FOAM PUMP DISPENSER HAVING LEAKAGE PREVENTION FUNCTION AGAINST REVERSE FLOW

Information

  • Patent Application
  • 20090008412
  • Publication Number
    20090008412
  • Date Filed
    September 10, 2007
    17 years ago
  • Date Published
    January 08, 2009
    16 years ago
Abstract
A foam pump dispenser that has a prevention function against any reverse flow is disclosed, which comprises an air guide which is engaged at a lower side of the air and liquid mixing chamber of the piston cover member; a liquid leakage prevention spring which is located between the piston cover member and the piston member; and a liquid leakage prevention valve which is covered on the upper side of the liquid compression piston. The foam pump dispenser with the above construction is able to prevent a leakage of liquid, and is able to obtain a reliable fixed supply of air in a pump dispenser designed to properly mix liquid such as foaming cleanser, foam hand soap, shave foam, and hair mousse, etc. with air and to pump out in a foam shape.
Description
TECHNICAL FIELD

The present invention relates to a foam pump dispenser having a prevention function against a reverse flow which is able to prevent a leakage of liquid, and is able to obtain a reliable fixed amount supply of air in a pump dispenser designed to properly mix liquid such as foaming cleanser, foam hand soap, shaving foam, and hair mousse, etc. with air and to pump out in a foam shape.


BACKGROUND ART

Among various foam discharge pump dispensers, there is already a foam dispensing pump container which has the U.S. Pat. No. 5443569. The above foam discharge container has (1) a structure that a liquid within an air and liquid mixing chamber can move into an air chamber, and (2) the air valve for controlling an input and output of air is made of a very thin plastic injection resin, so that it may be transformed when a certain impact or a pressure is applied as an external force is applied in the course of an assembling work. (3) Noise (plosive sound) occurs as the air valve comes in contact with the air in the course of pumping. (4) Since a return spring is provided in the liquid cylinder, it is contact with liquid, so that the property of liquid may change due to the corrosion of the metallic spring.


The problems encountered in the above conventional art will be described in more detail. Liquid sucked into the interior of a liquid piston is inputted into an air and liquid mixing chamber. When it is discharged in a mixed state with air, a reverse flow into an air chamber by means of the pressure of air inputted from the air chamber is prevented. However, when a nozzle head moves up or stops, a small amount of liquid filled in the interior of the air and liquid mixing chamber often flow in a reverse direction into the air chamber via along an air inlet passage. As the above reverse flow phenomenon frequently occurs, a relatively lot of liquid is gathered in the air chamber, so that the volume of the air chamber reduces. The air charging amount may decreases due to the reduced volume in the air chamber, so that a mixing ratio of air and liquid supplied into the air and liquid mixing chamber becomes unreliable. Therefore, it is impossible to obtain uniform foams. In worse case, the liquid may be directly discharged without foam. When the liquid exists in the air chamber for a long period of time, the sealing function of the air piston decreases due to a solidification phenomenon to occur within the chamber. In further worse case, the air piston may not properly work.


DISCLOSURE OF THE INVENTION

Accordingly, it is the object of the present invention to provide a foam pump dispenser that has a prevention function against any reverse flow when the nozzle head is pressed so as to discharge foams, a piston cover, which is engaged at a lower side of a nozzle head, moves down step by step, and an external air input is disconnected, and only the air that is in the air chamber is inputted into an air and liquid mixing chamber. When the nozzle head moves up or stops, the air input path keeps closed all the time, so that it is possible to basically prevent the liquid in the air and liquid mixing chamber from flowing in a reverse direction into the air chamber while overcoming the problems encountered in the previous conventional art. In addition, a ball valve support, which operates depending on a move up and down operation of a valve shaft, is provided at the lower end of a valve shaft, so that an opening and closing operation of the ball valve is performed smoothly.


To achieve the above object, there is provided a foam pump dispenser that has a prevention function against any reverse flow which comprises an air guide which is engaged at a lower side of the air and liquid mixing chamber of the piston cover member; a liquid leakage prevention spring which is located between the piston cover member and the piston member; and a liquid leakage prevention valve which is covered on the upper side of the liquid compression piston.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become better understood with reference to the accompanying drawings which are given only by way of illustration and thus are not limitative of the present invention, wherein;



FIG. 1 is a cross sectional view illustrating a state that a nozzle head of a pump dispenser is fully moved up according to the present invention;



FIG. 2 is a cross sectional view illustrating a state that a nozzle head of a pump dispenser is moved down by one step according to the present invention;



FIG. 3 is a cross sectional view illustrating a state that foams are generated as a nozzle head of a pump dispenser is moved down by one step and then is continuously moved down according to the present invention;



FIG. 4 is a cross sectional view illustrating a state that a nozzle head of a pump dispenser is fully moved down according to the present invention;



FIGS. 5A through 5D are enlarged cross sectional views illustrating the operation states of a pump dispenser, namely, the operation states of a valve part and an air guide when the nozzle head is fully moved up according to the present invention, of which:



FIG. 5A is a view illustrating a state that a valve shaft is closed;



FIG. 5B is a view illustrating a state that an external air is being inputted into an air chamber as an air guide opens;



FIG. 5C is a view illustrating a state that a liquid leakage prevention valve is closed; and



FIG. 5D is a view illustrating a state that a ball valve is closed; and



FIGS. 6A through 6D are partially enlarged cross sectional views illustrating the operation state of a pump dispenser, namely, the operation states of a valve part and an air guide when a nozzle head is moved down according to the present invention, of which:



FIG. 6A is a view illustrating a state that a valve shaft is opened;



FIG. 6B is a view illustrating a state that an input of an external air into an air chamber is disconnected as an air guide is closed;



FIG. 6C is a view illustrating a state that a liquid leakage prevention valve is opened; and



FIG. 6D is a view illustrating a state that a ball valve presses a ball valve support; and



FIGS. 7A through 7F are enlarged cross sectional views illustrating the operation states of a ball valve support which is an important element of a pump dispenser according to the present invention, of which:



FIG. 7A is a view illustrating a state that a ball valve support is moved up;



FIG. 7B is a view illustrating a state that a lower end of a ball valve support slightly presses a ball valve based on a first move down of a valve shaft;



FIG. 7C is a view illustrating a state that a valve shaft keeps moving down;



FIG. 7D is a view illustrating a state that a valve shaft is fully moved down, and then a ball valve support keeps pressing a ball valve;



FIG. 7E is a view illustrating a state that a valve shaft moves up; and



FIG. 7F is a cross sectional view illustrating a state that a valve shaft is fully moved up; and



FIG. 8 is a disassembled perspective view illustrating an air guide and a liquid leakage prevention valve which are important elements of a pump dispenser according to the present invention;



FIG. 9 is a perspective view illustrating an assembled state of a ball valve support and a valve shaft which are important elements of a pump dispenser according to the present invention; and



FIG. 10 is a cross sectional view taken along line A-A of FIG. 9.





MODES FOR CARRYING OUT THE INVENTION

The preferred embodiment of the present invention will be described with reference to the accompanying drawings.


A foam discharge pump dispenser generally comprises includes a liquid storing container 10 in which a cap 20 is covered on an upper side of the same, a nozzle head 30 which is assembled to move up and down on an upper side of the cap 20 and has a foam discharge hole 31, a foam filtering mesh 40 which is engaged in the interior of the nozzle head 30, a piston cover member 50 which is fixed at a lower side of the nozzle head 30 and has an air and liquid mixing chamber 51 at an upper side of the same and an air inlet groove 52 formed at a lower surface of the same, an air chamber 60 which is engaged in the interior of the liquid storing container 10 and has a liquid cylinder 63 having an air inlet hole 61 formed at a side surface having a liquid inlet port 62 at a lower side, a piston member 70 which is engaged in the interior of the air chamber 60 and integrally includes an air compression piston 71 at an outer ring, an air opening and closing step 72 and an air passing hole 73 at an inner side, a liquid flow path 74 at a center portion, a liquid opening and closing surface 75 at an upper inner surface, and a liquid compression piston 76 at a lower side of the same, a valve shaft 80 which is engaged in the interior of the liquid flow path 74 and has a ball valve support escape prevention enlargement part 82 formed of a liquid opening and closing enlargement part 81 at an upper end and a ball valve support engaging shoulder 83 at a lower end, a ball valve support 90 disposed at a lower end of the valve shaft 80, a ball valve v disposed between the ball valve support 90 and the liquid inlet port 62, and a return spring s disposed between the piston member 70 and the air chamber 60.


In the present invention, an inventive foam discharge pump dispenser comprises an air guide 100 which is engaged at a lower side of the air and liquid mixing chamber 51 of the piston cover member 50; a liquid leakage prevention spring 200 which is disposed between the piston cover member 50 and the piston member 70; and a liquid leakage prevention valve 300 which is covered on the upper side of the liquid compression piston 76.


The air guide 100 comprises an air passage 110 having a step 120 at an inner upper surface. A friction surface 84 is provided at a wall of the ball valve escape prevention enlargement part 82 of the valve shaft 80.


The ball valve support 90 comprises a valve shaft escape prevention shoulder 91 provided at an upper inner surface for engaging the ball valve support engaging shoulder 83 of the valve shaft 80, a plurality of vertical friction ribs 92 provided on an inner surface of the ball valve support 90, and a plurality of liquid discharge ports 93 which are provided a lower wall.


The liquid leakage prevention valve 300 comprises a liquid outlet hole 310 at a center and a liquid leakage prevention rib 320 at a lower outer wall. The return spring s is disposed at a lower side of the air compression piston 71 in the air chamber for avoiding a contact with the liquid.


The operation and effects of the present invention will be described.



FIG. 1 is a cross sectional view illustrating a state that a nozzle head of a pump dispenser is fully moved up according to the present invention. As shown therein, in the above state, the air compression piston 71 in the air chamber 60 is fully moved up, and the air compression piston 71 closes the air inlet hole 61 in the liquid storing container 10 formed at the air chamber 60. When the air compression piston 71 moves up, the air is inputted from the outside of the pump into the air chamber 60 via the air passing hole 73 formed at the air compression piston 71. At this time, the liquid leakage prevention rib 320 of the liquid leakage prevention valve 300 closes the air passage 110 formed at an upper inner wall of the air guide 100, and a certain gap is formed by means of an elastic force of the liquid leakage prevention spring 200 disposed between the piston cover member 50 and the piston member 70. The ball valve v of the lower side of the liquid cylinder 63 closes the liquid inlet port 62 of the lower side of the liquid cylinder 63 by its own gravity.


As shown in FIG. 2, so as to discharge the foam, the nozzle head 30 is pressed, and the piston cover member 50 moves down and pressurizes the liquid leakage prevention spring 200, so that the first stage operation is performed as shown in FIG. 2. When the piston cover member 50 moves down, the valve shaft 80 moves down along with the same. The ball valve support 90 moves down by a friction force between the friction surface 84 provided at the ball valve support escape prevention enlargement part 82 formed at a lower side of the valve shaft 80 and the vertical friction rib 92 formed at an inner surface of the ball valve support 90, and a lower end of the vertical friction rib 92 presses the ball valve v, so that the ball valve v stably closes the liquid inlet port 62. In the first move down operation, only the piston cover member 50 moves down in a state that the liquid leakage prevention spring 200 is contracted as the piston member 70 does not move down by means of a friction pressure between the air compression piston 71 of the piston member 70 and an inner surface of the air chamber 60. The air inlet groove 52 formed at a lower surface of the piston cover member 50 closely contacts with the air opening and closing shoulder 72 formed at a plane portion of the piston member 70 for thereby preventing the air of the air chamber 60 from being discharged to the outside of the pump. At this time, the air guide 100 provided at the inner surface of the piston cover member 50 moves down along with the piston cover member 50, so that a certain gap is formed between the liquid leakage prevention rib 320 of the liquid leakage prevention valve 300 covered on the upper surface of the liquid compression piston 76 and the step 120 of the lower side of the air passage 110 of the air guide. When the nozzle head 30 is continuously moved down, the piston cover member 50 also moves down, and the air of the air chamber 60 is inputted into the air passing hole 73 by means of the pressure of the air compression piston 71, and the air is inputted into the air and liquid mixing chamber 51 via the air passage 110. A certain gap is formed between the liquid opening and closing surface 75 provided at an upper inner surface of the liquid compression piston 71 and the liquid opening and closing enlargement part 81 of the liquid valve shaft 80, so that the liquid of the liquid cylinder 63 is inputted into the air and liquid mixing chamber 51 via the liquid discharge hole 310 of the liquid leakage prevention valve 300 and is mixed with the air.


As the nozzle head 30 keeps moving down, the air and liquid are inputted into the air and liquid mixing chamber 51 and are mixed therein and change to foam states and pass through the foam filtering mesh 40 and are discharged via the foam discharge hole 31 of the nozzle head 30 as shown in FIG. 3. When the valve shaft 80 moves down, the liquid in the interior of the ball valve support 90 are fast discharged into the liquid cylinder via the liquid outlet port 93 formed at a wall of the ball valve support 90.


As shown in FIG. 4, the nozzle head 30 is fully moved down. As the lower end of the vertical friction rib 92 of the ball valve support 90 presses the ball valve v, which blocks the input of the liquid into the liquid storing container 10 by the pressure of the liquid compression piston 76 and its own gravity of the ball valve, it is possible to fully prevent the input of liquid. The lower end of the vertical friction rib 92, which is provided at multiple portions at regular intervals, respectively, presses the ball valve v, so that it is possible to stably press the ball valve v based on a pressure distribution by a plurality of vertical friction ribs 92, and the gaps formed between the vertical friction ribs 92 allow the liquid near the ball valve v not to gather. Namely, the liquid is discharged.


The liquid leakage prevention structure according to the present invention is implemented with the help of the air guide 100, the liquid leakage prevention valve 300 covered on the upper side of the liquid compression piston 76 and the liquid leakage prevention spring 200. In a state that the nozzle head 30 is fully moved up, an elastic force of the liquid leakage prevention spring 200 allows the piston cover member 50 to move up, so that the step 120 formed at the upper inner wall of the air guide 100 closely contacts with the liquid leakage prevention rib 320 of the liquid leakage prevention valve 300, whereby it is possible to prevent the liquid of the air and liquid mixing chamber 51 to flow into the interior of the air chamber 60 in a reverse direction.


In addition, in the present invention, since the return spring s, which allows the nozzle head 30 to move up, is engaged at the lower side of the air compression piston 71 in the interior of the air chamber 60, it is possible to avoid a contact with the liquid, so that the liquid can not change owing to the corrosion of the return spring s.


In the present invention, the liquid leakage prevention valve 300 is preferably made of an elastic rubber material for effectively preventing the liquid from flowing in a reverse direction and leaking, so that it is possible to further enhance a liquid leakage prevention function.


As described above, the present invention comprises an air guide engaged in the interior of the piston cover member, a liquid leakage prevention valve which is covered on an upper end of the liquid compression piston, and a liquid leakage prevention spring between the piston cover member and the piston member, and the ball valve support is provided at a lower side of the valve shaft. When the nozzle head is pressed so as to discharge the foam, the nozzle head moves down one step, so that an external air is prevented from being inputted into the air chamber, and only the air in the air chamber is inputted into the air and liquid mixing chamber. So, in a state that a foam discharge is completed, and the nozzle head is fully moved up, since the liquid of the air and liquid mixing chamber is not inputted into the air chamber, the air volume of the interior of the air chamber keeps a fixed volume, so that the amount of air mixed with the liquid is constant, and the foam is uniform. The air compression piston in the air chamber operates smoothly, and the opening and closing operations of the ball valve is smooth by means of the ball valve support.


As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described examples are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the meets and bounds of the claims, or equivalences of such meets and bounds are therefore intended to be embraced by the appended claims.

Claims
  • 1. In a foam discharge pump dispenser which includes a liquid storing container 10 in which a cap 20 is covered on an upper side of the same, a nozzle head 30 which is assembled to move up and down on an upper side of the cap 20 and has a foam discharge hole 31, a foam filtering mesh 40 which is engaged in the interior of the nozzle head 30, a piston cover member 50 which is fixed at a lower side of the nozzle head 30 and has an air and liquid mixing chamber 51 at an upper side of the same and an air inlet groove 52 formed at a lower surface of the same, an air chamber 60 which is engaged in the interior of the liquid storing container 10 and has a liquid cylinder 63 having an air inlet hole 61 formed at a side surface and a liquid inlet port 62 at a lower side, a piston member 70 which is engaged in the interior of the air chamber 60 and integrally includes an air compression piston 71 at an outer side, an air opening and closing step 72 and an air passing hole 73 at an inner side, a liquid flow path 74 at a center portion, a liquid opening and closing surface 75 at an upper inner surface, and a liquid compression piston 76 at a lower side of the same, a valve shaft 80 which is engaged in the interior of the liquid flow path 74 and has a ball valve support escape prevention enlargement part 82 formed of a liquid opening and closing enlargement part 81 at an upper end and a ball valve support engaging shoulder 83 at a lower end, a ball valve support 90 disposed at a lower end of the valve shaft 80, a ball valve v disposed between the ball valve support 90 and the liquid inlet port 62, and a return spring s disposed between the piston member 70 and the air chamber 60, a foam pump dispenser having a prevention function against a reverse flow, comprising: an air guide 100 which is engaged at a lower side of the air and liquid mixing chamber 51 of the piston cover member 50;a liquid leakage prevention spring 200 which is disposed between the piston cover member 50 and the piston member 70; anda liquid leakage prevention valve 300 which is covered on the upper side of the liquid compression piston 76.
  • 2. The dispenser of claim 1, wherein said air guide 100 comprises an air passage 110 having a step 120 at an inner upper surface.
  • 3. The dispenser of claim 1, wherein said liquid leakage prevention valve 300 comprises a liquid outlet hole 310 at a center and a liquid leakage prevention rib 320 at a lower outer wall.
  • 4. The dispenser of claim 1, wherein as the air opening and closing shoulder 72 of the air compression piston 71 and the air inlet groove 52 formed at a lower surface of the piston member 70 are repeatedly closed and opened, an external air input and blocking are effectively performed.
  • 5. The dispenser of claim 1, wherein a friction surface 84 is formed at a wall of the ball valve support escape prevention enlargement part 82.
  • 6. The dispenser of claim 1, wherein said ball valve support 90 comprises a valve shaft escape prevention shoulder 91 provided at an upper inner surface for engaging the ball valve support engaging shoulder 83 of the valve shaft 80, a plurality of vertical friction ribs 92 provided on an inner surface of the ball valve support 90, and a plurality of liquid discharge ports 93 which are provided a lower wall.
  • 7. The dispenser of claim 1, wherein a return spring s is disposed at a lower side of the air compression piston 71 in the air chamber for avoiding a contact with the liquid.
Priority Claims (1)
Number Date Country Kind
10-2007-0034965 Jul 2007 KR national