The present invention relates to a respiratory mask used for treatment, e.g., of Sleep Disordered Breathing (SDB) with Continuous Positive Airway Pressure (CPAP) or Non-Invasive Positive Pressure Ventilation (NIPPY). In particular, the present invention relates to a respiratory mask with a foam contacting portion. Also, the present invention relates to a respiratory mask that is comfortable, easy to use and requires little maintenance.
Typically, respiratory therapy is delivered in the form of a respiratory mask or mask system positioned between a patient and apparatus providing a supply of pressurized air or breathing gas. Mask systems in the field of the invention differ from mask systems used in other applications such as aviation and safety in particular because of their emphasis on comfort. This high level of comfort is desired because patients must sleep wearing the masks for hours, possibly every night for the rest of their lives. In addition, therapy compliance can be improved if the patient's bed partner is not adversely affected by the patient's therapy and wearing of the mask generally.
Mask systems typically have a highly clinical aesthetic (as will be described below). This may lead to patients becoming embarrassed about their therapy since the clinical aesthetic serves as a blatant reminder that they are ill and consequently can leave a negative perception of the patient in the mind of an observer.
Mask systems typically, although not always, comprise (i) a rigid or semi-rigid portion often referred to as a shell or frame, (ii) a soft, patient contacting portion often referred to as a cushion, and (iii) some form of headgear to hold the frame and cushion in position. If the mask system does include multiple components, at least some assembly and adjustment may be required, which can be difficult for patients who may suffer from lack of dexterity, etc. Further, mask systems often include a mechanism for connecting an air delivery conduit. The air delivery conduit may preferably be connected to a blower or flow generator.
Patient contacting portions, e.g., cushions, are typically constructed of a silicone material, but patient contacting portions including foam are known. For example, U.S. Pat. No. 5,429,683 (Le Mitouard) discloses a lining for a mask made of a polyurethane foam covered with skin (e.g., latex or silicone). However, skinned foam does not allow the portion in contact with the face to breathe, which can lead to skin irritation, and the sealing portion may be subject to creasing which may cause discomfort and lead to leak. The skin can also feel too hard for some patients, depending on the thickness and support structure. The skin also does not allow a high degree of local deformation and may be subject to tension transfer across its surface, which can result in shifting of the mask on the face and loss of seal/comfort.
A range of mask systems are known including nasal masks, nose & mouth masks, full face masks and nasal prongs, pillows, nozzles & cannulae. Masks typically cover more of the face than nasal prongs, pillows, nozzles and cannulae.
There is a continuous need in the art to provide mask systems with a high level of comfort and usability and a newly perceived need to provide mask systems having improved aesthetics.
One aspect of the invention is to provide an attachable interfacing portion for a respiratory mask.
Another aspect of the invention is to provide a removably attachable interfacing portion for a respiratory mask.
In an embodiment, the respiratory mask is a nasal mask, and the interfacing portion is a foam contacting portion that is arranged in use between the nose of the patient and the mask system. The foam contacting portion provides a seal between the nares of the patient and the mask system so as to deliver pressurized gas to the patient. The mask system may include a cushion, gusset and/or frame.
In one form, the nasal mask system may be provided with a releasable and replaceable foam contacting portion that it connected to the mask system by at least one connector.
In embodiments, the foam contacting portion may be connected to the mask system (e.g., connected to the frame, decoupling element, and/or headgear) by male and female connectors, a hook and loop arrangement, a press stud arrangement, hook and loop material, a clip arrangement, and/or an adhesive. In another embodiment, the foam contacting portion may be connected or otherwise provided to the mask system using existing structure on the frame, decoupling element, and/or headgear, e.g., without connectors and/or adhesive.
In another form, the nasal mask system may be provided with a removable foam contacting potion that adjoins to the mask system by wrapping about or around the mask system.
In one form, the foam contacting portion may be retrofitted to an existing nasal mask.
In another form, the foam contacting portion includes a foam sleeve that that may be slidingly positioned over a support structure. The foam sleeve may be removably positionable. In one form, the foam sleeve is sock-like.
Another aspect of the invention relates to a patient interface for delivering breathable gas to a patient including a foam interfacing portion adapted to provide a nasal interface to contact under and around the patient's nose in use and including an orifice adapted to surround both the patient's nares in use, and a positioning and stabilizing structure to support the foam interfacing portion in an operative position on the patient's face. The positioning and stabilizing structure is structured to provide a range of rotational, axial, and/or lateral movement to the foam interfacing portion while maintaining a sufficient interface and resisting the application of tube drag and/or headgear tension to the foam interfacing portion.
Other aspects, features, and advantages of this invention will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of this invention.
The accompanying drawings facilitate an understanding of the various embodiments of this invention. In such drawings:
The following description is provided in relation to several embodiments which may share common characteristics and features. It is to be understood that one or more features of any one embodiment may be combinable with one or more features of the other embodiments. In addition, any single feature or combination of features in any of the embodiments may constitute additional embodiments.
In this specification, the word “comprising” is to be understood in its “open” sense, that is, in the sense of “including”, and thus not limited to its “closed” sense, that is the sense of “consisting only of”. A corresponding meaning is to be attributed to the corresponding words “comprise”, “comprised” and “comprises” where they appear.
The term “air” will be taken to include breathable gases, for example air with supplemental oxygen. It is also acknowledged that the positive airway pressure (PAP) devices or flow generators described herein may be designed to pump fluids other than air.
In broad terms, a patient interface in accordance with an embodiment of the invention may comprise three functional aspects: (i) interfacing, (ii) positioning and stabilizing, and (iii) air delivery. These three functional aspects may be constructed from one or more structural components, with a given structural component potentially fulfilling more than one function. For example, a mask frame may serve as part of a positioning and stabilizing function and allow the supply of air.
In an embodiment, as shown in
In addition, a patient interface 10 in accordance with an embodiment of the invention may perform other functions including venting of exhaled gases, decoupling of potentially seal disruptive forces and adjustment for different sized faces. Venting may be performed by different structures, e.g., such as the frame 110, the elbow 140 and/or the tube 150.
1. Interfacing
1.1 Introduction
In an embodiment, the interfacing function is provided by a nasal cushion (or “nasal cradle”) that is placed at an entrance to the patient's nares. The nasal cushion is structured to form an interface with the nares and is shaped, oriented, sized and constructed so as provide a fit with a range of differently shaped and located flares.
The nasal cushion may be formed of foam (also referred to as a foam contacting portion). As shown generally in
In an embodiment, the foam contacting portion 200 may be maintained in position using stabilizing portions or rigidizers 90 attached to, or formed as part of headgear 50. In this form, the mask system 100 may be generally arranged per ResMed's MIRAGE SWIFT™ nasal pillows and as described in PCT Publication No. WO 2004/073778 (Gunaratnam et al), the contents of which are hereby expressly incorporated by cross-reference.
1.2 Foam
The foam used for the foam contacting portion 200 may be the same as that disclosed in PCT Publication No. WO 2008/070929 (Veliss et al), filed Dec. 14, 2007, which is incorporated herein by reference in its entirety. Alternatively, any suitable foam may be used, for example skinned foam.
In another embodiment, the cushion or foam contacting portion 200 of the mask system 100 may be the cushion disclosed in U.S. patent application Ser. No. 12/219,852 (Guney et al), filed Jan. 11, 2008, which is incorporated herein by reference in its entirety.
The foam contacting portion 200 may be a single piece of foam. In another form, the foam contacting portion 200 may be multiple pieces of foam joined together by any suitable means, for example gluing or insert molding.
As shown in the embodiment of
In an embodiment, the thickness of foam contacting portion 200 may be 0.5-50 mm. For example, the thickness of foam contacting portion 200 may be 7-15 mm. In an exemplary embodiment, the thickness of foam contacting portion 200 may be 11 mm.
In an embodiment, the length of foam contacting portion 200 may be 10 mm-200 mm (or its largest length if it is not square). For example, the length of foam contacting portion 200 may be 40-120 min. In an exemplary embodiment, the length of foam contacting portion 200 may be 105 mm. In an embodiment, the width of foam contacting portion 200 may be 10 mm-100 mm (or its largest width if it is not square). For example, the width of foam contacting portion 200 may be 30-70 mm. In an exemplary embodiment, the width of foam contacting portion 200 may be 50 mm.
As disclosed in PCT Publication No. WO 2008/070929 (Veliss et al), the foam contacting portion may be impermeable or air permeable. Air permeability may give the foam interface a unique breathability, which acts to increase the comfort at the interface with the user's nose and skin. All air permeability aspects of PCT Publication No. WO 2008/070929 (Veliss et al) are incorporated herein by reference, and all embodiments in this disclosure may contain foam that is air permeable.
In another embodiment, the foam contacting portion 200 may be retrofitted to existing mask designs, for example ResMed's MIRAGE SWIFT™ as disclosed in U.S. Pat. No. 7,318,437 (Gunaratnam et al) and U.S. Patent Publication No. 2005/0241644 (Lynch et al), each of which is incorporated herein by reference.
1.3 Interface Attachment
Desirable features of an attachment mechanism of the foam contacting portion 200 to the positioning and stabilizing structure may include: satisfactory comfort, effective position of the interfacing portion and/or being easy to use. Due to the softness of foam, hard connecting pieces may in some forms be felt by the patient's face through the foam. Thus, attachment mechanisms that avoid such patient contact may be desired.
In another embodiment, the foam contacting portion 200 may be connected to a positioning and stabilizing structure such as a frame 110 and/or a decoupling element 170 or any other part of the mask system 100 by connecting elements such as hook and loop connectors, press studs, etc. Exemplary connecting elements are described below.
1.3.1 Wrap
In an embodiment, as shown in
The foam contacting portion 200 may be any shape such as generally rectangular (see
As shown in
The male connectors 300 may be fixed to the foam contacting portion 200 by a range of techniques, for example glue. The female connectors 310 may be fixed to the mask system 100 by a range of techniques, for example glue. In another form, the female connectors 310 may be co-molded to the mask system 100. However, the male and female connectors may be permanently or removably attached in other suitable manners.
In a further embodiment, the foam contacting portion 200 may not connect to the mask system 100 by male connectors 300 on the foam contacting portion 200 and female connectors 310 on the mask system 100, e.g., instead the foam contacting portion 200 may reconnect to itself. For example, as shown in
In another embodiment, the foam contacting portion may include a stretchable foam structured to expand or stretch to fit over the frame, decoupling element, etc., and then return to its original shape to tightly grasp the intended surface.
In a further embodiment, the connection mechanism may be via a hook 330 and loop 340 system, as shown in
Alternatively, the reverse arrangement is possible (i.e., loop 340 or hole on the foam contacting portion 200 and hook 330 on the mask system 100). In this form, the loop 340 may be a hole in the foam contacting portion 200, and the hook 330 on the mask system 100 may be an attached or co-molded hook 330 or may be a pre-existing structure on the mask system 100. For example,
In a further embodiment, the connection mechanism may be achieved by a press stud 360 as shown in
In a further embodiment, as shown in
In a further embodiment, the foam contacting portion 200 may be wrapped onto or around the mask system 100 and connected by other type of mechanisms, including but not limited to hook and loop material (e.g., Velcro') or magnets.
In a further embodiment, the wrapped foam contacting portion 200 may be permanently connected to the mask system 100, for example, by gluing, welding or co-molding. For example, the mask system 100 may be made from a foam that can be co-molded with another foam to form the foam contacting portion 200. In yet another embodiment, the foam may be a flocking foam that is provided to (e.g., sprayed onto) the frame, decoupling element, etc.
Exemplary benefits of the wrapped foam contacting portion 200 may include: the ease of sealing the foam contacting portion with the patient and the mask system, continuity of feel, top lip comfort, retro-fitability, intuitiveness of assembly and mass production capability. Other benefits of the wrapped foam may include: if the intention is to replace the foam contacting portion on a regular basis (e.g., daily, weekly or monthly—as disclosed in PCT Publication WO 2008/070929 (Veliss et al)), the portion that is disposed of is small compared to the mask system. This embodiment therefore minimizes waste and maximizes efficiencies around the packaging, storage and transportation of the replacement foam contacting portions.
1.3.2 Clip
In another form, the foam contacting portion 200 may be connected to a mask system 100 by clipping the foam into the mask system 100. The foam contacting portion 200 may be secured in its clipped position on the mask system 100, e.g., by an interference fit.
The clip 400 may be fixed to the foam contacting portion 200 permanently, for example by adhesive or co-molding. Alternatively, clip 400 may be releasably connected to foam contacting portion 200, including but not limited to: hook and loop material (e.g., Velcro™.
In an embodiment, clip 400 may have a support structure 420 that may have a generally elliptical cross section (e.g., see
In an embodiment, clip 400 may comprise an upper surface 440 that engages with foam contacting portion 200 (e.g., see
1.3.3 Other
In a further embodiment, the foam contacting portion 200 need not be connected to the mask system 100 via connecting elements. Rather, the foam contacting portion 200 may be placed on the mask system 100 by other means such as pulled over (e.g., like a sock). For example, as shown in
In another embodiment, the foam contacting portion 200 may be connected to an intermediate connecting structure 315 (see
In a further embodiment, the foam may be fixed (e.g., using an adhesive) to an adaptor or clipping mechanism, which in turn connects via an interference fit onto the mask frame.
1.4 Interface Size
In a further embodiment, the foam may be provided in various sizes to accommodate varying anthropometric requirements. Typical nasal pillow designs have sizes based on the nostrils of the population as these pillows seal around the nares. However, the same sizing may not be ideal for the foam contacting portion 200 as it does not seal on the edge of, or inside the nares. Instead sizing may be based on sealing against the area around the nares (as indicated by the dashed line d1 around the nares in
In a further embodiment, there may be one orifice 250 in the foam contacting portion 200. In one form, the orifice 250 in the foam contacting portion 200 may be generally trapezoidal or ‘D’ shaped as shown in
In a further embodiment and referring to
In a further embodiment, the orifice 250 in the foam contacting portion 200 may have an angle of 10-80° (indicated in
In a further embodiment, there may be more than one orifice 250 in the foam contacting portion 200. In one form, there may be two orifices 250, e.g., each generally oval in shape. In another form, there may be a plurality of orifices 250 (for example, 3, 4, 5, 10 or more), e.g., each that are generally round. In another form, there may be multiple orifices 250 of any shape, within the limits shown above (indicated by the dashed lines d1 and d2 in
2. Positioning and Stabilizing Structure
2.1 Introduction
A patient interface 10 provides a structure for suitable positioning, suspension and stabilizing of the interfacing portion 200 of the patient interface 10 at an entrance to the airways of the patient. This structure includes: the decoupling element 170, the frame 110 and headgear 50 with rigidizers 90. The decoupling element 170 acts as a form of suspension system or force insulation system whereby it isolates forces from one portion of the patient interface 10 from another portion of the patient interface 10. The headgear 50 and rigidizers 90 form a structure that may resist bending in one or more directions (and/or from tube drag) and yet is flexible to conform to different facial geometries, or to move in response to other potentially disruptive forces. In combination with the suspension system, a greater range of movement of a mask system in accordance with an embodiment of the invention can be accommodated without disrupting the seal than in prior art mask systems.
2.2 Frame
A frame 110 in accordance with an embodiment of the present invention as shown in
Frame 110 may connect to the elbow 140 via aperture 115, whereby the elbow clips into the aperture 115, or interfaces with the aperture 115 by any such means so as to join the elbow 140 to the frame 110. Frame 110 may be generally rectangular or any other desired shape, for example see
2.3 Decoupling Element
Decoupling element 170 may be generally oval as shown in
In a further embodiment, the decoupling element 170 of the support structure may be the decoupling element disclosed in U.S. patent application Ser. No. 12/219,852 (Guney), which is incorporated herein by reference in its entirety. In an embodiment, the frame 110 of the mask system 100 may be the frame disclosed in U.S. patent application Ser. No. 12/219,852 (Guney).
The particularly soft mechanical properties of an exemplary foam (as disclosed in PCT Publication No. WO 2008/070929 (Veliss et al)) means that the foam contacting portion may be provided with support and reinforcement to perform its function with the nasal air passages. The frame 110 and decoupling element 170 may be suitable structures to provide this supporting mechanism, providing appropriate balance between shape and support for positioning the foam contacting portion 200, structural compliance and resilience for comfort on the nose (e.g., allow rotational, axial, and/or lateral movement to resist tube drag and headgear tension).
2.4 Headgear
Headgear 50 may include three main strap sections: top straps 60, back strap 70 and side straps 80. Top straps 60 may be placed over the top of the patient's head and may be one continuous piece of material or multiple pieces of material joined together by a buckle 95 as shown in
Back strap 70 may be placed around the back of the patient's head and may be one piece of continuous material or multiple pieces of material joined together by a buckle.
Top strap 60 and back strap 70 may be adjusted using hook and loop fasteners (such as Velcro™) or with the buckle 95. Buckle 95 may also have a lock that prevents the top strap 60 from loosening off. Such a buckle 95 with lock is described in U.S. Pat. No. 7,318,437 (Gunaratnam et al), which is incorporate herein by reference in its entirety.
Side straps 80 are generally positioned on the sides of the patient's face, from above or near the ear, passing under the eyes and ending at the nose of the patient. Side straps 80 may be reinforced with rigidizers 90 that may assist in supporting the mask system 100 in position. Rigidizers 90 may be attached to side straps at: the patient contacting side of side straps 80 (not shown), within side straps 80 by co-molding or other such technique (not shown), or on the exterior non-patient contacting side of side straps 80 (see
Side straps 80 may also include cheek supports 85 that lie generally horizontally on the cheeks of the patient, generally at the cheek bone region, to better position the mask system 100 on the face of the user. Such an arrangement is shown in U.S. patent application Ser. No. 12/219,852 (Guney).
3. Air Delivery
3.1 Introduction
The mask system 100 may be connected to a supply of pressurized breathable gas to deliver therapy to the patient. The air delivery system 130 may include: an elbow 140 and a tube 150 as shown in
3.2 Elbow
Elbow 140 is generally an L-shaped, hollow cylinder and may be constructed of a generally rigid material such as polycarbonate or polypropylene. Elbow 140 may also include one or more vent holes 160 (see
In a further embodiment, the elbow 140 may be the same as that disclosed in U.S. patent application Ser. No. 12/219,852 (Guney).
3.3 Tube
Tube 150 is generally a hollow, cylinder with a reinforcing member 155 (see
Tube 150 may be constructed of a polymer or fabric, e.g., Hytrel™. Such a tube is disclosed in U.S. Provisional Patent Application No. 61/031,407 (Henry et al), filed Feb. 26, 2008, which is incorporated herein by reference in its entirety.
Tube 150 may connect to the elbow 140 so as to deliver breathable gas to the patient through the patient interface 10. The tube 150 may connect to elbow 140 by any reasonable means, such as a clip, interference fit, etc.
In a further embodiment, the tube 150 may be the same as that disclosed in U.S. patent application Ser. No. 12/219,852 (Guney).
In the illustrated forms of the invention, the mask system 100 of which the foam interfacing portion forms a part is generally configured under the nose of the patient. However, in other forms, the mask system 100 may be a nasal or full-face mask, or an oro-nasal mask. For example, in one form, a foam-based under-the-nose configuration may be combined with a gel, silicone or rubber portion, for example a silicone mouth cushion.
While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Also, the various embodiments described above may be implemented in conjunction with other embodiments, e.g., aspects of one embodiment may be combined with aspects of another embodiment to realize yet other embodiments. Further, each independent feature or component of any given assembly may constitute an additional embodiment. Furthermore, each individual component of any given assembly, one or more portions of an individual component of any given assembly, and various combinations of components from one or more embodiments may include one or more ornamental design features. In addition, while the invention has particular application to patients who suffer from OSA, it is to be appreciated that patients who suffer from other illnesses (e.g., congestive heart failure, diabetes, morbid obesity, stroke, bariatric surgery, etc.) can derive benefit from the above teachings. Moreover, the above teachings have applicability with patients and non-patients alike in non-medical applications.
Number | Date | Country | Kind |
---|---|---|---|
2008901057 | Mar 2008 | AU | national |
This application is a continuation of U.S. patent application Ser. No. 12/735,977, filed Aug. 27, 2010, which was the U.S. national phase of International Application No. PCT/AU2009/000240, filed Feb. 27, 2009, which designated the U.S. and claims the benefit of Australian Provisional Application No. AU 2008901057, filed Mar. 4, 2008, each of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
443191 | Illing | Dec 1890 | A |
781516 | Guthrie, Jr. | Jan 1905 | A |
1081745 | Johnston | Dec 1913 | A |
1125542 | Humphries | Jan 1915 | A |
1192186 | Greene | Jul 1916 | A |
1229050 | Donald | Jun 1917 | A |
1282527 | Bidonde | Oct 1918 | A |
1362766 | McGargill | Dec 1920 | A |
1445010 | Feinberg | Feb 1923 | A |
1610793 | Kaufman | Dec 1926 | A |
1873160 | Sturtevant | Aug 1932 | A |
2353643 | Bulbulian | Jul 1944 | A |
2415846 | Randall | Feb 1947 | A |
2433565 | Korman | Dec 1947 | A |
2625155 | Engelder | Jan 1953 | A |
2706983 | Matheson et al. | Apr 1955 | A |
2931356 | Schwarz | Apr 1960 | A |
3013556 | Galleher | Dec 1961 | A |
3670726 | Mahon et al. | Mar 1972 | A |
3682171 | Dali et al. | Aug 1972 | A |
3739774 | Gregory | Jun 1973 | A |
3754552 | King | Aug 1973 | A |
3827433 | Shannon | Aug 1974 | A |
3861385 | Carden | Jan 1975 | A |
3902486 | Guichard | Sep 1975 | A |
3905361 | Hewson et al. | Sep 1975 | A |
3938614 | Ahs | Feb 1976 | A |
3972321 | Proctor | Aug 1976 | A |
4006744 | Steer | Feb 1977 | A |
4142527 | Garcia | Mar 1979 | A |
4153051 | Shippert | May 1979 | A |
4156426 | Gold | May 1979 | A |
4248218 | Fischer | Feb 1981 | A |
4263908 | Mizerak | Apr 1981 | A |
4264743 | Maruyama et al. | Apr 1981 | A |
4267845 | Robertson, Jr. et al. | May 1981 | A |
4273124 | Zimmerman | Jun 1981 | A |
4312359 | Olson | Jan 1982 | A |
4367735 | Dali | Jan 1983 | A |
4367816 | Wilkes | Jan 1983 | A |
4406283 | Bir | Sep 1983 | A |
4414973 | Matheson et al. | Nov 1983 | A |
4422456 | Teip | Dec 1983 | A |
4449526 | Elam | May 1984 | A |
4455675 | Bose et al. | Jun 1984 | A |
4493614 | Chu et al. | Jan 1985 | A |
4548200 | Wapner | Oct 1985 | A |
4549542 | Chein | Nov 1985 | A |
4572323 | Randall | Feb 1986 | A |
4587967 | Chu et al. | May 1986 | A |
4601465 | Roy | Jul 1986 | A |
4617637 | Chu et al. | Nov 1986 | A |
4630604 | Montesi | Dec 1986 | A |
4641647 | Behan | Feb 1987 | A |
4660555 | Payton | Apr 1987 | A |
4671271 | Bishop et al. | Jun 1987 | A |
4676241 | Webb et al. | Jun 1987 | A |
4699139 | Marshall et al. | Oct 1987 | A |
4706664 | Snook et al. | Nov 1987 | A |
4711636 | Bierman | Dec 1987 | A |
4713844 | Westgate | Dec 1987 | A |
4753233 | Grimes | Jun 1988 | A |
4767411 | Edmunds | Aug 1988 | A |
4774946 | Ackerman et al. | Nov 1988 | A |
4782832 | Trimble et al. | Nov 1988 | A |
4790829 | Bowden et al. | Dec 1988 | A |
4802857 | Laughlin | Feb 1989 | A |
4803981 | Vickery | Feb 1989 | A |
4811730 | Milano | Mar 1989 | A |
4830138 | Palmaer et al. | May 1989 | A |
4838878 | Kalt et al. | Jun 1989 | A |
4899740 | Napolitano | Feb 1990 | A |
4907584 | McGinnis | Mar 1990 | A |
4915105 | Lee | Apr 1990 | A |
4919128 | Kopala et al. | Apr 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4944310 | Sullivan | Jul 1990 | A |
4945907 | Tayebi | Aug 1990 | A |
4960121 | Nelson et al. | Oct 1990 | A |
4966590 | Kalt | Oct 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4971051 | Toffolon | Nov 1990 | A |
4976698 | Stokley | Dec 1990 | A |
4989599 | Carter | Feb 1991 | A |
4996983 | Amrhein | Mar 1991 | A |
5000173 | Zalkin et al. | Mar 1991 | A |
5005571 | Dietz | Apr 1991 | A |
5020163 | Aileo et al. | Jun 1991 | A |
5022900 | Bar-Yona et al. | Jun 1991 | A |
5023955 | Murphy, II et al. | Jun 1991 | A |
5025805 | Nutter | Jun 1991 | A |
5038772 | Kolbe et al. | Aug 1991 | A |
5042478 | Kopala et al. | Aug 1991 | A |
5046491 | Derrick | Sep 1991 | A |
5074297 | Venegas | Dec 1991 | A |
5113857 | Dickerman et al. | May 1992 | A |
5117818 | Palfy | Jun 1992 | A |
5121745 | Israel | Jun 1992 | A |
5127397 | Kohnke | Jul 1992 | A |
5137017 | Salter | Aug 1992 | A |
5138722 | Urella et al. | Aug 1992 | A |
D333015 | Farmer et al. | Feb 1993 | S |
5188101 | Tumolo | Feb 1993 | A |
5207665 | Davis et al. | May 1993 | A |
5220699 | Farris | Jun 1993 | A |
5243709 | Sheehan et al. | Sep 1993 | A |
5243971 | Sullivan et al. | Sep 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5263939 | Wortrich | Nov 1993 | A |
5265592 | Beaussant | Nov 1993 | A |
5265595 | Rudolph | Nov 1993 | A |
5267557 | Her-Mou | Dec 1993 | A |
5269296 | Landis | Dec 1993 | A |
5271391 | Graves | Dec 1993 | A |
5304146 | Johnson et al. | Apr 1994 | A |
5299599 | Farmer et al. | May 1994 | A |
5335656 | Bowe et al. | Aug 1994 | A |
5349949 | Schegerin | Sep 1994 | A |
5355878 | Griffiths et al. | Oct 1994 | A |
5355893 | Mick et al. | Oct 1994 | A |
5364367 | Banks et al. | Nov 1994 | A |
5372130 | Stem et al. | Dec 1994 | A |
5372388 | Gargiulo | Dec 1994 | A |
5372389 | Tam et al. | Dec 1994 | A |
5372390 | Conway et al. | Dec 1994 | A |
5372391 | Bast et al. | Dec 1994 | A |
5375593 | Press | Dec 1994 | A |
5385141 | Granatiero | Jan 1995 | A |
5394568 | Brostrom et al. | Mar 1995 | A |
5396885 | Nelson | Mar 1995 | A |
5398676 | Press et al. | Mar 1995 | A |
5400776 | Bartholomew | Mar 1995 | A |
5419318 | Tayebi | May 1995 | A |
5425359 | Liou | Jun 1995 | A |
5429683 | Le Mitouard | Jul 1995 | A |
5437267 | Weinstein et al. | Aug 1995 | A |
5441046 | Starr et al. | Aug 1995 | A |
5462528 | Roewer | Oct 1995 | A |
5477852 | Landis et al. | Dec 1995 | A |
5488948 | Dubruille et al. | Feb 1996 | A |
5509409 | Weatherholt | Apr 1996 | A |
5513634 | Jackson | May 1996 | A |
5513635 | Bedi | May 1996 | A |
5526806 | Sansoni | Jun 1996 | A |
5533506 | Wood | Jul 1996 | A |
5538000 | Rudolph | Jul 1996 | A |
5538001 | Bridges | Jul 1996 | A |
5540223 | Starr et al. | Jul 1996 | A |
5560354 | Berthon-Jones et al. | Oct 1996 | A |
5570684 | Behr | Nov 1996 | A |
5592938 | Scarberry et al. | Jan 1997 | A |
5623923 | Bertheau et al. | Apr 1997 | A |
5647357 | Barnett et al. | Jul 1997 | A |
5653228 | Byrd | Aug 1997 | A |
5655527 | Scarberry et al. | Aug 1997 | A |
5662101 | Ogden et al. | Sep 1997 | A |
5682881 | Winthrop et al. | Nov 1997 | A |
D293613 | Wingler | Jan 1998 | S |
5704345 | Berthon-Jones et al. | Jan 1998 | A |
5707342 | Tanaka | Jan 1998 | A |
5724965 | Handke et al. | Mar 1998 | A |
5735272 | Dillon et al. | Apr 1998 | A |
5740799 | Nielson | Apr 1998 | A |
5752511 | Simmons et al. | May 1998 | A |
5794619 | Edeiman et al. | Aug 1998 | A |
5807341 | Heim | Sep 1998 | A |
5842469 | Rapp et al. | Dec 1998 | A |
5906203 | Klockseth et al. | May 1999 | A |
5918598 | Belfer et al. | Jul 1999 | A |
5921239 | McCall | Jul 1999 | A |
5954049 | Foley et al. | Sep 1999 | A |
5975079 | Hellings et al. | Nov 1999 | A |
6012455 | Goldstein | Jan 2000 | A |
6019101 | Cotner et al. | Jan 2000 | A |
6026811 | Settle | Feb 2000 | A |
6044844 | Kwok et al. | Apr 2000 | A |
6082360 | Rudolph et al. | Jul 2000 | A |
6086118 | McNaughton et al. | Jul 2000 | A |
6095996 | Steer et al. | Aug 2000 | A |
6098205 | Schwartz et al. | Aug 2000 | A |
6109263 | Feuchtgruber | Aug 2000 | A |
6112746 | Kwok et al. | Sep 2000 | A |
6119693 | Kwok et al. | Sep 2000 | A |
6119694 | Correa | Sep 2000 | A |
6123071 | Berthon-Jones et al. | Sep 2000 | A |
6123082 | Berthon-Jones | Sep 2000 | A |
6139787 | Harrison | Oct 2000 | A |
6152137 | Schwartz et al. | Nov 2000 | A |
6193914 | Harrison | Feb 2001 | B1 |
6196223 | Belfer et al. | Mar 2001 | B1 |
6211263 | Cinelli et al. | Apr 2001 | B1 |
6231548 | Bassett | May 2001 | B1 |
6241930 | Harrison | Jun 2001 | B1 |
6258066 | Urich | Jul 2001 | B1 |
6295366 | Haller et al. | Sep 2001 | B1 |
6328038 | Kessler et al. | Dec 2001 | B1 |
6338340 | Finch et al. | Jan 2002 | B1 |
6341606 | Bordewick et al. | Jan 2002 | B1 |
6347631 | Hansen et al. | Feb 2002 | B1 |
6357441 | Kwok et al. | Mar 2002 | B1 |
6358279 | Tahi et al. | Mar 2002 | B1 |
6374826 | Gunaratnam et al. | Apr 2002 | B1 |
6412487 | Gunaratnam | Jul 2002 | B1 |
6412488 | Barnett et al. | Jul 2002 | B1 |
6412593 | Jones | Jul 2002 | B1 |
6412847 | De Gaillard | Jul 2002 | B2 |
6419660 | Russo | Jul 2002 | B1 |
6422238 | Lithgow | Jul 2002 | B1 |
6423036 | Van Huizen | Jul 2002 | B1 |
6431172 | Bordewick | Aug 2002 | B1 |
6434796 | Speirs | Aug 2002 | B1 |
6439234 | Curti et al. | Aug 2002 | B1 |
6448303 | Paul | Sep 2002 | B1 |
6467482 | Boussignac | Oct 2002 | B1 |
6467483 | Kopacko | Oct 2002 | B1 |
6470887 | Martinez | Oct 2002 | B1 |
6478026 | Wood | Nov 2002 | B1 |
6482178 | Andrews et al. | Nov 2002 | B1 |
6491034 | Gunaratnam et al. | Dec 2002 | B1 |
6513526 | Kwok et al. | Feb 2003 | B2 |
6530373 | Patron et al. | Mar 2003 | B1 |
6532961 | Kwok et al. | Mar 2003 | B1 |
6536435 | Fecteau et al. | Mar 2003 | B1 |
6561188 | Ellis | May 2003 | B1 |
6561190 | Kwok et al. | May 2003 | B1 |
6561192 | Palmer | May 2003 | B2 |
6561193 | Noble | May 2003 | B1 |
6571798 | Thornton | Jun 2003 | B1 |
6579267 | Lynch et al. | Jun 2003 | B2 |
6581601 | Ziaee | Jun 2003 | B2 |
6581602 | Kwok et al. | Jun 2003 | B2 |
6584975 | Taylor | Jul 2003 | B1 |
6595214 | Hecker et al. | Jul 2003 | B1 |
6595215 | Wood | Jul 2003 | B2 |
6607516 | Cinelli et al. | Aug 2003 | B2 |
6627289 | Dilnik et al. | Sep 2003 | B1 |
6631718 | Lovell | Oct 2003 | B1 |
6634358 | Kwok et al. | Oct 2003 | B2 |
6637434 | Noble | Oct 2003 | B2 |
6644315 | Ziaee | Nov 2003 | B2 |
6655385 | Curti et al. | Dec 2003 | B1 |
6663600 | Bierman et al. | Dec 2003 | B2 |
6669712 | Cardoso | Dec 2003 | B1 |
D485905 | Moore et al. | Jan 2004 | S |
6679257 | Robertson et al. | Jan 2004 | B1 |
6679265 | Strickland et al. | Jan 2004 | B2 |
6701927 | Kwok et al. | Mar 2004 | B2 |
6710099 | Cinelli et al. | Mar 2004 | B2 |
6766800 | Chu et al. | Jul 2004 | B2 |
6766817 | da Silva | Jul 2004 | B2 |
6776162 | Wood | Aug 2004 | B2 |
6776163 | Dougill et al. | Aug 2004 | B2 |
6789543 | Cannon | Sep 2004 | B2 |
6805117 | Ho et al. | Oct 2004 | B1 |
6807967 | Wood | Oct 2004 | B2 |
6817362 | Gelinas | Nov 2004 | B2 |
6820617 | Robertson et al. | Nov 2004 | B2 |
6823865 | Drew et al. | Nov 2004 | B2 |
6823869 | Raje et al. | Nov 2004 | B2 |
6826783 | Grove et al. | Dec 2004 | B1 |
6834650 | Fini | Dec 2004 | B1 |
6860270 | Sniadach | Mar 2005 | B2 |
6895965 | Scarberry et al. | May 2005 | B2 |
6907882 | Ging et al. | Jun 2005 | B2 |
6918404 | Dias da Silva | Jul 2005 | B2 |
6926004 | Schumacher | Aug 2005 | B2 |
6938620 | Payne, Jr. | Sep 2005 | B2 |
6968844 | Liland | Nov 2005 | B2 |
6972003 | Bierman et al. | Dec 2005 | B2 |
6986352 | Frater et al. | Jan 2006 | B2 |
6997177 | Wood | Feb 2006 | B2 |
7011090 | Drew et al. | Mar 2006 | B2 |
7018362 | Bierman et al. | Mar 2006 | B2 |
7052127 | Harrison | May 2006 | B2 |
7066586 | da Silva | Jun 2006 | B2 |
7076282 | Munro et al. | Jul 2006 | B2 |
7080645 | Genger et al. | Jul 2006 | B2 |
7101359 | Kline et al. | Sep 2006 | B2 |
7107989 | Frater et al. | Sep 2006 | B2 |
7146976 | McKown | Dec 2006 | B2 |
7152599 | Thomas | Dec 2006 | B2 |
7152601 | Barakat et al. | Dec 2006 | B2 |
7178525 | Matula et al. | Feb 2007 | B2 |
7191781 | Wood | Mar 2007 | B2 |
7207328 | Altemus | Apr 2007 | B1 |
7210481 | Lovell et al. | May 2007 | B1 |
7237551 | Ho et al. | Jul 2007 | B2 |
7243723 | Surjaatmadja | Jul 2007 | B2 |
D550836 | Chandran et al. | Sep 2007 | S |
D552733 | Criscuolo et al. | Oct 2007 | S |
7285255 | Kadlec et al. | Oct 2007 | B2 |
7302950 | Berthon-Jones et al. | Dec 2007 | B2 |
7318437 | Gunaratnam et al. | Jan 2008 | B2 |
7331348 | Beevers | Feb 2008 | B1 |
7523754 | Lithgow | Apr 2009 | B2 |
7658189 | Davidson | Feb 2010 | B2 |
20010020474 | Hecker et al. | Sep 2001 | A1 |
20020005198 | Kwok et al. | Jan 2002 | A1 |
20020029780 | Frater et al. | Mar 2002 | A1 |
20020046755 | DeVoss | Apr 2002 | A1 |
20020053347 | Ziaee | May 2002 | A1 |
20020066452 | Kessler et al. | Jun 2002 | A1 |
20020069872 | Gradon et al. | Jun 2002 | A1 |
20020096178 | Ziaee | Jul 2002 | A1 |
20020124849 | Billette De Villemeur | Sep 2002 | A1 |
20020143296 | Russo | Oct 2002 | A1 |
20020157673 | Kessler et al. | Oct 2002 | A1 |
20020174868 | Kwok et al. | Nov 2002 | A1 |
20020185134 | Bishop | Dec 2002 | A1 |
20030000526 | Goebel | Jan 2003 | A1 |
20030019495 | Palkon et al. | Jan 2003 | A1 |
20030019496 | Kopacko et al. | Jan 2003 | A1 |
20030079749 | Strickland et al. | May 2003 | A1 |
20030089373 | Gradon et al. | May 2003 | A1 |
20030111080 | Olsen et al. | Jun 2003 | A1 |
20030154980 | Berthon-Jones et al. | Aug 2003 | A1 |
20030168063 | Gambone et al. | Sep 2003 | A1 |
20030196656 | Moore et al. | Oct 2003 | A1 |
20030196658 | Ging et al. | Oct 2003 | A1 |
20040025882 | Madaus et al. | Feb 2004 | A1 |
20040025885 | Payne, Jr. | Feb 2004 | A1 |
20040045551 | Eaton et al. | Mar 2004 | A1 |
20040065328 | Amarasinghe et al. | Apr 2004 | A1 |
20040106891 | Langan et al. | Jun 2004 | A1 |
20040107968 | Griffiths | Jun 2004 | A1 |
20040111104 | Schein et al. | Jun 2004 | A1 |
20040112384 | Lithgow et al. | Jun 2004 | A1 |
20040118406 | Lithgow et al. | Jun 2004 | A1 |
20040127856 | Johnson | Jul 2004 | A1 |
20040211428 | Jones | Oct 2004 | A1 |
20040226564 | Persson | Nov 2004 | A1 |
20040226566 | Gunaratnam et al. | Nov 2004 | A1 |
20050011523 | Aylsworth et al. | Jan 2005 | A1 |
20050028822 | Sleeper et al. | Feb 2005 | A1 |
20050033247 | Thompson | Feb 2005 | A1 |
20050039757 | Wood | Feb 2005 | A1 |
20050051171 | Booth | Mar 2005 | A1 |
20050051176 | Riggins | Mar 2005 | A1 |
20050056286 | Huddart et al. | Mar 2005 | A1 |
20050061326 | Payne, Jr. | Mar 2005 | A1 |
20050066976 | Wondka | Mar 2005 | A1 |
20050101933 | Marrs et al. | May 2005 | A1 |
20050150495 | Rittner et al. | Jul 2005 | A1 |
20050155604 | Ging et al. | Jul 2005 | A1 |
20050211252 | Lang et al. | Sep 2005 | A1 |
20050241644 | Lynch et al. | Nov 2005 | A1 |
20050284481 | Meyer | Dec 2005 | A1 |
20060060200 | Ho et al. | Mar 2006 | A1 |
20060081250 | Bordewick et al. | Apr 2006 | A1 |
20060095008 | Lampropoulos et al. | May 2006 | A1 |
20060095009 | Lampropoulos et al. | May 2006 | A1 |
20060118117 | Berthon-Jones | Jun 2006 | A1 |
20060124131 | Chandran et al. | Jun 2006 | A1 |
20060137690 | Gunaratnam et al. | Jun 2006 | A1 |
20060174887 | Chandran et al. | Aug 2006 | A1 |
20060020514 | Jones et al. | Sep 2006 | A1 |
20060201514 | Jones | Sep 2006 | A1 |
20060207597 | Wright | Sep 2006 | A1 |
20060237017 | Davidson et al. | Oct 2006 | A1 |
20060283461 | Lubke et al. | Dec 2006 | A1 |
20070023044 | Kwok et al. | Feb 2007 | A1 |
20070125387 | Zollinger et al. | Jun 2007 | A1 |
20070144525 | Davidson et al. | Jun 2007 | A1 |
20070186930 | Davidson et al. | Aug 2007 | A1 |
20070267017 | McAuley et al. | Nov 2007 | A1 |
20070272249 | Chandran et al. | Nov 2007 | A1 |
20070282272 | Bannon et al. | Dec 2007 | A1 |
20080004573 | Kaufmann et al. | Jan 2008 | A1 |
20080006277 | Worboys et al. | Jan 2008 | A1 |
20080047560 | Veliss et al. | Feb 2008 | A1 |
20080060649 | Veliss et al. | Mar 2008 | A1 |
20080065022 | Kyvik et al. | Mar 2008 | A1 |
20080110469 | Weinberg | May 2008 | A1 |
20080200880 | Kyvik et al. | Aug 2008 | A1 |
20080257354 | Davidson et al. | Oct 2008 | A1 |
20090044808 | Guney et al. | Feb 2009 | A1 |
20100000534 | Kooij et al. | Jan 2010 | A1 |
20100018534 | Veliss et al. | Jan 2010 | A1 |
20110000492 | Veliss et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
199651130 | Oct 1996 | AU |
2005100738 | Nov 2005 | AU |
185017 | May 1907 | DE |
30 11 900 | Oct 1980 | DE |
146 688 | Feb 1981 | DE |
37 19 009 | Dec 1988 | DE |
39 27 038 | Feb 1991 | DE |
297 23 101 | Jul 1998 | DE |
197 03 526 | Aug 1998 | DE |
199 44 242 | Mar 2001 | DE |
10002571 | Jul 2001 | DE |
102 13 905 | Oct 2002 | DE |
10 2004 055 433 | Nov 2004 | DE |
0 288 937 | Nov 1988 | EP |
0 427 474 | May 1991 | EP |
0 466 960 | Jan 1992 | EP |
0 303 090 | Apr 1992 | EP |
0 658 356 | Jun 1995 | EP |
0 776 679 | Jun 1997 | EP |
1 099 452 | May 2001 | EP |
1 258 266 | Nov 2002 | EP |
1 293 227 | Mar 2003 | EP |
1 481 702 | Dec 2004 | EP |
2 720 280 | Dec 1995 | FR |
532214 | Jan 1941 | GB |
2 176 404 | Dec 1986 | GB |
2 368 533 | May 2002 | GB |
2 385 533 | Aug 2003 | GB |
2000-515784 | Nov 2000 | JP |
WO 1982003548 | Oct 1982 | WO |
WO 1987001950 | Apr 1987 | WO |
WO 1992020392 | Nov 1992 | WO |
WO 1992020395 | Nov 1992 | WO |
WO 1996028207 | Sep 1996 | WO |
WO 1998004310 | Feb 1998 | WO |
WO 1998012965 | Apr 1998 | WO |
WO 1998023305 | Jun 1998 | WO |
WO 1999016327 | Apr 1999 | WO |
WO 1999025410 | May 1999 | WO |
WO 1999043375 | Sep 1999 | WO |
WO 1999061088 | Dec 1999 | WO |
WO 2000020072 | Apr 2000 | WO |
WO 2000038772 | Jul 2000 | WO |
WO 2000050121 | Aug 2000 | WO |
WO 0069521 | Nov 2000 | WO |
WO 2000072905 | Dec 2000 | WO |
WO 2000074758 | Dec 2000 | WO |
WO 2000076568 | Dec 2000 | WO |
WO 2000078384 | Dec 2000 | WO |
WO 2001062326 | Aug 2001 | WO |
WO 2001095965 | Dec 2001 | WO |
WO 2001097892 | Dec 2001 | WO |
WO 2001097893 | Dec 2001 | WO |
WO 2002038221 | May 2002 | WO |
WO 2002045784 | Jun 2002 | WO |
WO 2003090827 | Nov 2003 | WO |
WO 2003105921 | Dec 2003 | WO |
WO 2004022146 | Mar 2004 | WO |
WO 2004041342 | May 2004 | WO |
WO 2004078230 | Sep 2004 | WO |
WO 2005053781 | Jun 2005 | WO |
WO 2005063328 | Jul 2005 | WO |
WO 2005086943 | Sep 2005 | WO |
WO 2005099801 | Oct 2005 | WO |
WO 2005110220 | Nov 2005 | WO |
WO 2005118040 | Dec 2005 | WO |
PCTAU2006000031 | Jan 2006 | WO |
PCTAU2006000417 | Mar 2006 | WO |
PCTAU2006000770 | Jun 2006 | WO |
WO 2006069415 | Jul 2006 | WO |
WO 2006074513 | Jul 2006 | WO |
WO 2006074516 | Jul 2006 | WO |
WO 2006099658 | Sep 2006 | WO |
WO 2006130903 | Dec 2006 | WO |
WO 2007009182 | Jan 2007 | WO |
WO 2007016424 | Feb 2007 | WO |
WO 2007041751 | Apr 2007 | WO |
WO 2007041786 | Apr 2007 | WO |
WO 2007048174 | May 2007 | WO |
WO 2007053878 | May 2007 | WO |
PCTAU2007001936 | Dec 2007 | WO |
WO 2007143772 | Dec 2007 | WO |
WO 2007145534 | Dec 2007 | WO |
WO 2008070929 | Dec 2007 | WO |
WO 2008011682 | Jan 2008 | WO |
WO 2008011683 | Jan 2008 | WO |
WO 2008040050 | Apr 2008 | WO |
WO 2004073778 | Jun 2008 | WO |
WO 2009108994 | Sep 2009 | WO |
WO 2009109004 | Sep 2009 | WO |
WO 2010028425 | Mar 2010 | WO |
Entry |
---|
U.S. Appl. No. 10/385,701, filed Aug. 2003, Berthon-Jones et al. |
U.S. Appl. No. 10/533,928, filed Jul. 2005, Berthon-Jones. |
U.S. Appl. No. 10/584,711, filed Dec. 2004, Davidson. |
U.S. Appl. No. 10/655,622, filed Sep. 2003, Lithgow. |
U.S. Appl. No. 10/781,929, filed Jan. 2008, Gunaratnam et al. |
U.S. Appl. No. 10/871,929, filed Feb. 2004, Surjaatmadja. |
U.S. Appl. No. 11/080,446, filed Jul. 2005, Ging et al. |
U.S. Appl. No. 11/447,295, filed Jun. 2006, Lubke et al. |
U.S. Appl. No. 11/474,415, filed Jun. 2006, Davidson et al. |
U.S. Appl. No. 11/491,016, filed Feb. 2007, Kwok et al. |
U.S. Appl. No. 11/703,082, filed Feb. 2007, Davidson. |
U.S. Appl. No. 11/878,932, filed Jul. 2007, Veliss et al. |
U.S. Appl. No. 11/878,933, filed Jul. 2007, Veliss et al. |
U.S. Appl. No. 12/081,696, filed Apr. 2008, Davidson et al. |
U.S. Appl. No. 12/085,191, filed May 2008, Kwok et al. |
U.S. Appl. No. 12/219,852, filed Jan. 2008 ,Guney et al. |
U.S. Appl. No. 12/309,696, filed Jan. 2009, Kwok et al. |
U.S. Appl. No. 12/382,517, filed Mar. 2009, Lithgow. |
U.S. Appl. No. 12/448,250, filed Jun. 2009, Veliss et al. |
U.S. Appl. No. 12/461,448, filed Aug. 2009, Berthon-Jones. |
U.S. Appl. No. 12/478,537, filed Jun. 2009, Kooij et al. |
U.S. Appl. No. 12/656,466, filed Jan. 2010, Biener et al. |
U.S. Appl. No. 12/700,878, filed Feb. 2010, Davidson et al. |
U.S. Appl. No. 60/424,686, filed Nov. 2002, Lithgow. |
U.S. Appl. No. 60/483,622, filed Jul. 2003, Kwok et al. |
U.S. Appl. No. 60/533,214, filed Dec. 2003, Drew. |
U.S. Appl. No. 60/634,802, filed Dec. 2004, Chandran. |
U.S. Appl. No. 60/645,672, filed Jan. 2005, Chandran. |
U.S. Appl. No. 60/795,615, filed Apr. 2006, Judson et al. |
U.S. Appl. No. 60/833,841, filed Jul. 2006, Veliss. |
U.S. Appl. No. 60/835,442, filed Aug. 2006, Selvarajan et al. |
U.S. Appl. No. 60/852,649, filed Oct. 2006, Selvarajan et al. |
U.S. Appl. No. 60/874,968, filed Dec. 2006, Kwok et al. |
U.S. Appl. No. 60/907,856, filed Apr. 2007, Davidson et al. |
U.S. Appl. No. 60/924,241, filed May 2007, Kwok et al. |
U.S. Appl. No. 60/929,393, filed Jun. 2007, Kwok et al. |
U.S. Appl. No. 60/935,179, filed Jul. 2007, Guney et al. |
U.S. Appl. No. 60/935,336, filed Aug. 2007, Davidson et al. |
U.S. Appl. No. 60/996,160, filed Nov. 2007, Guney et al. |
U.S. Appl. No. 61/006,409, filed Jan. 2008, Guney et al. |
U.S. Appl. No. 61/031,407, filed Feb. 2008, Henry et al. |
U.S. Appl. No. 61/064,818, filed Mar. 2008, Guney et al. |
U.S. Appl. No. 61/071,512, filed May 2008, Guney et al. |
U.S. Appl. No. 61/213,326, filed May 2009, Dravitzki et al. |
U.S. Appl. No. 61/222,711, filed Jul. 2009, Dravitzki et al. |
U.S. Appl. No. 61/263,175, filed Nov. 2009, Dravitzki et al. |
U.S. Appl. No. 61/272,162, filed Aug. 2009, Dravitzki et al. |
U.S. Appl. No. 61/272,250, filed Sep. 2009, Dravitzki et al. |
International Preliminary Report on Patentability issued in PCT/AU2009/000240 (dated Sep. 7, 2010). |
Supplementary European Search Report dated Dec. 18, 2009 in European Application No. 03810331.3. |
International Search Report issued in Appln. No. PCT/AU2009/000240 (dated May 21, 2009). |
“Ear Loop Face Mask”. |
Adam J. Singer MD et al. “The Cyanoacrylate Topical Skin Adhesives,” American Journal of Emergency Medicine, vol. 26, 2008, pp. 490-496. |
Webster's Third New International Dictionary, 1993, Dictionary definition for adjustable, bendable, and mild steel. |
ComfortLite™, Respironics, http://comfortlite.respironics.com. |
ComfortLite™ 2, Respironics, http://comfortlite2.respironics.com. |
“If You Hate CPAP! You Need CPAP Pro®,” www.cpappro.com. |
Webster's New World Dictionary, Third College Edition 1988, definition for engaged and flexible. |
EP Supplementary Search Report issued in EP Application 03793493, dated Dec. 2, 2009. |
European Search Report filed on Jul. 27, 2009 in EP Application No. 07784697.0. |
European Search Report issued in EP 07845378.4, dated Dec. 1, 2009. |
Examination Report filed in New Zealand Application 539836, dated Aug. 25, 2005. |
Examiner's Report No. 3 dated Nov. 18, 2009 in New Zealand Application No. 2003275762. |
Extended European Search Report dated Mar. 19, 2009 in European Application No. EP 08161249. |
Extended European Search Report dated Sep. 3, 2009 in corresponding EP Application No. 09161984.1. |
Extended European Search Report. Application No. EP 08154854, dated Nov. 27, 2008. |
Fisher and Paykel Col.—Product Family—http://www.fphcare.com/osa/products.asp/. |
Hans Rudolph, Inc.—Mask Products—http://www.rudolphkc.com/products.php?category=MASKS. |
International Preliminary Report on Patentability for PCT/AU2004/001832, dated Jul. 3, 2006. |
International Search Report filed in PCT/AU2005/000803, dated Jun. 30, 2005. |
International Search Report filed in PCT/AU2006/000770, dated Aug. 3, 2006. |
International Search Report for PCT/AU2007/001052, dated Oct. 9, 2007. |
International Search Report for PCT/AU2007/001051, dated Nov. 5, 2007. |
International Search Report for PCT/AU2004/001832, dated Mar. 24, 2005. |
International Search Report for PCT/AU2007/001936, dated Mar. 4, 2008. |
Joel W. Beam, “Tissue Adhesives for Simple Traumatic Lacerations,” Journal of Athletic Training, 2008, vol. 43, No. 2, pp. 222-224. |
Merriam-Webster Online Dictionary definition of moveable from the 14th century. |
Office Action dated Dec. 22, 2009 in European Appln. No. 04802133.1. |
Office Action issued in Japanese Application No. 2007-513621 (dated Aug. 24, 2010) with English translation. |
ResMed Co.—Mask Products—http://resmed.com/portal/site/ResMedUS/index.jsp?. |
Respironics Co.—Mask Family—http://masksfamily.respironics.com/. |
Snapp Nasal Interface, Tiara Medical Systems, Inc.—http://www.tiaramed.com/asp_shops/shopdisplayproducts.asp?id=109&cat=SNAPP%2A+Nasal+Interface. |
Subbu Venkatraman et al., “Review Skin Adhesives and Skin Adhesion 1. Transdermal Drug Delivery Systems,” Biomaterials, vol. 19, 1998, pp. 1119-1136. |
Supplementary European Search Report dated Sep. 8, 2009 in European Appln. No. 04802133.1. |
Unsolicited email from Elson Silva, PhD, dated Mar. 28, 2008, “Requesting IDS of U.S. Pat. No. 6,766,817 for patents on fluids moving on porosity by Unsaturated Hydraulic Flow,” (email provided in both HTML and plain text format). |
International Search Report PCT/AU2003/001163, dated Nov. 4, 2003. |
International Search Report PCT/AU2003/001471, dated Feb. 12, 2004. |
International Search Report PCT/AU2009/000240, dated May 21, 2009. |
International Search Report PCT/AU2009/000262, dated Jun. 9, 2009. |
International Search Report PCT/AU2009/001144, dated Dec. 18, 2009. |
Office Action issued in European Appln. No. 05746824.1 (dated Mar. 22, 2011). |
A Communication pursuant to Article 94(3) EPC dated Apr. 4, 2017, in a corresponding EP Application No. 09 716 773.8 (9 pages). |
A Communication Pursuant to Article 94(3) EPC dated Jun. 4, 2018, in a corresponding European Patent Application No. EP 09 716 773.8 (10 pages). |
Number | Date | Country | |
---|---|---|---|
20180304037 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12735977 | US | |
Child | 16022180 | US |