This invention lies in the field of burners and particularly to burners having bodies made of porous, air/fuel permeable foam metal material as well as to heating devices using multiples of said burners.
Burners of various configurations and materials are used in many different applications from residential heating to the heating of food preparation devices such as deep fryers. The typical burner is made of non-porous ceramic or metal having separate fuel and air inlets both communicating with an outlet where the fuel/air mixture passing through the burner body is ignited. An example is shown in U.S. Pat. No. 6,364,657 issued Apr. 2, 2002.
The present invention provides a burner made of a porous, air/fuel permeable, open-cell, foam metal material that allows an air/fuel premix to pass through the burner wall into the interior of the burner body. The body has a shape that facilitates mounting within a plenum chamber into which the air/fuel mixture is introduced.
In particular, the burner so constructed includes a hollow body, preferably of cylindrical configuration mounted inside of the plenum chamber such that a premixed, pressurized air/fuel mixture is infused into the interior of the burner body. The fuel/air mix then passes out of the burner body through an aperture at one end which is aligned with an aperture in a chamber wall where it can be ignited to produce a flame having little or no tendency to lift off of the surrounding structure.
In accordance with the invention the burner body is configured to have a closed end, and an integral annular flange adjacent the open end, which flange is used to fasten the burner body to the interior of the plenum chamber structure and, in particular, over an aperture in the plenum structure so that the fuel/air mixture infused into the porous body and through the open end passes through the aperture in the plenum structure where it is ignited. Screws are used to fasten the burner flange to the plenum wall and the flange is preferably reinforced in the areas of the screw holes to prevent damage to the foam metal when the screws are tightened.
The reinforcement can be an annular solid metal washer that overlies the foam metal flange. The metal washer is structured to have an interior diameter which is slightly greater than the outside diameter of the cylindrical foam metal body of the burner so as to create a gap which avoids reducing the surface area of the burner body and thereby prevents lowering the port velocity of the fuel/air mixture exiting the burner body. This reduces the possibility of flame lift off at the outlet.
Another aspect of the invention is a heater assembly comprising the combination of a plenum chamber structure such as a plate having plurality of apertures arranged serially or otherwise, and a plurality of burner bodies as described above mounted in the interior of the plenum chamber and over respective apertures. An air/fuel premix is introduced into the plenum chamber under pressure by conventional means such as a fuel/air mixing device including a pump. The fuel/air mixture then infuses into the hollow interiors of the porous foam metal burner bodies by pressing through the walls and then travels along the interior of the burner bodies to the natural exits created by the open ends and then through the apertures in the plenum chamber structure to the exterior where ignition takes place.
In the event the burners are arranged linearly, tubular channels can be arranged between outer and inner burner flame front locations so only the outside burners require igniters. By way of example, in the case of four burners arranged linearly spaced relation, igniters are associated only with the outside burners, and the tubular channels are used to convey the flame fronts from outside ports to inside ports thereby to transfer the ignition of the fuel/air mixture from an outside burner port to an inside burner port.
The inventions described herein will be best understood by a reading of the following specification which is to be taken with the accompanying drawings of which:
Referring now to
An annular solid metal mounting washer 18 is dimensioned to fit over the thimble shaped cylindrical body 12 and lay flat against the top surface of the foam metal flange 16. The metal mounting flange 18 has holes 19 that register with the holes 17 in the foam metal mounting flange that is integral with the body 12 thereby to allow conventional metal fasteners to be inserted through the aligned holes and screwed into a support structure such as the bottom plate of a plenum structure hereinafter described. The annular washer represents just one way to reinforce the screw areas of the flange 16; e.g., smaller individual washers around the screw holes 19 can also be used.
As shown in the figures the interior diameter of the inner surface 20 of the metal mounting washer 18 is slightly greater than the outside diameter of the foam metal body 12 so as to create a radial gap between the inside edge of the metal washer 18 and the outside cylindrical surface of the foam metal body 12. This maximizes the exposed surface of the foam metal body and increases the area through which a fuel/air mixture under pressure can find ingress from the outside of the burner 10 to the interior thereof in use. Four equally circumferentially spaced tabs 22 on the interior edge 20 of the metal flange 18 are provided as shown in
In the embodiment shown the external diameter of the body 12 is 0.787 inches plus or minus 0.015 inches while the radial dimension of the spacer tabs 22 is approximately 0.008 inches thereby to create the aforementioned gap. The overall axial length of the burner body 12 including the base flange 16 is 1.640 inches and the axial depth of the combination of the two flanges is approximately 0.140 inches. All dimensions given herein are exemplary in nature and are not to be construed in a limiting sense unless otherwise stated herein.
The material of the washer 18 is 304 stainless steel whereas the foam body is made of N30 foam metal. The thimble shaped burner is typically, but not necessarily, made in three parts: the body 12, the end cap 14 and the flange 16 and they are integrally joined by means of high temperature sintering.
Referring now to
As shown in
The arrangement shown in