during insertion of the seal anchor member, the surgeon may continue to pull drawstring 117 proximally to maintain the compressed dimension “Dc” of the distal portion 104. The material of the seal anchor member 100, e.g., a foam, may also facilitate a timed transition back to the initial shape and dimension of the seal anchor member 100, thereby reducing the need to apply tension to the drawstring 117 during insertion. In an embodiment, a clip or another locking means may be employed to secure the drawstring 117 in a given position, thereby maintaining a given dimension of the distal portion 104 by inhibiting the translation of the drawstring 117 through the lumen 119.


Once the surgeon has placed the seal anchor member 100 within the tissue tract 12 as desired, the surgeon will permit the drawstring 117 to translate. The internal biasing force of the seal anchor member 100 will begin to transition the distal portion 104 to the expanded dimension “De”. In the expanded state, the shape and configuration of the seal anchor member 100 facilitates anchoring of the seal anchor member 100 within the tissue tract 12. Once the seal anchor member 100 is anchored within the tissue tract 12, surgical instruments are inserted through lumens 108a-c.


Upon completion of the procedure, the instruments are removed, and the drawstring 117 is once again translated proximally through lumen 119 to reduce the dimension of the distal portion 104 toward the compressed dimension “Dc”. Thereafter, the surgeon removes the seal anchor member 100 from the tissue tract 12. The reduced dimension of the distal portion 104 facilitates withdrawal of the seal anchor member 100 from within the tissue tract 12 of tissue “T”. The tissue tract 12 may then be closed through means known in the art, e.g., stapling or suturing.


In another embodiment of the present disclosure, a seal anchor member 200 will now be described with reference to FIGS. 4 and 5. As shown best in FIG. 4, the seal anchor member 200 defines a longitudinal axis “B” and having respective trailing (or proximal) and leading (or distal) portions 202, 204 and an intermediate portion 206 disposed between the trailing and leading portions 202, 204. Seal anchor member 200 includes one or more ports 208a, 208b, 208c that extend longitudinally between trailing and leading portions 202, 204, respectively, and through seal anchor member 200. Positioning members 213, 214 are respectively associated with trailing portion 202 and leading portion 204.


Positioning member 214 has a non-circular, in this case, oblong shape. In an embodiment as shown in FIG. 4, the positioning member 214 has an oblong shape. The oblong shape of the positioning member 214 facilitates insertion of the seal anchor member 200 into the tissue tract 12. Distal portion 214a of positioning member 214 is configured to guide the seal anchor member 200 into the tissue tract 12.


Placement of the seal anchor member 200 within the tissue tract 12 will now be described with reference to FIG. 5. As seen in FIG. 5, introduction of the seal anchor member 200 is achieved by placing distal portion 214a within the tissue tract and translating the seal anchor port 200 along directional arrow “D” to place leading portion 204 within tissue tract 12. Surgical instruments may be used to grasp and position the leading portion 204 of the seal anchor member 200. Alternatively, a surgeon may select to grasp and position the leading portion 204 of the seal anchor member 200 with his or her hand. Upon placement of the seal anchor member 200 within the tissue tract 12, the surgeon may place instruments within the lumens 208a-c.


Upon completion of the procedure, the seal anchor member 200 is removed from within the tissue tract 12. The seal anchor member 200 may be removed by translating the seal anchor member along a path opposite that defined by directional arrow “D”. In addition, the seal anchor member 200 may be formed from a compressible material. Where the seal anchor member 200 is formed from a compressible material, the surgeon may reduce the dimensions of the seal anchor member 200 by squeezing the seal anchor member 200. The reduction in the dimensions of the seal anchor member 200 may also facilitate the removal of the seal anchor member 200 from within the tissue tract 12. The tissue tract 12 may then be closed through means known in the art, e.g., stapling or suturing.


With reference to FIGS. 6A-6B, a seal anchor member 300 will now be described. The seal anchor member 300 includes a trailing (proximal) portion 302, a leading (distal) portion 304, and an intermediate section 306 disposed between the trailing and leading portions 302, 304. The seal anchor member 300 includes one or more longitudinally extending lumens 308a, 308b. Each of the lumens 308a-b is configured and adapted to receive a surgical instrument “I” (FIG. 7B) therethrough in a substantially sealed relationship.


The leading portion 304 includes one or more positioning segments 304a, 304b. The positioning segments 304a, 304b are operably connected to the intermediate section 306 by a living hinge 310a, 310b, respectively. While the positioning segments 304a-b are shown as being operably connected to the intermediate section 306 by a living hinge, other types of hinges may be used to facilitate the pivotal relationship between the intermediate section 306 and the positioning segments 304a-b. As shown in FIG. 6A, the seal anchor member 300 is in a first, collapsed position in which positioning segments 304a, 304b are inwardly retracted such that the leading portion 304 defines a first diameter D3. In the second, expanded position (FIG. 6B), the positioning segments 304a, 304b have been deployed radially outward as indicated by directional arrows G, H, respectively. While in the second position, the leading portion 304 defines a second diameter D4 that is greater than the first diameter D3. Transitioning of the seal anchor member 300 between the first and second positions necessitates application of a force sufficient to radially translate the positioning segments 304a, 304b.


As shown in FIG. 7A, when the seal anchor member 300 is in the first, collapsed position, placement of the seal anchor member 300 within opening “O” of the tissue “T” is facilitated by having a comparatively smaller diameter. In addition, the comparatively smaller diameter may reduce the overall size of the opening “O” necessary to place the seal anchor member 300 within the opening “O”. As shown in FIG. 7B, insertion of surgical instruments “I” through the lumen 308a, 308b effects deployment of a corresponding positioning segment 304a, 304b. In particular, insertion of surgical instrument “I” through lumen 308a effects a radial translation of positioning segment 304a in the direction indicated by arrow G. Similarly, insertion of surgical instrument “I” through lumen 308b effects a radial translation of positioning segment 304b in the direction indicated by directional arrow H.


With the positioning segments 304a, 304b deployed, the seal anchor member 300 is anchored within the opening “O” of the tissue “T”. In particular, while the positioning segments 304a, 304b are in the deployed condition, the interaction of the positioning segments 304a, 304b with the tissue “T” inhibits the removal of the seal anchor member 300 from the opening “O”. In particular, when the leading portion 304 is in the second position, the diameter D4 is greater than the opening of opening “O”, thereby inhibiting removal of the seal anchor member 300.


With the positioning segments 304a, 304b retracted, the seal anchor member 300 is inserted into the opening “O”. Thereafter, the instruments “I” are inserted into lumens 308a, 308b. The insertion of the instruments “I” into lumens 308a, 308b effects a corresponding deployment of the positioning segments 304a, 304b in the direction indicated by arrows G, H, respectively. Upon completion of the surgical procedure, the seal anchor member 300 is removed from the opening “O” as will now be described. Each of the instruments “I” is removed from the lumen 308a, 308b into which it was placed. The removal of the instruments “I” effects retraction of the positioning segments 304a, 304b since the positioning segments 304a, 304b are biased inwardly. The retraction of the positioning segments 304a, 304b facilitates removal of the seal anchor member 300 by reducing the dimension of the leading portion 304 of the seal anchor member 300, i.e., distal portion 304 has a diameter D3 that is less than the opening of the opening “O”. Thereafter, the surgeon proximally translates the seal anchor member out of the opening “O”. The opening “O” may then be closed through means known in the art, e.g., stapling or suturing.


With reference to FIGS. 8-16, a seal anchor member 400 will now be described. The seal anchor member 400 includes a trailing or a proximal portion 416, a leading or distal portion 414, and an intermediate section 406 disposed therebetween. The seal anchor member 400 includes one or more longitudinally extending lumens 408-d. Each lumen 408a-d is configured and adapted to receive a surgical instrument “I” (FIGS. 14-16) therethrough in a substantially sealed relationship. As shown best in FIG. 9, the leading portion 414 includes four positioning segments 404a-d. Although the leading portion 414 is illustrated and described herein as including four positioning segments 404a-d, the leading portion 414 may include a fewer or greater number of positioning segments, e.g., three positioning segments. Each positioning segment 404a-d is operably connected to the intermediate section 406 by a living hinge 410a-d, respectively. Although the positioning segments 404a-d are shown as being operably connected to the intermediate section 406 by a living hinge 410a-d, other types of hinges may be used to facilitate the pivotal relationship between the intermediate section 406 and the positioning segments 404a-d.


The positioning segments 404a-d are biased inwardly such that in the absence of a force acting upon them, the positioning segments 404a-d are retracted. While the positioning segments 404a-d are in the retracted position, the leading portion 414 is in a first position and defines a first dimension “Q” to facilitate insertion of the seal anchor member 400 into an opening “O” within a tissue “T” (FIG. 15). Insertion of instrumentation “I” into the lumens 408a-d, effects deployment of respective positioning members adjacent the lumens 408a-d through which the instrumentation “I” is inserted (FIG. 16). While the positioning segments 404a-d are in the deployed position, the leading portion 414 is in a second position and defines a dimension “R”, which facilitates anchoring of the seal anchor member 400 within the opening “O”. In particular, when the leading portion 414 is in the first position (FIG. 15), the dimension “Q” is less than the opening of opening “O”, thereby facilitating insertion of the seal anchor member 400 into the opening “O”. When the leading portion 414 is in the second position (FIG. 16), the dimension “R” is greater than the opening of opening “O”, thereby inhibiting removal of surgical seal anchor 400.


The use and operation of seal anchor member 400 will now be described with reference to FIGS. 14-16. As shown in FIG. 14, when the seal anchor member 400 is in a first, collapsed position, i.e., with positioning segments 404a-d retracted, the seal anchor member is placed within opening “O” within tissue “T”. As discussed above, the positioning segments 404a-d are biased inwardly towards the refracted state such that the leading portion defines a dimension “Q” to facilitate insertion of the seal anchor member 400 into the opening “O” within tissue “T”. Surgical instrumentation “I” may be partially inserted within the lumens 408a-d during the placement of the seal anchor member 400 within the opening “O” or may be inserted into the lumens 408a-d subsequent to placement of the seal anchor member 400 within the opening “O”.


The distal translation of the instrumentation “I” within the lumens 408a-d will effect deployment of the positioning segments 404a-d as the instrumentation “I” comes into contact with the positioning segments 404a-d. Insertion of instrumentation “I” through a lumen 408a-d effects the deployment of a corresponding positioning member 404a-d, i.e., a positioning member 404a-d that is along the path through which the instrument “I” is translated. As shown in FIG. 16, the distal translation of the instrumentation “I” through lumens 408b, 408d, effects the radial, outward deflection of corresponding positioning segments 404b, 404d. Anchoring of the seal anchor member 400 within the opening “O” is achieved through the insertion of instruments “I” into each lumen 408a-d. However, in some situations, some of the lumens 408a-d may not have an instrument inserted therethrough. In those situations, stabilization of the seal anchor member 400 may be enhanced by inserting the instruments “I” a symmetrical pattern, i.e., pairs of instruments “I” may be inserted within lumens 408a-d that are across from one another.


Subsequent to completion of the procedure, removal of the seal anchor member 400 is facilitated by removing the instruments “I” from each lumen 408a-d. Since the positioning members 404a-d are biased toward the initial, retracted state, the leading portion 414 will transition toward smaller dimension “Q” from the greater dimension “R”. This reduction in the dimension of the leading portion 414 facilitates removal of the seal anchor member 400 from within incision “I” formed within tissue “T”.


Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, the above description, disclosure, and figures should not be construed as limiting, but merely as exemplifications of particular embodiments. It is to be understood, therefore, that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the disclosure.

Claims
  • 1. A surgical apparatus for positioning within a tissue tract accessing an underlying body cavity comprising: a seal anchor member having leading and trailing portions;an intermediate portion having a continuous outer wall disposed between the leading and trailing portions;a first positioning member associated with the trailing portion; anda second positioning member associated with the leading portion, the second positioning member having four spaced-apart positioning members that are separated by outer wall surfaces of the intermediate portion, thereby defining gaps among the positioning members, the four spaced-apart positioning members collectively defining a first lumen configured to receive a drawstring therein, the seal anchor member being transitionable between a compressed state and an expanded state, wherein the seal anchor member is in sealing relation with the tissue tract when positioned within the tissue tract.
  • 2. The surgical apparatus of claim 1, further comprising at least one port extending between the trailing and leading portions.
  • 3. The surgical apparatus of claim 1, wherein the first and second positioning members are composed of a semi-resilient material to facilitate resilient deformation of the first and second positioning members.
  • 4. The surgical apparatus of claim 1, wherein the four spaced-apart positioning members are separated by four gaps to facilitate a transition of the leading portion from an annular profile to a rectangular profile.
  • 5. The surgical apparatus of claim 1, wherein the seal anchor member includes a second lumen that extends along a longitudinal axis defined through the seal anchor member, the second lumen configured to receive the drawstring therein.
  • 6. The surgical apparatus of claim 5, wherein the second lumen is oriented perpendicular to the first lumen and is in communication with the first lumen such that pulling the drawstring proximally compresses the leading portion.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 12/939,204 filed by Fowler et al. on Nov. 4, 2010, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/263,927 filed Nov. 24, 2009, the entire contents of which are hereby incorporated by reference herein.

US Referenced Citations (257)
Number Name Date Kind
4016884 Kwan-Gett Apr 1977 A
4112932 Chiulli Sep 1978 A
4183357 Bentley et al. Jan 1980 A
4402683 Kopman Sep 1983 A
4653476 Bonnet Mar 1987 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
5073169 Raiken Dec 1991 A
5082005 Kaldany Jan 1992 A
5159921 Hoover Nov 1992 A
5176697 Hasson et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5242409 Buelna Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5269772 Wilk Dec 1993 A
5312391 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5334143 Carroll Aug 1994 A
5345927 Bonutti Sep 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5391156 Hildwein et al. Feb 1995 A
5395367 Wilk Mar 1995 A
5437683 Neumann et al. Aug 1995 A
5460170 Hammerslag Oct 1995 A
5480410 Cuschieri et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5507758 Thomason et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5522791 Leyva Jun 1996 A
5524644 Crook Jun 1996 A
5540648 Yoon Jul 1996 A
5545179 Williamson, IV Aug 1996 A
5601581 Fogarty et al. Feb 1997 A
5634911 Hermann et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5683378 Christy Nov 1997 A
5685857 Negus et al. Nov 1997 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander, Jr. et al. Apr 1998 A
5741298 MacLeod Apr 1998 A
5782817 Franzel et al. Jul 1998 A
5795290 Bridges Aug 1998 A
5803921 Bonadio Sep 1998 A
5810712 Dunn Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5830191 Hildwein et al. Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5899208 Bonadino May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5916198 Dillow Jun 1999 A
5941898 Moenning et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6042573 Lucey Mar 2000 A
6048309 Flom et al. Apr 2000 A
6059816 Moenning May 2000 A
6068639 Fogarty et al. May 2000 A
6077288 Shimomura et al. Jun 2000 A
6086603 Termin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6142936 Beane et al. Nov 2000 A
6171282 Ragsdale Jan 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6228063 Aboul-Hosn May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6254534 Butler et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6527787 Fogarty et al. Mar 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6578577 Bonadio et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternstrom Jan 2004 B1
6706050 Giannadakis Mar 2004 B1
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6800084 Davison et al. Oct 2004 B2
6814078 Crook Nov 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadino et al. Jan 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6890295 Michels et al. May 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7104981 Elkins et al. Sep 2006 B2
7153261 Wenchell Dec 2006 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7276075 Callas et al. Oct 2007 B1
7294103 Bertolero et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7344547 Piskun Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390322 McGuckin, Jr. et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7445597 Butler et al. Nov 2008 B2
7452363 Ortiz Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717847 Smith May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7798898 Luciano, Jr. et al. Sep 2010 B2
20010037053 Bonadio et al. Nov 2001 A1
20020038077 de la Torre et al. Mar 2002 A1
20020055714 Rothschild May 2002 A1
20020183594 Beane et al. Dec 2002 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030135091 Nakazawa et al. Jul 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040049099 Ewers et al. Mar 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040092796 Butler et al. May 2004 A1
20040111061 Curran Jun 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040167543 Mazzocchi et al. Aug 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050043592 Boyd et al. Feb 2005 A1
20050070935 Ortiz Mar 2005 A1
20050096695 Olich May 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050159651 Raymond et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050241647 Nguyen et al. Nov 2005 A1
20050288558 Ewers et al. Dec 2005 A1
20060020241 Piskun et al. Jan 2006 A1
20060049317 Reutenauer et al. Mar 2006 A1
20060084842 Hart et al. Apr 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060229501 Jensen et al. Oct 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh, II et al. Nov 2006 A1
20060258899 Gill et al. Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070149859 Albrecht et al. Jun 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070156023 Frasier et al. Jul 2007 A1
20070185387 Albrecht et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20080009826 Miller et al. Jan 2008 A1
20080027476 Piskun Jan 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090137879 Ewers et al. May 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20090326461 Gresham Dec 2009 A1
20100249523 Spiegal et al. Sep 2010 A1
Foreign Referenced Citations (20)
Number Date Country
0807416 Nov 1997 EP
0950376 Oct 1999 EP
1312318 Dec 2005 EP
1774918 Apr 2007 EP
2044889 Apr 2009 EP
2044897 Apr 2009 EP
WO 9314801 Aug 1993 WO
WO 9404067 Mar 1994 WO
WO 9636283 Nov 1996 WO
WO 9733520 Sep 1997 WO
WO 9742889 Nov 1997 WO
WO 9916368 Apr 1999 WO
WO 0032120 Jun 2000 WO
WO 0149363 Jul 2001 WO
WO 0207611 Jan 2002 WO
WO 2006100658 Sep 2006 WO
WO 2008015566 Feb 2008 WO
WO 2008042005 Apr 2008 WO
WO 2008093313 Aug 2008 WO
WO 2008121294 Oct 2008 WO
Non-Patent Literature Citations (1)
Entry
European Search Report for corresponding to EP 10251983, dated Feb. 15, 2011 (3 pages).
Related Publications (1)
Number Date Country
20130274559 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
61263927 Nov 2009 US
Divisions (1)
Number Date Country
Parent 12939204 Nov 2010 US
Child 13913552 US