Foamable composition combining a polar solvent and a hydrophobic carrier

Information

  • Patent Grant
  • 10117812
  • Patent Number
    10,117,812
  • Date Filed
    Wednesday, July 19, 2006
    18 years ago
  • Date Issued
    Tuesday, November 6, 2018
    6 years ago
Abstract
The present invention relates to a foamable vehicle or cosmetic or pharmaceutical composition, comprising: (1) an organic carrier, at a concentration of 10% to 70% by weight, wherein said organic carrier concurrently comprises: (i) at least one hydrophobic organic carrier, and (ii) at least one polar solvent; (2) at least one surface-active agent; (3) water; and (4) at least one liquefied or compressed gas propellant at a concentration of 3% to 25% by weight of the total composition.
Description
BACKGROUND OF THE INVENTION

This invention relates to foamable pharmaceutical and cosmetic compositions.


Foams and, in particular, foam emulsions are complicated systems which do not form under all circumstances. Changes in foam emulsion composition, such as by the addition of active ingredients may destabilize the foam. There is therefore a need for a foam composition which provides desirable properties to the skin and can remain stable whilst accommodating a variety of active ingredients.


U.S. Pat. No. 6,126,920 (“the '920 patent”) discloses treatment of various skin diseases, and in particular, scalp psoriasis, using a foamable pharmaceutical composition containing a corticosteroid active substance, an aliphatic alcohol, water, a fatty alcohol, a surface-active agent, a propellant and a buffering agent. The foamable composition contains 40-90% w/w composition of an aliphatic alcohol. The '920 patent is typical of many compositions that use aliphatic alcohols in the foam composition. The alcohol promotes fast drying and thereby attempts to address the sticky feeling left by many topical formulations after application; however, alcohols, and in particular the methyl, ethyl and isopropyl alcohols preferred in the '920 patent, are defatting agents and may cause skin to become dry and cracked. U.S. Pat. Application Pub. No. US2004/0151671 provides pharmaceutical compositions in a pressurized container, comprising a quick breaking alcoholic foaming agent. U.S. Pat. No. 5,783,202 provides a pediculicidal mousse composition containing a pediculicidal agent containing (a) from about 0.1 to about 10% w/w of a pediculicidal agent (b) about 70 to about 97% w/w of a foaming agent, which is preferably a quick breaking alcoholic foaming agent; and (c) from about 3 to about 20% w/w of an aerosol propellant. U.S. Pat. No. 6,730,288 teaches a pharmaceutical foam composition including (a) an active ingredient; (b) an occlusive agent; (c) an aqueous solvent; and (d) an organic cosolvent; wherein the active ingredient is insoluble in water and insoluble in both water and the occlusive agent; and wherein there is enough occlusive agent to form an occlusive layer on the skin.


A few dermatological foam products are available on the market.


Olux™ Foam, produced by Connetics, Inc., contains clobetasol propionate. Each gram of Olux™ Foam contains 0.5 mg clobetasol propionate, USP, in a thermolabile foam, which consists of ethanol (60%), purified water, propylene glycol, cetyl alcohol, stearyl alcohol, polysorbate 60, citric acid, and potassium citrate. It is dispensed from an aluminum can pressurized with a hydrocarbon propellant (propane/butane). Luxiq™ corticosteroid foam medication contains 1.2 mg betamethasone valerate per gram, in a vehicle, comprising ethanol (60.4%), purified water, propylene glycol, cetyl alcohol, stearyl alcohol, polysorbate 60, citric acid, and potassium citrate, and pressurized with a hydrocarbon propellant. Alcohol is known to impair the integrity of the skin barrier, dry the skin and cause skin irritation. The incidence skin irritation (burning, itching and stinging) as detailed the package inserts of the above mentioned products is very high (54%), probably due to the high alcohol content. Moreover, the respective incidence of skin irritation caused by the vehicle of these foams is 75%.


Thus, while alcohol is useful in solubilizing an active agent and enabling effective dermal penetration of an active agent is desirable, the development of a safe foam vehicle, which will overcome the evident skin drying and irritation caused by alcohol, is warranted.


Furthermore, foam compositions that possess a lesser degree of thermal sensitivity, thus being more useful for the treatment of large skin areas are desired.


SUMMARY OF THE INVENTION

The present invention relates to a foamable vehicle or cosmetic or pharmaceutical composition comprising:


(1) an organic carrier, at a concentration of about 10% to about 70% by weight, wherein said organic carrier concurrently comprises:

    • (i) at least one hydrophobic organic carrier and
    • (ii) at least one polar solvent


(2) at least one surface-active agent;


(3) water; and


(4) at least one liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.


The present invention further relates to said composition comprising an active agent.


In some embodiments, the foamable cosmetic or pharmaceutical composition is non-flammable, wherein said gas propellant contains hydrofluorocarbon.


The present invention further provides a method of treating, alleviating or preventing a disorder of mammalian subject, comprising administering a therapeutically effective amount of the above-mentioned compositions to an afflicted target site.


The present invention further provides use of a therapeutically effective amount of the above-mentioned compositions in the manufacture of a medicament.


The present invention further provides a therapeutically effective amount of the above-mentioned compositions for use in the manufacture of a medicament.







DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a safe and effective foamable cosmetic or pharmaceutical vehicle or composition. The vehicle or composition contains a polar solvent, which can optionally be a short-chain alcohol, which possesses (as such) skin drying and skin irritation properties; however, the composition also contains a hydrophobic carrier, which counteracts these undesirable effects and overcomes these drawbacks.


In one or more embodiments, the foamable cosmetic or pharmaceutical vehicle includes:


(1) an organic carrier, at a concentration of about 10% to about 70% by weight, wherein said organic carrier concurrently comprises:


(i) at least one hydrophobic organic carrier and


(ii) at least one polar solvent


(2) at least one surface-active agent;


(3) water; and


(4) at least one liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.


In one or more embodiments the foamable cosmetic or pharmaceutical vehicle includes:


(1) an organic carrier, at a concentration of about 10% to about 70% by weight, wherein said organic carrier concurrently comprises


(i) at least one hydrophobic organic carrier, and


(ii) at least one polar solvent;


(2) about 0.1% to about 5% by weight of at least one surface-active agent;


(3) Water; and


(4) at least one liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.


In one or more embodiments a foamable cosmetic or pharmaceutical vehicle is provided wherein the ratio of the hydrophobic organic carrier and the polar solvent are selected to provide a selected pharmacological or safety property;


In one or more embodiments a foamable cosmetic or pharmaceutical vehicle is provided also incorporating a polymeric agent.


In one or more embodiments the polymeric agent is selected from a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent and can be from about 0.01% to about 5% by weight


In one or more embodiments, a pharmaceutical or cosmetic foamable product is provided, wherein a pharmaceutical or a cosmetic active agent is incorporated in a foamable vehicle, which contains a polar solvent and a hydrophobic organic carrier.


Thus, in one or more embodiments, the pharmaceutical or cosmetic foamable product comprises:


(1) an effective concentration of at least one pharmaceutical or cosmetic active agent;


(2) an organic carrier, at a concentration of about 10% to about 70% by weight, wherein said organic carrier concurrently comprises


(i) at least one hydrophobic organic carrier


(ii) at least one polar solvent;


(3) about 0.1% to about 5% by weight of at least one surface-active agent; and


(4) at least one liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.


In one or more embodiments of the pharmaceutical or cosmetic foamable product is non-flammable.


Water and optional ingredients are added to complete the total mass to 100%.


All % values are provided on a weight (w/w) basis.


Polar Solvent


A “polar solvent” is an organic solvent, typically soluble in both water and oil. Certain polar solvents posses the beneficial property of a humectant, being a substance, which helps retain moisture, for example propylene glycol and glycerin.


In one or more embodiments, the polar solvent is a humectant.


According to one or more embodiments, the polar solvent comprises a short chain alcohol. Short chain alcohols, having up to 5 carbon atoms in their carbon chain skeleton and one hydroxyl group, such as ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol and pentanol. In one or more embodiments the concentration of the short chain alcohols is from about 5% to about 70%, preferably from about 10% to about 60%.


In one or more embodiments, the polar solvent is a polyol. Polyols are organic substances that contain at least two hydroxy groups in their molecular structure.


In one or more embodiments, the polar solvent contains an diol (a compound that contains two hydroxy groups in its molecular structure), such as propylene glycol (e.g., 1,2-propylene glycol and 1,3-propylene glycol), butanediol (e.g., 1,4-butanediol), butanediol (e.g., 1,3-butanediol and 1,4-butenediol), butynediol, pentanediol (e.g., 1,5-pentanediol), hexanediol (e.g., 1,6-hexanediol), octanediol (e.g., 1,8-octanediol), neopentyl glycol, 2-methyl-1,3-propanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol and dibutylene glycol.


In one or more embodiments, the polar solvent contains a triol (a compound that contains three hydroxy groups in its molecular structure), such as glycerin and 1,2,6-Hexanetriol.


Other non-limiting examples of polar solvents include pyrrolidones, (such as N-methyl-2-pyrrolidone and 1-methyl-2-pyrrolidinone), dimethyl isosorbide, 1,2,6-hexapetriol, dimethyl sulfoxide (DMSO), ethyl proxitol, dimethylacetamide (DMAc) and alpha hydroxy acids, such as lactic acid and glycolic acid.


According to still other embodiments, the polar solvent is a polyethylene glycol (PEG) or PEG derivative that is liquid at ambient temperature, including PEG200 (MW (molecular weight) about 190-210 kD), PEG300 (MW about 285-315 kD), PEG400 (MW about 380-420 kD), PEG600 (MW about 570-630 kD) and higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.


Polar solvents are known to enhance the penetration of active agent into the skin and through the skin, and therefore, their inclusion in the composition of the present invention is desirable, despite their undesirable skin drying and irritation potential. There is at one level a commonality between the different polar solvents and their penetration enhancement properties. However, lower molecular weight alcohols can sometimes be more potent as a solvent, for example by extracting lipids from the skin layers more effectively, which characteristic can adversely affect the skin structure and cause dryness and irritation. Therefore the selection of the hydrophobic carrier to counteract these negative effects may be of more importance when using the lower molecular weight alcohols.


Hydrophobic Solvent


A “hydrophobic organic carrier” as used herein refers to a material having solubility in distilled water at ambient temperature of less than about 1 gm per 100 mL, more preferable less than about 0.5 gm per 100 mL, and most preferably less than about 0.1 gm per 100 mL.


The identification of a hydrophobic organic carrier or “hydrophobic solvent”, as used throughout this specification synonymously, is not intended to characterize the solubilization capabilities of the solvent for any specific active agent or any other component of the foamable composition. Rather, such information is provided to aid in the identification of materials suitable for use as a hydrophobic carrier in the foamable compositions described herein.


In one or more embodiments, the hydrophobic organic carrier is a high-melting point hydrocarbon, such as, petrolatum.


In one or more other embodiments the use of high melting point hydrocarbons, such as petrolatum in concentrations of more than 10%, are not desirable since they have a waxy feeling when applied to the skin; yet, in certain additional embodiments, when an extensive refatting effect is required, then petrolatum in concentrations of more than 10%, for example between about 10% and about 50% is included in the composition of the present invention.


According to one or more embodiments, hydrophobic solvents are liquid oils originating from vegetable, marine or animal sources. Suitable liquid oil includes saturated, unsaturated or polyunsaturated oils. By way of example, the unsaturated oil may be olive oil, corn oil, soybean oil, canola oil, cottonseed oil, coconut oil, sesame oil, sunflower oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, flaxseed oil, wheat germ oil, evening primrose oils or mixtures thereof, in any proportion.


Suitable hydrophobic solvents also include polyunsaturated oils containing poly-unsaturated fatty acids. In one or more embodiments, the unsaturated fatty acids are selected from the group of omega-3 and omega-6 fatty acids. Examples of such polyunsaturated fatty acids are linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Such unsaturated fatty acids are known for their skin-conditioning effect, which contribute to the therapeutic benefit of the present foamable composition. Thus, the hydrophobic solvent can include at least 6% of an oil selected from omega-3 oil, omega-6 oil, and mixtures thereof.


In the context of the present invention, oils that possess therapeutically beneficial properties are termed as “therapeutically active oil.”


Another class of hydrophobic solvents is the essential oils, which are also considered therapeutically active oils, and which contain active biologically occurring molecules and, upon topical application, exert a therapeutic effect. Non-limiting examples of essential oils include rosehip oil, which contain retinoids and is known to reduce acne and post-acne scars, and tea tree oil, which possess antibacterial, antifungal and antiviral properties. Other examples of essential oils are oils of anise, basil, bergemont, camphor, cardamom, carrot, canola, cassia, catnip, cedarwood, citronella, clove, cypress, eucalyptus, frankincense, garlic, ginger, grapefruit, hyssop, jasmine, jojova, lavender, lavandin, lemon, lime, mandarin, marjoram, myrrh, neroli, nutmeg, orange, peppermint, petitgrain, rosemary, sage, spearmint, star anise, tangerine, thyme vanilla, verbena and white clover.


Another class of therapeutically active oils includes liquid hydrophobic plant-derived oils, which are known to possess therapeutic benefits when applied topically.


Silicone oils also may be used and are desirable due to their known skin protective and occlusive properties. Suitable silicone oils include non-volatile silicones, such as polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers, polydimethylsiloxanes (dimethicones) and poly(dimethylsiloxane)-(diphenyl-siloxane) copolymers. Silicone oils are also considered therapeutically active oil, due to their barrier retaining and protective properties.


A further class of hydrophobic carriers includes hydrophobic liquids, selected from the family of organic liquids described as “emollients.” Emollients possess a softening or soothing effect, especially when applied to body areas, such as the skin and mucosal surfaces. Examples of suitable emollients include isopropyl myristate, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, cetyl acetate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, octyl dodecanol, sucrose esters of fatty acids and octyl hydroxystearate.


The foamable composition of the present invention can be an emulsion, or microemulsion, including an aqueous phase and an organic carrier phase.


One non-limiting benefit of combining a polar solvent and a hydrophobic carrier is apparent in the resulting conservation of skin barrier properties.


Another non-limiting benefit of combining a polar solvent and a hydrophobic carrier is further apparent in the reduction of skin irritation.


Another non-limiting benefit of the vehicle or composition of the present invention is to provide increased penetration of the active or beneficial agent whilst replenishing the skin for example by moisturizing or adding fats or oils.


The ratio between the polar solvent and the hydrophobic carrier is determined according to the desirable pharmacologic and safety properties of the product. Typically, the polar solvent to hydrophobic carrier ranges between about 1:4 and about 4:1, for example, about 1:4, about 1:2, about 3:4, about 1:1, about 5:4, about 4:2, about 2:1, about 3:1 and about 4:1. When high solubilization and/or enhanced dermal or transdermal delivery of a drug is desirable, the polar solvent to hydrophobic carrier is selected within the range of about 1:1 and about 4:1, for example, about 1:1, about 5:4. about 6:4, about 7:4, about 2:1, about 3:1 and about 4:1 Yet, in other case, when the need of enhanced skin protection and skin barrier build-up is more pronounced, the polar solvent to hydrophobic carrier is selected within the range of about 2:8 and about 1:1, for example, about 1:4, about 1:2, about 3:4 and about 1:1.


The following table, Table 1 exemplifies, in a non-limiting manner, pairs of polar solvent and the hydrophobic carrier, as provided in the present invention. The examples of the previous paragraph are incorporated herein by reference.
















Exemplary
Polar Solvent/



Exemplary Polar
Hydrophobic
Hydrophobic


Solvent
Carrier
Carrier Ratio
Comment







A short chain
A hydrophobic
Between about
To provide enhanced


alcohol, selected
carrier, selected from
1:4 and about
delivery of an active


from ethanol,
mineral oil,
4:1.
agent, while conserving


propanol,
petrolatum, isopropyl

skin barrier


isopropanol,
myristate, isopropyl

To provide enhanced


butanol
palmytate, a

skin barrier build-up,



triglyceride and

which facilitates the



silicone oil

recovery of damaged





skin.


A short chain
Ester of fatty acid
Between about
To provide enhanced


alcohol, selected

1:4 and about
delivery of an active


from ethanol,

4:1.
agent, while conserving


propanol,


skin barrier


isopropanol,


To provide enhanced


butanol


skin barrier build-up,





which facilitates the





recovery of damaged





skin.


A short chain
Combination of at
Between about
To provide enhanced


alcohol, selected
least one triglyceride
1:4 and about
delivery of an active


from ethanol,
and at least one
4:1.
agent, while conserving


propanol,
ester of a fatty acid

skin barrier


isopropanol,


To provide enhanced


butanol


skin barrier build-up,





which facilitates the





recovery of damaged





skin.


A polyethylene
A hydrophobic
Between about
To provide enhanced


glycol PEG
carrier, selected from
1:1 and about
delivery of an active



mineral oil,
4:1
agent, while conserving



petrolatum, isopropyl

skin barrier



myristate, isopropyl



palmytate, a



triglyceride and



silicone oil


Dimethyl
A hydrophobic
Between about
To provide enhanced


isosorbide
carrier, selected from
1:1 and about
delivery of an active



mineral oil,
4:1
agent, while conserving



petrolatum, isopropyl

skin barrier



myristate, isopropyl

To provide enhanced



palmytate, a

skin barrier build-up,



triglyceride and

which facilitates the



silicone oil

recovery of damaged





skin.


Dimethyl
A triglyceride
Between about
To provide increased


isosorbide

4:1 and about
solubility of a drug,




1:4,
enhanced delivery and





skin barrier build-up


Dimethyl
Capric-caprylic
Between about
To provide increased


isosorbide
triglyceride
1:4 and about
solubility of a drug,




1:1
enhanced delivery and





skin barrier build-up


Dimethyl
Ester of fatty acid
Between about
To provide increased


isosorbide

1:4 and about
solubility of a drug,




1:1
enhanced delivery and





skin barrier build-up


Dimethyl
Combination of at
Between about
To provide increased


isosorbide
least one triglyceride
1:4 and about
solubility of a drug,



and at least one
1:1
enhanced delivery and



ester of a fatty acid

skin barrier build-up


A diol selected
A hydrophobic
Between about
To provide enhanced


from the group of
carrier, selected from
4:1 and about
skin barrier build-up


propylene glycol,
mineral oil,
1:4


butanediol,
petrolatum, isopropyl


hexanediol,
myristate, isopropyl


octanediol,
palmytate, a


propanediol,
triglyceride and


diethylene glycol,
silicone oil


triethylene glycol,


tetraethylene


glycol, dipropylene


glycol and


dibutylene glycol.


A triol (a
A hydrophobic
Between about
To provide enhanced


compound that
carrier, selected from
4:1 and about
skin barrier build-up


contains three
mineral oil,
1:4


hydroxy groups in
petrolatum, isopropyl


its molecular
myristate, isopropyl


structure), such as
palmytate, a


glycerin and 1,2,6-
triglyceride


Hexanetriol.


An alpha hydroxy
A hydrophobic
Between about
To provide enhanced


acids, such as
carrier, selected from
4:1 and about
skin barrier build-up


lactic acid and
mineral oil,
1:4


glycolic acid
petrolatum, isopropyl



myristate, isopropyl



palmytate, a



triglyceride


DMSO
A hydrophobic
Between about
To provide enhanced



carrier, selected from
4:1 and about
skin barrier build-up



mineral oil,
1:4,



petrolatum, isopropyl



myristate, isopropyl



palmytate, a



triglyceride


A pyrrolidone,
A hydrophobic
Between about
To provide enhanced


such as N-methyl-
carrier, selected from
4:1 and about
skin barrier build-up


2-pyrrolidone and
mineral oil,
1:4


1-methyl-2-
petrolatum, isopropyl


pyrrolidinone
myristate, isopropyl



palmytate, a



triglyceride


A combination of
A hydrophobic
Between about
To provide enhanced


at least two polar
carrier, selected from
1:4 and about
delivery of an active


solvents
mineral oil,
4:1.
agent, while conserving



petrolatum, isopropyl

skin barrier



myristate, isopropyl

To provide enhanced



palmytate, a

skin barrier build-up,



triglyceride and

which facilitates the



silicone oil

recovery of damaged





skin.


A combination of
Ester of fatty acid
Between about
To provide increased


at least two polar

1:4 and about
solubility of a drug,


solvents

1:1
enhanced delivery and





skin barrier build-up


A combination of
Combination of at
Between about
To provide increased


at least two polar
least one triglyceride
1:4 and about
solubility of a drug,


solvents
and at least one
1:1
enhanced delivery and



ester of a fatty acid

skin barrier build-up









In one or more embodiments, the polar solvent consists of a single polar solvent. Yet, in additional embodiments, the polar solvent consists of a combination of two or more polar solvents.


In one or more embodiments, the hydrophobic carrier consists of a single polar solvent. Yet, in additional embodiments, the hydrophobic carrier consists of a combination of two or more hydrophobic carriers.


In order to derive a composition which is readily foamable upon release from a pressurized container, additional components are required, as provided hereinbelow.


Surface Active Agent


Surface-active agents (also termed “surfactants”) include any agent linking oil and water in the composition, in the form of emulsion. A surfactant's hydrophilic/lipophilic balance (HLB) describes the emulsifier's affinity toward water or oil. The HLB scale ranges from 1 (totally lipophilic) to 20 (totally hydrophilic), with 10 representing an equal balance of both characteristics. Lipophilic emulsifiers form water-in-oil (w/o) emulsions; hydrophilic surfactants form oil-in-water (o/w) emulsions. The HLB of a blend of two emulsifiers equals the weight fraction of emulsifier A times its HLB value plus the weight fraction of emulsifier B times its HLB value (weighted average). The surface-active agent according to the present invention has an HLB value, suitable for stabilizing an emulsion comprising the aqueous phase and the organic carrier of the composition.


According to one or more embodiments of the present invention, the surface-active agent has a hydrophilic lipophilic balance (HLB) between about 9 and about 14, which is the required HLB (the HLB required to stabilize an O/W emulsion of a given oil) of most oils and hydrophobic solvents. Thus, in one or more embodiments, the composition contains a single surface active agent having an HLB value between about 9 and about 14 (e.g., about 9, about 10, about 11, about 12, about 13 and about 14), and in one or more embodiments, the composition contains more than one surface active agent and the weighted average of their HLB values is between about 9 and about 14 (e.g. about 9, about 10, about 11, about 12, about 13 and about 14). Yet, in other embodiments, when a water-in-oil emulsion is desirable, the composition contains one or more surface-active agents, having an HLB value between about 2 and about 9 (e.g., about 2, about 3, about 4, about 5, about 6, about 7, about 8 and about 9).


The surface-active agent is selected from anionic, cationic, nonionic, zwitterionic, amphoteric and ampholytic surfactants, as well as mixtures of these surfactants. Such surfactants are well known to those skilled in the therapeutic and cosmetic formulation art. Non-limiting examples of possible surfactants include polysorbates, such as polyoxyethylene (20) sorbitan monostearate (Tween 60) and poly(oxyethylene) (20) sorbitan monooleate (Tween 80); poly(oxyethylene) (POE) fatty acid esters, such as Myrj 45, Myrj 49, Myrj 52 and Myrj 59; poly(oxyethylene) alkylyl ethers, such as poly(oxyethylene) cetyl ether, poly(oxyethylene) palmityl ether, polyethylene oxide hexadecyl ether, polyethylene glycol cetyl ether, brij 38, brij 52, brij 56 and brij W1; sucrose esters, partial esters of sorbitol and its anhydrides, such as sorbitan monolaurate and sorbitan monolaurate; mono or diglycerides, isoceteth-20, sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate and betaines.


In one or more embodiments of the present invention, the surface-active agent includes a non-ionic surfactant. Ionic surfactants are known to be irritants. Therefore, non-ionic surfactants are preferred in applications including sensitive tissue such as found in most mucosal tissues, especially when they are infected or inflamed. We have surprisingly found that non-ionic surfactants alone provide foams of excellent quality, i.e. a score of “E” according to the grading scale discussed herein below.


In one or more embodiments, the surface-active agent includes a mixture of a non-ionic surfactant and an ionic surfactant in a ratio in the range of about 100:1 to about 6:1. In one or more embodiments, the non-ionic to ionic surfactant ratio is greater than about 6:1, or greater than about 8:1; or greater than about 14:1, or greater than about 16:1, or greater than about 20:1.


In one or more embodiments of the present invention, a combination of a non-ionic surfactant and an ionic surfactant (such as sodium lauryl sulphate and cocamidopropylbetaine) is employed, at a ratio of between 1:1 and 20:1, for example, about 1:1, about 4:1, about 8:1, about 12:1, about 16:1 and about 20:1 or at a ratio of 4:1 to 10:1, for example, about 4:1, about 6:1, about 8:1 and about 10:1. The resultant foam has a low specific gravity, e.g., less than 0.1 g/ml.


Thus, in an exemplary embodiment, a combination of an non-ionic surfactant having HLB of less than about 9 and an non-ionic surfactant having HLB of equal or more than about 9 is employed, at a ratio of between about 1:8 and about 8:1, or at a ratio of about 4:1 to about 1:4, wherein the HLB of the combination of emulsifiers is between about 9 and about 14.


In one or more embodiments of the present invention, the surface-active agent includes mono-, di- and trimesters of sucrose with fatty acids (sucrose esters), prepared from sucrose and esters of fatty acids or by extraction from sucro-glycerides. Suitable sucrose esters include those having high monoester content, which have higher HLB values.


The total surface-active agent is in the range of about 0.1 to about 5% of the composition, and is occasionally less than about 2% or less than about 1%.


Polymeric Agent


In one or more embodiments, the foamable composition contains a polymeric agent. The polymeric agent serves to stabilize the foam composition and to control drug residence in the target organ. Exemplary polymeric agents are classified below in a non-limiting manner. In certain cases, a given polymer can belong to more than one of the classes provided below.


In one or more embodiments, the composition of the present invention includes a gelling agent. A gelling agent controls the residence of a therapeutic composition in the target site of treatment by increasing the viscosity of the composition, thereby limiting the rate of its clearance from the site. Many gelling agents are known in the art to possess mucoadhesive properties.


The gelling agent can be a natural gelling agent, a synthetic gelling agent and an inorganic gelling agent. Exemplary gelling agents that can be used in accordance with one or more embodiments of the present invention include, for example, naturally-occurring polymeric materials, such as locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum, sodium alginate, xanthan gum, quince seed extract, tragacanth gum, guar gum, starch, chemically modified starches and the like, semi-synthetic polymeric materials such as cellulose ethers (e.g. hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxypropylmethyl cellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose and carboxymethylhydroxyethylcellulose), guar gum, hydroxypropyl guar gum, soluble starch, cationic celluloses, cationic guars, and the like, and synthetic polymeric materials, such as carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and the like. Mixtures of the above compounds are also contemplated.


Further exemplary gelling agents include the acrylic acid/ethyl acrylate copolymers and the carboxyvinyl polymers. Non-limiting examples include Carbopol® 934, Carbopol® 940, Carbopol® 950, Carbopol® 980, Carbopol® 951 and Carbopol® 981.


Yet, in other embodiments, the gelling agent includes inorganic gelling agents, such as silicone dioxide (fumed silica).


Mucoadhesive/bioadhesion has been defined as the attachment of synthetic or biological macromolecules to a biological tissue. Mucoadhesive agents are a class of polymeric biomaterials that exhibit the basic characteristic of a hydrogel, i.e. swell by absorbing water and interacting by means of adhesion with the mucous that covers epithelia. Compositions of the present invention may contain a mucoadhesive macromolecule or polymer in an amount sufficient to confer bioadhesive properties. The bioadhesive macromolecule enhances the delivery of biologically active agents on or through the target surface. The mucoadhesive macromolecule may be selected from acidic synthetic polymers, preferably having an acidic group per four repeating or monomeric subunit moieties, such as poly(acrylic)- and/or poly(methacrylic) acid (e.g., Carbopol®, Carbomer®), poly(methylvinyl ether/maleic anhydride) copolymer, and their mixtures and copolymers; acidic synthetically modified natural polymers, such as carboxymethylcellulose (CMC); neutral synthetically modified natural polymers, such as (hydroxypropyl)methylcellulose; basic amine-bearing polymers such as chitosan; acidic polymers obtainable from natural sources, such as alginic acid, hyaluronic acid, pectin, gum tragacanth, and karaya gum; and neutral synthetic polymers, such as polyvinyl alcohol or their mixtures. An additional group of mucoadhesive polymers includes natural and chemically modified cyclodextrin, especially hydroxypropyl-β-cyclodextrin. Such polymers may be present as free acids, bases, or salts, usually in a final concentration of about 0.01% to about 0.5% by weight. Many mucoadhesive agents are known in the art to also possess gelling properties.


In one or more embodiments, the polymeric agent contains a film-forming component. The film-forming component may include a water-insoluble alkyl cellulose or hydroxyalkyl cellulose. Exemplary alkyl cellulose or hydroxyalkyl cellulose polymers include ethyl cellulose, propyl cellulose, butyl cellulose, cellulose acetate, hydroxypropyl cellulose, hydroxybutyl cellulose, and ethylhydroxyethyl cellulose, alone or in combination. In addition, a plasticizer or a cross-linking agent may be used to modify the polymer's characteristics. For example, esters such as dibutyl or diethyl phthalate, amides such as diethyldiphenyl urea, vegetable oils, fatty acids and alcohols such as oleic and myristyl acid may be used in combination with the cellulose derivative.


In one or more embodiments, the polymeric agent includes a phase change polymer, which alters the composition behavior from fluid-like prior to administration to solid-like upon contact with the target mucosal surface. Such phase change results from external stimuli, such as changes in temperature or pH and exposure to specific ions (e.g., Ca2+). Non-limiting examples of phase change polymers include poly(N-isopropylamide) and Poloxamer 407®.


The polymeric agent is present in an amount in the range of about 0.01% to about 5.0% by weight of the foam composition. In one or more embodiments, it is typically less than about 1 wt % of the foamable composition.


Preferably, a therapeutically effective foam adjuvant is included in the foamable compositions of the present invention to increase the foaming capacity of surfactants and/or to stabilize the foam. In one or more embodiments of the present invention, the foam adjuvant agent includes fatty alcohols having 15 or more carbons in their carbon chain, such as cetyl alcohol and stearyl alcohol (or mixtures thereof). Other examples of fatty alcohols are arachidyl alcohol (C20), behenyl alcohol (C22), 1-triacontanol (C30), as well as alcohols with longer carbon chains (up to C50). Fatty alcohols, derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, are especially well suited as foam adjuvant agents. The amount of the fatty alcohol required to support the foam system is inversely related to the length of its carbon chains. Foam adjuvants, as defined herein are also useful in facilitating improved spreadability and absorption of the composition.


In one or more embodiments of the present invention, the foam adjuvant agent includes fatty acids having 16 or more carbons in their carbon chain, such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (up to C50), or mixtures thereof. As for fatty alcohols, the amount of fatty acids required to support the foam system is inversely related to the length of its carbon chain.


In one or more embodiments, a combination of a fatty acid and a fatty ester is employed.


Optionally, the carbon atom chain of the fatty alcohol or the fatty acid may have a double bond. A further class of foam adjuvant agent includes a branched fatty alcohol or fatty acid. The carbon chain of the fatty acid or fatty alcohol also can be substituted with a hydroxyl group, such as 12-hydroxy stearic acid.


A property of the fatty alcohols and fatty acids used in context of the composition of the present invention is related to their therapeutic properties per se. Long chain saturated and mono unsaturated fatty alcohols, e.g., stearyl alcohol, erucyl alcohol, arachidyl alcohol and behenyl alcohol (docosanol) have been reported to possess antiviral, antiinfective, antiproliferative and antiinflammatory properties (see, U.S. Pat. No. 4,874,794). Longer chain fatty alcohols, e.g., tetracosanol, hexacosanol, heptacosanol, octacosanol, triacontanol, etc., are also known for their metabolism modifying properties and tissue energizing properties. Long chain fatty acids have also been reported to possess anti-infective characteristics.


In one or more embodiments, the active agent is encapsulated in particles, microparticles, nanoparticles, microcapsules, spheres, microspheres, nanocapsules, nanospheres, liposomes, niosomes, polymer matrix, nanocrystals or microsponges.


The composition of the present invention may further optionally include a variety of formulation excipients, which are added in order to fine-tune the consistency of the formulation, protect the formulation components from degradation and oxidation and modify their consistency. Such excipients may be selected, for example, from stabilizing agents, antioxidants, humectants, preservatives, colorant and odorant agents and other formulation components, used in the art of formulation.


Aerosol propellants are used to generate and administer the foamable composition as a foam. The total composition including propellant, foamable compositions and optional ingredients is referred to as the foamable carrier. The propellant makes up about 3% to about 25% (w/w) of the foamable carrier or composition. Examples of suitable propellants include volatile hydrocarbons such as butane, propane, isobutane or mixtures thereof, and fluorocarbon gases.


Non-Flammable Stable Foam Compositions


Alcohol and organic solvents render foams inflammable. It has been surprisingly discovered that fluorohydrocarbon propellants, other than chloro-fluoro carbons (CMCs), which are non-ozone-depleting propellants, are particularly useful in the production of a non-flammable foamable composition. A test according to European Standard prEN 14851, titled “Aerosol containers-Aerosol foam flammability test” revealed that compositions containing an organic carrier that contains a hydrophobic organic carrier and/or a polar solvent, which are detected as inflammable when a hydrocarbon propellant is used, become non-flammable, while the propellant is an HFC propellant.


Such propellants include, but are not limited to, hydrofluorocarbon (HFC) propellants, which contain no chlorine atoms, and as such, fall completely outside concerns about stratospheric ozone destruction by chlorofluorocarbons or other chlorinated hydrocarbons. Exemplary non-flammable propellants according to this aspect of the invention include propellants made by DuPont under the registered trademark Dymel, such as 1,1,1,2 tetrafluoroethane (Dymel 134), and 1,1,1,2,3,3,3 heptafluoropropane (Dymel 227). HFCs possess Ozone Depletion Potential of 0.00 and thus, they are allowed for use as propellant in aerosol products.


Notably, the stability of foamable emulsions including HFC as the propellant is improved in comparison with the same composition made with a hydrocarbon propellant.


Active Agents


It is to be understood that the active agents useful herein can in some instances provide more than one benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit the active agent to that particular application or applications listed.


The composition of the present invention comprises an active agent that provides therapeutic or cosmetic activity.


Non-limiting examples of active agents include an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, a steroidal anti-inflammatory agent, a nonsteroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, a steroid, a vasoactive agent, a vasoconstrictor, a vasodilator, vitamin A, a vitamin A derivative, a retinoid, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a burn healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, an allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, an insecticide, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, talc, an anti-acne agent, a skin whitening agent, a self tanning agent, an anti-cellulite agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof at any proportion. The concentration of the active agent can be adapted to exert a therapeutic effect on a disease when applied to an afflicted area. Various different therapeutic effects of the herbs and their extracts are, for example, illustrated in the above-mentioned references.


In one or more embodiments the active agent may be an extract or tincture of one or more beneficial agents that have beneficial properties, for example, when applied to the skin, a body surface, a body cavity or a mucosal surface. The extract can be, for example, alcoholic, hydroalcoholic, propylene glycol, glycerine, dry, press, cold, hot, liquid carbon dioxide, oil or other process known in the art. The extract or tincture may comprise of substances of animal, plant, (such as herb, fruit, vegetable) mineral or other origin. Nonlimiting examples are proteins, polypeptides, sugars, hyularonic acid, and coal tar. Herbal extracts may be from any known therapeutic herb, as listed for example in Herbal Medicines, London: Pharmaceutical Press Electronic Version 2006 or in the American Herbal Association electronic publication Herbal gram or in German Commission E., such as, angelica, calendula, celery, coltsfoot, comfrey, dandelion, jamaica dogwood, kava, marshmallow, prickly ash, northem prickly ash, southern senna, valerian, agrimony, aloe vera, alfalfa, artichoke, avens, bayberry, bloodroot, blue flag, bogbean, boldo, boneset, broom, buchu, burdock, burnet, calamus, calendula, cascara, centaury, cereus, chamomile, german chamomile, roman chamomile, cinnamon, clivers, cohosh, black, cohosh, blue, cola, corn silk, couchgrass, cowslip, damiana, devil's claw, drosera, echinacea, elder, elecampane, euphorbia, eyebright, figwort, frangula, fucus, fumitory, garlic, golden seal, gravel root, ground ivy, guaiacum, hawthorn, holy thistle, hops, horehound black, horehound white, horse chestnut hydrangea, ispaghula, juniper, lady's lipper, liferoot, lime flower, liquorice, lobelia, maté, meadowsweet, mistletoe, motherwort, myrrh, nettle, parsley, parsley piert, passionflower, pennyroyal, pilewort, plantain, pleurisy root, pokeroot, poplar, pulsatilla, queen's delight, raspberry, red clover, rosemary, sage, sarsaparilla, sassafras, scullcap, senega, shepherd's purse, skunk cabbage, slippery elm, squill, St. john's wort, stone root, tansy, thyme, uva-ursi, vervain, wild carrot, wild lettuce, willow, witch hazel, yarrow and yellow dock.


When the extract is dissolved in a polar solvent, such as a short chain alcohol (e.g., ethanol and isopropyl alcohol), propylene glycol and glycerin, then the polar solvent of the extract can also comprise part or all of the “polar solvent” component of the foamable composition, as specified throughout this specification and likewise the polar solvent of the foamable composition can also comprise as part or all of the “polar solvent” component of the extract.


In one or more embodiments, the active agent is an anti-infective agent, selected from an antibiotic agent, an antibacterial agent, an anti-fungal agent, an anti-viral agent and an anti-parasite agent.


The antibacterial drug can be active against gram positive and gram-negative bacteria, protozoa, aerobic bacteria and unaerobic ones.


In one or more embodiments, the antibiotic agent is selected from the classes consisting of beta-lactam antibiotics, synthetic and semi-synthetic penicillins, aminoglycosides, ansa-type antibiotics, anthraquinones, antibiotic azoles, antibiotic glycopeptides, macrolides, antibiotic nucleosides, antibiotic peptides, antibiotic polyenes, antibiotic polyethers, quinolones, fluoroquinolones, antibiotic steroids, cyclosporines, sulfonamides, tetracycline, chloramphenicol, dicarboxylic acids, such as azelaic acid, salicylates, antibiotic metals, oxidizing agents, substances that release free radicals and/or active oxygen, cationic antimicrobial agents, quaternary ammonium compounds, biguanides, triguanides, bisbiguanides and analogs and polymers thereof and naturally occurring antibiotic compounds.


Additional antibacterial agents, which are non-specific, include strong oxidants and free radical liberating compounds, such as hydrogen peroxide, bleaching agents (e.g., sodium, calcium or magnesium hydochloride and the like), iodine, chlorohexidine and benzoyl peroxide.


The antifungal agent can be an azole compound. Exemplary azole compounds include azoles selected from the group consisting of azoles, diazoles, triazoles, miconazole, ketoconazole, clotrimazole, econazole, mebendazole, bifonazole, butoconazole, fenticonazole, isoconazole, oxiconazole, sertaconazole, sulconazole, thiabendazole, tiaconazole, fluconazole, itraconazole, ravuconazole and posaconazole.


Additional exemplary antifungal agents include griseofulvin, ciclopirox, amorolfine, terbinafine, Amphotericin B, potassium iodide, flucytosine (5FC) and any combination thereof at a therapeutically effective concentration.


In one or more embodiments, the active agent is an anti-viral agent. Any known antiviral agent, in a therapeutically effective concentration, can be incorporated in the foam composition of the present invention. Exemplary antiviral agents include, but not limited to, acyclovir, famciclovir, gancyclovir, valganciclovir and abacavir.


In another embodiment according to the present invention, the active agent is an anti-inflammatory or anti-allergic agent. Anti-inflammatory agents can be selected from the group of corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), anti-histamines, immunosuppressant agents, immunomodulators; and any combination thereof at a therapeutically effective concentration.


Non-limiting examples of corticosteroids include hydrocortisone, hydrocortisone acetate, desonide, betamethasone valerate, clobetasone-17-butyrate, fluocinonide, fluocinolone acetonide, alcometasone dipropionate, mometasone furoate, prednicarbate, triamcinolone acetonide, betamethasone-17-benzoate, methylprednisolone aceponate, betamethasone dipropionate, halcinonide, triamcinolone acetonide, halobetasol and clobetasol-17-propionate.


A second class of anti-inflammatory agents, which is useful in the foam of the present invention, includes the nonsteroidal anti-inflammatory agents (NSAIDs). The variety of compounds encompassed by this group is well known to those skilled in the art. Specific non-steroidal anti-inflammatory agents useful in the composition invention include, but are not limited to, oxicams, such as piroxicam, isoxicam, tenoxicam, sudoxicam; salicylates, such as salicylic acid, ethyl salicylate, methyl salycilate, aspirin, disalcid, benorylate, trilisate, safapryn, solprin, diflunisal, and fendosal; scetic acid derivatives, such as diclofenac, fenclofenac, indomethacin, sulindac, tolmetin, isoxepac, furofenac, tiopinac, zidometacin, acematacin, fentiazac, zomepirac, clindanac, oxepinac, felbinac, and ketorolac; fenamates, such as mefenamic, meclofenamic, flufenamic, niflumic, and tolfenamic acids; propionic acid derivatives, such as ibuprofen, naproxen, benoxaprofen, flurbiprofen, ketoprofen, fenoprofen, fenbufen, indopropfen, pirprofen, carprofen, oxaprozin, pranoprofen, miroprofen, tioxaprofen, suprofen, alminoprofen, and tiaprofenic; and pyrazoles, such as phenylbutazone, oxyphenbutazone, feprazone, azapropazone, and trimethazone.


Any further steroidal and nonsteroidal compounds, having the capacity to prevent, alleviate the symptoms of, treat or cure inflammation processes, are generally included, as possible anti-inflammatory agents, according to the present invention.


Antiallergic active agents include antihistamine compounds, including, in a non limiting manner, thylenediamines, such as pyrilamine (mepyramine), antazoline and methapyrilene; tripelennamine phenothiazines, such as promethazine, methdilazine and trimeprazine; ethanolamines, such as diphenhydramine, bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenylpyraline, doxylamine and phenyltoxamine; piperazines, such as cyclizine, buclizine, chlorcyclizine, hydroxyzine, meclizine and thiethylperazine; alkylamines, such as brompheniramine, pyrrobutamin, desbrompheniramine, tripolidine, dexchlorpherniramine, chlorpheniramine; dimethindene and pheniramine; and piperidines, such as cyproheptadine and azatadine. These active agents, as well as additional antihistamines can also be incorporated in the composition of the present invention.


The composition of the present invention may also comprise an anti-inflammatory or antiallergic agent, wherein said agent reduces the occurrence of pro-inflammatory cytokines or inhibits the effect of pro-inflammatory cytokines.


Immunosuppressant agents, immunoregulating agents and immunomodulators are chemically or biologically derived agents that modify the immune response or the functioning of the immune system (as by the stimulation of antibody formation or the inhibition of white blood cell activity). Immunosuppressant agents and immunomodulators include, among other options, cyclic peptides, such as cyclosporine, tacrolimus, tresperimus, pimecrolimus, sirolimus (rapamycin), verolimus, laflunimus, laquinimod and imiquimod.


In one or more embodiments, the active agent is a topical anesthetic. Examples of topical anesthetic drugs include, but not limited to, benzocaine, lidocaine, bupivacaine, chlorprocaine, dibucaine, etidocaine, mepivacaine, tetracaine, dyclonine, hexylcaine, procaine, cocaine, ketamine, pramoxine, and phenol. Mixtures of such anesthetic agents may be synergistically beneficial.


In one or more embodiments, the active agent is a “keratolytically active agent.” The term “keratolytically active agent” refers herein to a compound which loosens and removes the stratum corneum of the skin, or alters the structure of the keratin layers of the skin.


Suitable keratolytically active agents include phenol and substituted phenolic compounds. Such compounds are known to dissolve and loosen the intracellular matrix of the hyperkeratinized tissue. Dihydroxy benzene and derivatives thereof have been recognized as potent keratolytic agents. Resorcinol (m-dihydroxybenzene) and derivatives thereof are used in anti-acne preparations. Hydroquinone (p-dihydroxybenzene), besides its anti-pigmentation properties, is also keratolytic.


Vitamin A and its derivatives, such as retinoic acid, isoretinoic acid, retinol and retinal are another preferred class of keratolytically active agents.


Another group of keratolytically active agents include alpha-hydroxy acids, such as lactic acid and glycolic acid and their respective salts and derivatives; and beta-hydroxy acids, such as Salicylic acid (o-hydroxybenzoic acid) and its salts and pharmaceutically acceptable derivatives, which typically possess anti-inflammatory, as well as keratolytic, activity. Yet, another class of preferred keratolytically active agents includes urea and its derivatives.


In one or more embodiments, the active agent is a retinoid. Retinoids include, for example, retinol, retinal, all-trans retinoic acid and derivatives, isomers and analogs thereof. Etretinate, actiretin, isotretinoin, adapalene and tazarotene are further examples of said retinoid isomers and analogs.


In one or more embodiments, the active agent is an insecticide or an insect repellent agent.


In one or more embodiments, the active agent is an anti cancer agent.


In one or more embodiments, the active agent is a photodynamic therapy (PDT) agent. By way of example, such PDT agents can be modified porphyrins, chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbides, purpurins, m-THPC, mono-L-aspartyl chlorin e6, bacteriochlorins, phthalocyanines, benzoporphyrin derivatives, as well as photosensitizer precursors, such as aminolevulinic acid (ALA).


In one or more embodiments, the active agent is an agent useful in the treatment of burns, wounds, cuts and ulcers. The foam compositions of the present invention may comprise a combination of anti-infective agents (against bacteria, fungi and/or viruses), anti-inflammatory agents (steroidal and/or NSAIDs) and pain relieving components.


The foam compositions of the present invention, with or without further active ingredients, are suitable for the further application as “cosmeceutical” preparation (cosmetic products with therapeutic benefit), to treat “cosmetic” skin disorders, such as aging skin, wrinkles, hyperpigmentation (melasma, chloasma, freckles, etc.), scaly skin and other skin undesirable properties.


Any cosmetically active agent is considered an active agent in the context of the present invention. The CTFA Cosmetic Ingredient Handbook describes a wide variety of non-limiting cosmetic and pharmaceutical ingredients commonly used in the skin care industry, which are suitable for use in the compositions of the present invention. Examples of these ingredient classes include: abrasives, absorbents, aesthetic components such as fragrances, pigments, colorings/colorants, essential oils, astringents, etc. (e.g., clove oil, menthol, camphor, eucalyptus oil, eugenol, menthyl lactate, witch hazel distillate), anti-acne agents, anti-caking agents, antifoaming agents, anti-microbial agents (e.g., iodopropyl butylcarbamate), antioxidants, binders, biological additives, buffering agents, bulking agents, chelating agents, chemical additives, colorants, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, external analgesics, film formers or materials, e.g., polymers, for aiding the film-forming properties and substantivity of the composition (e.g., copolymer of eicosene and vinyl pyrrolidone), opacifying agents, pH adjusters, propellants, reducing agents, sequestrants, skin bleaching and lightening agents (e.g., hydroquinone, kojic acid, ascorbic acid, magnesium ascorbyl phosphate, ascorbyl glucosamine), skin-conditioning agents (e.g., humectants, including miscellaneous and occlusive), skin soothing and/or healing agents (e.g., panthenol and derivatives (e.g., ethyl panthenol), aloe vera, pantothenic acid and its derivatives, allantoin, bisabolol, and dipotassium glycyrrhizinate), skin treating agents, and vitamins and derivatives thereof.


In one or more embodiments, the active agent is an agent useful in the treatment of acne, wrinkles and scars. Examples of useful anti-acne actives include resorcinol, sulfur, salicylic acid and salicylates, alpha-hydroxy acids, nonsteroidal anti-inflammatory agents, benzoyl peroxide, retinoic acid, isoretinoic acid and other retinoid compounds, adapalene, tazarotene, azelaic acid and azelaic acid derivatives, antibiotic agents, such as erythromycin and clyndamycin, zinc salts and complexes, and combinations thereof, in a therapeutically effective concentration. Exemplary anti-wrinkle/anti-atrophy active agents suitable for use in the compositions of the present invention include sulfur-containing D and L amino acids and their derivatives and salts, particularly the N-acetyl derivatives; thiols; hydroxy acids (e.g., alpha-hydroxy acids such as lactic acid and glycolic acid and their derivatives and salts; or beta-hydroxy acids such as salicylic acid and salicylic acid salts and derivatives), urea, hyaluronic acid, phytic acid, lipoic acid; lysophosphatidic acid, skin peel agents (e.g., phenol, resorcinol and the like), vitamin B3 compounds (e.g., niacinamide, nicotinic acid and nicotinic acid salts and esters, including non-vasodilating esters of nicotinic acid (such as tocopheryl nicotinate), nicotinyl amino acids, nicotinyl alcohol esters of carboxylic acids, nicotinic acid N-oxide and niacinamide N-oxide), vitamin B5 and retinoids (e.g., retinol, retinal, retinoic acid, retinyl acetate, retinyl palmitate, retinyl ascorbate). In the case of dry, scaly skin (xerosis) and ichthyosis such agents can alleviate the symptoms by temporary relief of itching associated with these conditions.


In one or more embodiments, the active agent is an anti-oxidant or a radical scavenger. Anti-oxidants/radical scavengers such as ascorbic acid (vitamin C) and its salts, ascorbyl esters of fatty acids, ascorbic acid derivatives (e.g., magnesium ascorbyl phosphate, sodium ascorbyl phosphate, ascorbyl sorbate), tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, gallic acid and its alkyl esters, especially propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, lipoic acid, amines (e.g., N,N-diethylhydroxylamine, amino-guanidine), sulfhydryl compounds (e.g., glutathione), dihydroxy fumaric acid and its salts, lycine pidolate, arginine pilolate, nordihydroguaiaretic acid, bioflavonoids, curcumin, lysine, methionine, proline, superoxide dismutase, silymarin, tea extracts, grape skin/seed extracts, melanin, and rosemary extracts may be used.


It is further pointed out that polyunsaturated fatty acids, containing omega-3 and omega-6 fatty acids (e.g., linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are beneficial in the treatment of psoriasis and other skin inflammation conditions. Likewise, emollients and silicone oils exert moisture-retaining and skin protective effects on the skin. Thus, in a preferred embodiment, a skin protective foam is provided, wherein the hydrophobic carrier comprises in full or in part, an organic liquid selected from the group consisting of emollients, silicone oil and oils rich in unsaturated fatty acids.


In one or more embodiments, the active agent is a self-tanning active Agent, such as dihydroxyacetone.


According to another embodiment, the active agent comprises solid matter or particulate matter, i.e., material that is not soluble in the liquid carrier composition of the foamable composition. For definition purposes, solid matter shall mean material that is not soluble in the foamable composition more than 10% of the concentration intended to be included in said foamable composition. By way of example, the following classes of solid matter substances are presented: metallic oxides, such as titanium dioxide, zinc oxide, zirconium oxide, iron oxide; silicon containing materials such as silicone oxide and talc; carbon, for example in the form of amorphous carbon or graphite; insoluble oxidizing agents, such as benzoyl peroxide, calcium and magnesium hypochlorite; metallic Silver; cosmetic scrub materials, including, for example meals of strawberry seeds, raspberry seeds, apricot seeds, sweet almond, cranberry seeds; and pigments.


According to certain embodiments, the active agent is selected from the group of solvent, surface active agent, foam adjuvant and gelling agent, which are, on a case-by-case basis, known to possess a therapeutic benefit.


In one or more embodiments at least one or at least two active agents are included in the composition.


Composition and Foam Physical Characteristics and Advantages


A pharmaceutical or cosmetic composition manufactured using the foamable carrier of the present invention is very easy to use. When applied onto the afflicted body surface of mammals, i.e., humans or animals, it is in a foam state, allowing free application without spillage. Upon further application of a mechanical force, e.g., by rubbing the composition onto the body surface, it freely spreads on the surface and is rapidly absorbed.


The foamable composition can be in the state of (1) solutions; (2) a readily dispersable suspension; or (3) an emulsion. It is stable, having an acceptable shelf life of a year, or at least two years at ambient temperature, as revealed in accelerated stability tests. Polar solvents, hydrophobic carriers and propellants, which are a mixture of low molecular weight hydrocarbons, tend to impair the stability of emulsions and to interfere with the formation of a stable foam upon release from a pressurized container. It has been observed, however, that the foamable compositions according to the present invention are surprisingly stable. Following accelerated stability studies, they demonstrate desirable texture; they form fine bubble structures that do not break immediately upon contact with a surface, spread easily on the treated area and absorb quickly.


The composition should also be free flowing, to allow it to flow through the aperture of the container, e.g., and aerosol container, and create an acceptable foam. Compositions containing semi-solid hydrophobic solvents, e.g., white petrolatum, as the main ingredients of the oil phase of the emulsion, exhibit high viscosity and poor flowability and are inappropriate candidates for a foamable composition.


Foam quality can be graded as follows:


Grade E (excellent): very rich and creamy in appearance, does not show any bubble structure or shows a very fine (small) bubble structure; does not rapidly become dull; upon spreading on the skin, the foam retains the creaminess property and does not appear watery.


Grade G (good): rich and creamy in appearance, very small bubble size, “dulls” more rapidly than an excellent foam, retains creaminess upon spreading on the skin, and does not become watery.


Grade FG (fairly good): a moderate amount of creaminess noticeable, bubble structure is noticeable; upon spreading on the skin the product dulls rapidly and becomes somewhat lower in apparent viscosity.


Grade F (fair): very little creaminess noticeable, larger bubble structure than a “fairly good” foam, upon spreading on the skin it becomes thin in appearance and watery.


Grade P (poor): no creaminess noticeable, large bubble structure, and when spread on the skin it becomes very thin and watery in appearance.


Grade VP (very poor): dry foam, large very dull bubbles, difficult to spread on the skin.


Topically administrable foams are typically of quality grade E or G, when released from the aerosol container. Smaller bubbles are indicative of more stable foam, which does not collapse spontaneously immediately upon discharge from the container. The finer foam structure looks and feels smoother, thus increasing its usability and appeal.


As a further aspect of the foam is breakability. The breakable foam is thermally stable, yet breaks under sheer force. Sheer-force breakability of the foam is clearly advantageous over thermally induced breakability. Thermally sensitive foams immediately collapse upon exposure to skin temperature and, therefore, cannot be applied on the hand and afterwards delivered to the afflicted area.


The foam of the present invention has several advantages, when compared with hydroalcoholic foam compositions, such as described in U.S. Pat. Nos. 6,126,920 and 5,783,202:

    • (1) Breakability. The foam of the present invention is thermally stable. Unlike hydroalcoholic foam compositions of the prior art, the foam of the present invention is not “quick breaking”, i.e., it does not readily collapse upon exposure to body temperature environment. Sheer-force breakability of the foam is clearly advantageous over thermally induced breakability, since it allows comfortable application and well directed administration to the target area.
    • (2) Skin drying and skin barrier function. Polar solvents known to dry the skin and impair the integrity of the skin barrier. By contrast, combining a polar solvent and a hydrophobic carrier, as described herein, unwanted skin barrier damage is reduced, as demonstrated in tran-epidermal water loss measurements.
    • (3) Irritability. Due to the improvement in skin barrier function, skin irritability is corrected.


In terms of usability, the foamable composition is most advantageous, as revealed by clinical trials:


(i) Ease of Application.

    • When foam is released it expands and allows easy spreading on the target area. This advantage is particularly meaningful in regards to the treatment of large skin surfaces.
    • Upon application, the foam readily spreads and absorbs into the skin.


(ii) The Foam is Drip-Free

    • The foam is not liquid and therefore does not leak when applied.
    • This allows precise application, without the product being spread on clothes or other parts of the body.


Another property of the foam is specific gravity, as measured upon release from the aerosol can. Typically, foams have specific gravity of less than 0.12 g/mL; or less than 0.12 g/mL; or less than 0.08 g/mL, depending on their composition and on the propellant concentration.


For the purpose of the specification the external limits of the various ranges given are approximate as will be appreciated by those skilled in the art. Therefore, for the purpose of interpreting the outer limits of the range the limits shall be deemed to include up to a 20% leeway outside the range, preferably a 10% leeway.


Fields of Applications


According to one or more embodiments of the present invention, the foamable carrier and the foamable pharmaceutical or cosmetic composition of the present invention are intended for administration to an animal or a human subject. In one or more embodiments, the composition is intended to treat the skin, a body surface, a body cavity or a mucosal surface, e.g., the mucosa of the nose, mouth, eye, ear, respiratory system, vagina or rectum.


By including an appropriate active agent in the compositions of the present invention, the composition are useful in treating a patient having any one of a variety of dermatological disorders, which include inflammation as one or their etiological factors (also termed “dermatoses”), such as classified in a non-limiting exemplary manner according to the following groups:


Dermatitis including contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, chronic dermatitis of the hands and feet, generalized exfoliative dermatitis, stasis dermatitis; lichen simplex chronicus; diaper rash;


Bacterial infections including cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, staphylococcal scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, and erythrasma;


Fungal Infections including dermatophyte infections, yeast Infections; parasitic Infections including scabies, pediculosis, creeping eruption;


Viral Infections;


Disorders of hair follicles and sebaceous glands including acne, rosacea, perioral dermatitis, hypertrichosis (hirsutism), alopecia, including male pattern baldness, alopecia areata, alopecia universalis and alopecia totalis; pseudofolliculitis barbae, keratinous cyst;


Scaling papular diseases including psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris;


Benign tumors including moles, dysplastic nevi, skin tags, lipomas, angiomas, pyogenic granuloma, seborrheic keratoses, dermatofibroma, keratoacanthoma, keloid;


Malignant tumors including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, paget's disease of the nipples, kaposi's sarcoma;


Reactions to sunlight, including sunburn, chronic effects of sunlight, photosensitivity;


Bullous diseases including pemphigus, bullous pemphigoid, dermatitis herpetiformis, linear immunoglobulin A disease;


Pigmentation disorders including hypopigmentation such as vitiligo, albinism and postinflammatory hypopigmentation and hyperpigmentation such as melasma (chloasma), drug-induced hyperpigmentation, postinflammatory hyperpigmentation;


Disorders of cornification including ichthyosis, keratosis pilaris, calluses and corns, actinic keratosis;


Pressure sores, open wounds, chronic wounds, open ulcers and burns;


Disorders of sweating; and


Inflammatory reactions including drug eruptions, toxic epidermal necrolysis, erythema multiforme, erythema nodosum, and granuloma annulare.


The same advantage is expected when the composition is topically applied to a body cavity or mucosal surfaces, including, but not limited to the cranial cavity, the thoratic cavity, the abdominal cavity, the venteral cavity, the vagina, the rectum and penile cavities, the urinary tract, the nasal cavity, the mouth, the eye, the ear the peritoneum, the large and small bowel, the caecum, bladder, and stomach, the cavity between the uterus and the fallopian tubes, the ovaries and other body areas, which may accept topically-applied products. The composition of the present invention is suitable to treat conditions of a body cavity and a mucosal membrane, such as post-surgical adhesions, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum.


According to one or more embodiments of the present invention, the compositions are also useful in the therapy of non-dermatological disorders by providing transdermal or trans-mucosal delivery of an active agent that is effective against non-dermatological disorders.


In one or more embodiments, the disorder is a health abnormality that responds to treatment with a hormone. A typical example of such abnormality is sexual dysfunction in men and women whereby androgen therapy is successfully used to restore sexual function. Other non-limiting examples of disorders/medical indications that are in the scope of treatment with a hormone according to the present invention are androgen deficiency, estrogen deficiency, growth disorders, hypogonadism, cancer, vasomotor symptoms, menopausal disorders, vulvar and vaginal atrophy, urethritis, hypoestrogenism, osteoarthritis, osteoporosis, uterine bleeding, Hirsutism, Virilization, ovarian tumors, hypothalamic pituitary unit diseases, testicular tumors, prostate cancer, hypopituitarism, Klinefelter's syndrome, testicular feminisation, orchitectomy, vasomotor symptoms (such as “hot flashes”) associated with the menopause, metabolic abnormalities and mood disturbances.


The following examples further exemplify the, foamable carrier, the pharmaceutical and cosmetic compositions of the present invention, methods for preparing the same, and therapeutic uses of the compositions. The examples are for the purposes of illustration only and are not intended to be limiting of the invention. Many variations may be carried out by one of ordinary skill in the art and are contemplated within the full scope of the present invention.


A general procedure for preparing foamable compositions is set out in WO 2004/037225 which is incorporated herein by reference. Moreover, with respect to using one or more polar solvents, the polor solvent is added to the aqueous phase mixture in the course of preparation.


Example 1—Foamable Carrier, Containing Polar Solvent (Dimethyl Isosorbide) and Hydrophobic Carrier (Caprylic/Capric Triglyceride)
















Foam A
Foam B
Foam C



% w/w
% w/w
% w/w



















Caprylic/capric
30.0
19.0
40.0


triglyceride


(Hydrophobic carrier)


Dimethyl isosorbide
20.0
20.0
20.0


(Polar solvent)


Glyceryl oleate
1.0
2.0
1.0


(Surfactant)


PPG-15 stearyl ether
5.0
15.0
5.0


(Surfactant)


Lecithin (Surfactant)
20.0
20.0
10.0


Sorbitan stearate


5.0


(Surfactant)


Sucrose stearate
5.0
5.0



(Surfactant)


PVP K-90 (Polymeric
0.5
0.5
0.5


agent)


Preservative
0.5
0.5
0.5


Propane/ButaneX
8.00
8.00
8.00


agent)


Purified water
to 100.00
to 100.00
to 100.00







Foam properties










Foam quality
Excellent
Excellent
Excellent


Density
0.06
0.08
0.06


Formulation type
Dispersion


Homogeneity
Homogenious
Homogenious
Homogenious



upon mild
upon mild
upon mild



shaking
shaking
shaking









Example 2—Foamable Carrier, Containing Polar Solvent (Dimethyl Isosorbide and Propylene Glycol) and Hydrophobic Carrier (Caprylic/Capric Triglyceride and Isopropyl Myristate)
















Foam D
Foam E
Foam F



% w/w
% w/w
% w/w



















Caprylic/capric triglyceride
5.00
5.00
5.00


(Hydrophobic carrier)


Isopropyl myristate (Hydrophobic
5.00
5.00
5.00


carrier)


Dimethyl isosorbide (Polar solvent)
55.50
62.00
59.00


Propylene glycol (Polar solvent)
2.50




Glyceryl monostearate (Surfactant)

1.00
1.00


Sorbitan monostearate (Surfactant)
8.00
5.00
8.00


Sucrose stearate (Surfactant)
5.00
5.00
8.00


Hydroxypropylcellulose (Polymeric

0.50



agent)


Cetostearyl alcohol (Foam adjuvant)
8.00
8.00



Stearyl alcohol (Foam adjuvant)


5.00


Oleyl alcohol (Foam adjuvant)
2.50




Preservative
0.5
0.5
0.5


Propane/Butane (Propellant)
8.00
8.00
8.00


Purified water
to 100.00
to 100.00
to 100.00







Foam properties










Foam quality
Excellent
Excellent
Good


Density
0.13
0.23
0.21


Formulation type
Solution
Solution
Solution


Homogeneity
Homo-
Homo-
Homo-



geneous
geneous
geneous



upon mild
upon mild
upon mild



shaking
shaking
shaking









Example 3—Foamable Carrier, in the Form of Emulsion, Containing Polar Solvent (Diethyl Isosorbide) and Hydrophobic Carrier (Caprylic/Capric Triglyceride)














Foam G



% w/w



















Caprylic/capric triglyceride (Hydrophobic carrier)
30.00



Dimethyl isosorbide (Polar solvent)
20.00



Glyceryl monostearate (Surfactant)
2.00



PPG-15 stearyl ether
3.00



Sorbitan stearate (Surfactant)
2.00



Xanthan gum (Polymeric agent)
0.15



Hydroxypropyl methylcellulose (Polymeric agent)
0.15



Stearyl alcohol (Foam adjuvant)
1.00



Preservative
0.5



Propane/Butane (Propellant)
8.00



Purified water
to 100.00







Foam properties










Foam quality
Excellent



Density
0.12



Formulation type
Emulsion



Emulsion stability (centrifuge)
Stable










Example 4—Foamable Carrier, in the Form of Emulsion, Containing Polar Solvent (Ethanol) and Hydrophobic Carrier (Caprylic/Capric Triglyceride)















Foam H
Foam I



% w/w
% w/w


















Mineral oil (Hydrophobic carrier)
4.62
4.32


Isopropyl myristate (Hydrophobic carrier)
4.62
4.32


Ethanol (Polar solvent)
15.00
20.00


Glyceryl monostearate (Surfactant)
0.39
0.36


Polysorbate 80 (Surfactant)
0.77
0.72


PEG-40 stearate (Surfactant)
2.31
2.16


Xanthan gum (Polymeric agent)
0.23
0.22


Hydroxypropyl methylcellulose (Polymeric agent)
0.23
0.22


Stearyl alcohol (Foam adjuvant)
0.77
0.72


Preservative
0.50
0.50


Propane/Butane (Propellant)
8.00
8.00


Purified water
to 100.00
to 100.00







Foam properties









Foam quality
Excellent
Excellent


Density
0.04
0.04


Formulation type
Emulsion
Emulsion


Emulsion stability (centrifuge)
Stable
Stable









Example 5—Non-Flammable Foamable Carriers














Foam J



% w/w



















Caprylic/capric triglyceride (Hydrophobic carrier)
5.00



Isopropyl myristate (Hydrophobic carrier)
5.00



Dimethyl isosorbide (Polar solvent)
59.00



Propylene glycol (Polar solvent)




Glyceryl monostearate (Surfactant)
1.00



Sorbitan monostearate (Surfactant)
8.00



Sucrose stearate (Surfactant)
8.00



Hydroxypropylcellulose (Polymeric agent)




Cetostearyl alcohol (Foam adjuvant)




Stearyl alcohol (Foam adjuvant)
5.00



Oleyl alcohol (Foam adjuvant)




Preservative
0.5



1,1,1,2 tetrafluorethane (Dymel 134)
8.00



Purified water
to 100.00























Foam K



% w/w



















Mineral oil (Hydrophobic carrier)
4.32



Isopropyl myristate (Hydrophobic carrier)
4.32



Ethanol (Polar solvent)
20.00



Glyceryl monostearate (Surfactant)
0.36



Polysorbate 80 (Surfactant)
0.72



PEG-40 stearate (Surfactant)
2.16



Xanthan gum (Polymeric agent)
0.22



Hydroxypropyl methylcellulose (Polymeric agent)
0.22



Stearyl alcohol (Foam adjuvant)
0.72



Preservative
0.50



1,1,1,2 tetrafluorethane (Dymel 134)
8.00



Purified water
to 100.00










Example 6—Inflammability Test

The following compositions were tested for inflammability according to European Standard prEN 14851: (1) Foam F; (2) Foam I; (3) Foam J; and (4) Foam K.


Procedure: Approximately 5 g of foam, mousse gel or paste is sprayed from the aerosol container on to a watchglass. An ignition source (a lighter) was placed at the base of the watchglass and any ignition and sustained combustion of the foam, mousse, gel or paste was observed. The test was carried out in a draught-free environment capable of ventilation, with the temperature controlled at 20° C.±5° C. and relative humidity in the range of 30% to 80%. According to the standard, appearance of a stable flame which is at least 4 cm high and which is maintained for at least 2 seconds defines a product as “inflammable”.


Results:


Foam F and Foam I were found “inflammable”.


Foam J and Foam K were found “non-flammable”.


Example 7

Exemplary concentrations of active agents in foamable compositions are set out in Table 2. Each active agent is added into, for example, any of the carriers listed in any of Examples 1 to 5 above in a therapeutically effective concentration and amount. The methodology of addition is well known to those of the art. The composition is adjusted in each case so that it is made up to 100% w/w appropriate by purified water.









TABLE 2







Exemplary Concentrations of Examples of Active Agents









Class
Concentration
Exemplary Use





Hydrocortisone acetate
  1%
Steroid responsive inflammation


Betamethasone
 0.1%
and psoriasis or atopic dermatitis


valerate


Clobetasol proprionate
0.05%


Acyclovir
  5%
Viral infection, herpes


Ciclopirox
  1%
Fungal infection, seborrhea,




dandruff,


Clindomycin
  2%
Bacterial infection, acne,




rosacea,


Azelaic acid
  15%
Acne, rosacea,




pigmentation disorder and




various dermatoses


Metronidazol
0.25%–2%
Rosacea, bacterial infections




and parasite infestations


Diclofenac
  1%
Osteoarthritus, joint pain


Tachrolimus
 0.2%
Atopic dermatitis, eczema and




inflammation









The above examples represent different drug classes and it is to be understood that other drugs belonging to each of the classes represented above may be included and used in the compositions of the present invention in a safe and effective amount.

Claims
  • 1. A foamable pharmaceutical vehicle or composition, comprising: (1) a liquid organic carrier, at a concentration of 10% to 70% by weight of the composition, wherein said organic carrier concurrently comprises: (i) at least one hydrophobic organic carrier comprising a triglyceride, and(ii) at least one polar solvent comprising dimethyl isosorbide,(2) a surface-active agent selected from the group consisting of at least one non-ionic surface-active agent, and a mixture of a non-ionic surface-active agent and an ionic surface-active agent, wherein the ratio of non-ionic surface-active agent to ionic surface-active agent is greater than 14:1;(3) water;(4) at least one liquefied or compressed gas propellant at a concentration of 3% to 25% by weight of the total composition; and(5) a polymeric agent selected from the group consisting of a locust bean gum, sodium caseinate, an egg albumin, a gelatin agar, a carrageenin gum, sodium alginate, a xanthan gum, a quince seed extract, a tragacanth gum, a guar gum, a starch, a chemically modified starch, a cellulose ether, an alkyl cellulose, a hydroxyalkyl cellulose, a hydroxyethyl cellulose, a hydroxypropyl cellulose, a methyl cellulose, a carboxymethyl cellulose, a methylhydroxyethylcellulose, a methylhydroxypropylcellulose, a hydroxypropylmethyl cellulose, a hydroxyethylcarboxymethylcellulose, a carboxymethylhydroxyethylcellulose, a hydroxypropyl guar gum, a soluble starch, a carboxyvinyl polymer, a polyvinylpyrrolidone, a polyvinyl alcohol, a polyacrylic acid polymer, a polymethacrylic acid polymer, a polyvinyl acetate polymer, a polyvinyl chloride polymer, a polyvinylidene chloride polymer, an acrylic acid/ethyl acrylate copolymer, a carboxyvinyl polymer, a silicone dioxide, a poly(acrylic)acid, a poly(methylvinyl ether/maleic anhydride) copolymer, a chitosan, an alginic acid, a hyaluronic acid, a pectin, a karaya gum, a cyclodextrin, a chemically modified cyclodextrin, hydroxypropyl-β-cyclodextrin, a poly(N-isopropylamide), a poloxamer, and mixtures of any two or more thereof; andwherein the composition is provided in an aerosol container and upon release expands to form a breakable foam that collapses upon application of shear force.
  • 2. The composition of claim 1, wherein the surface active agent is 0.1% to 5% by weight of the composition.
  • 3. The composition of claim 1 or 2, wherein the ratio of the hydrophobic organic carrier and the polar solvent are selected to provide a selected pharmacological or safety property.
  • 4. The composition of claim 1, wherein the polymeric agent is 0.01% to 5% by weight of the composition.
  • 5. The composition of claim 1, wherein the polymeric agent is 0.01% to 1% by weight of the composition.
  • 6. The composition of claim 1, further comprising 0.1% to 5% by weight of the composition of a therapeutically active foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having an double bond; a fatty acid having an double bond; a branched fatty alcohol; a branched fatty acid; a fatty acid substituted with a hydroxyl group; cetyl alcohol; stearyl alcohol; arachidyl alcohol; behenyl alcohol; 1-triacontanol; hexadecanoic acid; stearic acid; arachidic acid; behenic acid; octacosanoic acid; 12-hydroxy stearic acid; and a mixture of any two or more thereof.
  • 7. The composition of claim 1, wherein the polar solvent is soluble in both water and oil.
  • 8. The composition of claim 1, wherein the hydrophobic organic carrier is a liquid at ambient temperature, and has a solubility in distilled water at ambient temperature selected from: (i) less than 1 gm per 100 mL;(ii) less than 0.5 gm per 100 mL; and(iii) less than 0.1 gm per 100 mL.
  • 9. The composition of claim 1, wherein the foamable composition is an emulsion or a micro emulsion selected from the group consisting of an oil-in-water emulsion and a water-in-oil emulsion.
  • 10. The composition of claim 1, wherein upon release from the container, a foam having a density range selected from (1) between 0.02 gr/mL and 0.1 gr/mL; and (2) between 0.04 gr/mL and 0.23 gr/mL is produced.
  • 11. The composition of claim 1, wherein the triglyceride is capric-caprylic triglyceride.
  • 12. The composition of claim 1, further comprising an active agent.
  • 13. The composition of claim 12, wherein the active agent is selected from the group consisting of an anti-infective agent, an antibiotic agent, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, a steroidal anti-inflamatory agent, a nonsteroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, a steroid, a vasoactive agent, a vasoconstructor, a vasodilator, vitamin A, a vitamin A derivative, a retinoid, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a burn healing agent, an antiallergic agent, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, and a mixture of any two or more thereof at any proportion.
  • 14. The composition of claim 1, further comprising an active agent, selected from the group consisting of a nonsteroidal anti-inflammatory drug, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, a steroid, a steroidal anti-inflammatory agent, vitamin A, a vitamin A derivative, vitamin D, a vitamin D derivative, and a mixture of any two or more thereof.
  • 15. The composition of claim 12, wherein the active agent comprises an extract or tincture comprising one or more beneficial agents selected from the group consisting of a hyularonic acid, a herbal extract, coal tar, and a mixture of any two or more thereof.
  • 16. The composition of claim 12, wherein the active agent comprises one or more herbal extracts.
  • 17. The composition of claim 16, wherein the herbal extract is selected from the group consisting of angelica, calendula, celery, coltsfoot, comfrey, dandelion, jamaica dogwood, kava, marshmallow, prickly ash, northern prickly ash, southern senna, valerian, agrimony, aloe vera, alfalfa, artichoke, avens, bayberry, bloodroot, blue flag, bogbean, boldo, boneset, broom, buchu, burdock, burnet, calamus, calendula, cascara, centaury, cereus, chamomile, german chamomile, roman chamomile, cinnamon, divers, cohosh, black, cohosh, blue, cola, corn silk, couchgrass, cowslip, damiana, devil's claw, drosera, echinacea, elder, elecampane, euphorbia, eyebright, figwort, frangula, fucus, fumitory, garlic, golden seal, gravel root, ground ivy, guaiacum, hawthorn, holy thistle, hops, horehound black, horehound white, horse chestnut hydrangea, ispaghula, juniper, lady's lipper, liferoot, lime flower, liquorice, lobelia, mate, meadowsweet, mistletoe, motherwort, myrrh, nettle, parsley, parsley piert, passionflower, pennyroyal, pilewort, plantain, pleurisy root, pokeroot, poplar, pulsatilla, queen's delight, raspberry, red clover, rosemary, sage, sarsaparilla, sassafras, scullcap, senega, shepherd's purse, skunk cabbage, slippery elm, squill, St. john's wort, stone root, tansy, thyme, uva-ursi, vervain, wild carrot, wild lettuce, willow, witch hazel, yarrow, yellow dock, and a mixture of any two or more thereof.
  • 18. The composition of claim 16, wherein the herbal extract comprises a polar solvent.
  • 19. The composition of claim 12, wherein the active agent is selected from the group consisting of a therapeutically effective amount of a solvent, a surface active agent, a foam adjuvant, a gelling agent, and a mixture of any two or more thereof.
  • 20. A method of treating or alleviating a disorder selected from the group consisting of acne, an infection, an inflammation, psoriasis, and rosacea, comprising: administering topically to a surface having the disorder, a foamed composition obtained from a canister comprising a foamable composition comprising:(1) a liquid organic carrier, at a concentration of 10% to 70% by weight of the foamable composition, wherein said organic carrier concurrently comprises:i. at least one hydrophobic organic carrier comprising a triglyceride, andii. at least one polar solvent comprising dimethyl isosorbide;(2) 0.1% to 5% by weight of the foamable composition of a surface-active agent selected from the group consisting of at least one non-ionic surface-active agent, and a mixture of a non-ionic surface-active agent and an ionic surface-active agent, wherein the ratio of non-ionic surface-active agent to ionic surface-active agent is greater than 14:1;(3) water;(4) at least one liquefied or compressed gas propellant at a concentration of 3% to 25% by weight of the total composition;(5) a polymeric agent selected from the group consisting of a locust bean gum, sodium caseinate, an egg albumin, a gelatin agar, a carrageenin gum, sodium alginate, a xanthan gum, a quince seed extract, a tragacanth gum, a guar gum, a starch, a chemically modified starch, a cellulose ether, an alkyl cellulose, a hydroxyalkyl cellulose, a hydroxyethyl cellulose, a hydroxypropyl cellulose, a methyl cellulose, a carboxymethyl cellulose, a methylhydroxyethylcellulose, a methylhydroxypropylcellulose, a hydroxypropylmethyl cellulose, a hydroxyethylcarboxymethylcellulose, a carboxymethylhydroxyethylcellulose, a hydroxypropyl guar gum, a soluble starch, a carboxyvinyl polymer, a polyvinylpyrrolidone, a polyvinyl alcohol, a polyacrylic acid polymer, a polymethacrylic acid polymer, a polyvinyl acetate polymer, a polyvinyl chloride polymer, a polyvinylidene chloride polymer, an acrylic acid/ethyl acrylate copolymer, a carboxyvinyl polymer, a silicone dioxide, a poly(acrylic)acid, a poly(methylvinyl ether/maleic anhydride) copolymer, a chitosan, an alginic acid, a hyaluronic acid, a pectin, a karaya gum, a cyclodextrin, a chemically modified cyclodextrin, hydroxypropyl-β-cyclodextrin, a poly(N-isopropylamide), a poloxamer, and mixtures of any two or more thereof; and(6) an active agent; andwherein the composition is provided in an aerosol container and upon release expands to form a breakable foam that collapses upon application of shear force.
  • 21. The method of claim 20, wherein the composition further includes 0.1% to 5% by weight of the foamable composition of a therapeutically active foam adjuvant is selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having an double bond; a fatty acid having an double bond; a branched fatty alcohol; a branched fatty acid; a fatty acid substituted with a hydroxyl group; cetyl alcohol; stearyl alcohol; arachidyl alcohol; behenyl alcohol; 1-triacontanol; hexadecanoic acid; stearic acid; arachidic acid; behenic acid; octacosanoic acid; 12-hydroxy stearic acid; and a mixture of any two or more thereof.
  • 22. The method of claim 20, wherein the concentration of the polymeric agent is 0.01% to 5% by weight of the foamable composition.
  • 23. The method of claim 20, wherein the surface active agent HLB or the weighted average of the HLB values in the composition is about 9 to about 14.
  • 24. The method of claim 20, wherein the active agent is selected from the group consisting of an anti-infective agent, an antibiotic agent, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, a steroid anti-inflammatory agent, a nonsteroidal anti-inflammatory drug, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, a steroid, a vasoactive agent, a vasoconstrictor, a vasodilator, vitamin A, a vitamin A derivative, a retinoid, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a burn healing agent, an antiallergic agent, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, and a mixture of any two or more thereof at any proportion.
  • 25. The method of claim 20, wherein the foamable composition further comprises at least one active agent selected from the group consisting of a non-steroidal anti-inflammatory drug, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, a steroid, a steroidal anti-inflammatory agent, vitamin A, a vitamin A derivative, vitamin D, a vitamin D derivative, and a mixture of any two or more thereof.
  • 26. The method of claim 20, wherein the active agent comprises an extract or tincture comprising one or more beneficial agents selected from the group consisting of a hyularonic acid, a herbal extract, coal tar, and a mixture of any two or more thereof.
  • 27. The method of claim 20, wherein the active agent comprises one or more herbal extracts.
  • 28. The method of claim 27, wherein the herbal extract is selected from the group consisting of angelica, calendula, celery, coltsfoot, comfrey, dandelion, jamaica dogwood, kava, marshmallow, prickly ash, northern prickly ash, southern senna, valerian, agrimony, aloe vera, alfalfa, artichoke, avens, bayberry, bloodroot, blue flag, bogbean, boldo, boneset, broom, buchu, burdock, burnet, calamus, calendula, cascara, centaury, cereus, chamomile, german chamomile, roman chamomile, cinnamon, divers, cohosh, black, cohosh, blue, cola, corn silk, couchgrass, cowslip, damiana, devil's claw, drosera, echinacea, elder, elecampane, euphorbia, eyebright, figwort, frangula, fucus, fumitory, garlic, golden seal, gravel root, ground ivy, guaiacum, hawthorn, holy thistle, hops, horehound black, horehound white, horse chestnut hydrangea, ispaghula, juniper, lady's lipper, liferoot, lime flower, liquorice, lobelia, mate, meadowsweet, mistletoe, motherwort, myrrh, nettle, parsley, parsley piert, passionflower, pennyroyal, pilewort, plantain, pleurisy root, pokeroot, poplar, pulsatilla, queen's delight, raspberry, red clover, rosemary, sage, sarsaparilla, sassafras, scullcap, senega, shepherd's purse, skunk cabbage, slippery elm, squill, St. john's wort, stone root, tansy, thyme, uva-ursi, vervain, wild carrot, wild lettuce, willow, witch hazel, yarrow, yellow dock, and a mixture of any two or more thereof.
  • 29. The method of claim 27, wherein the herbal extract comprises a polar solvent.
  • 30. A non-flammable foamable pharmaceutical composition comprising: (1) a liquid organic carrier, at a concentration of 10% to 70% by weight of the pharmaceutical composition, wherein said organic carrier contains at least one member selected from the group consisting of: (i) at least one hydrophobic organic carrier comprising a triglyceride, and(ii) at least one polar solvent comprising dimethyl isosorbide and a diol;(2) a surface-active agent selected from the group consisting of at least one non-ionic surface-active agent, and a mixture of a non-ionic surface-active agent and an ionic surface-active agent, wherein the ratio of non-ionic surface-active agent to ionic surface-active agent is greater than 14:1;(3) water;(4) at least one hydrofluorocarbon propellant at a concentration of 3% to 25% by weight of the total composition; and(5) a polymeric agent selected from the group consisting of a locust bean gum, sodium caseinate, an egg albumin, a gelatin agar, a carrageenin gum, sodium alginate, a xanthan gum, a quince seed extract, a tragacanth gum, a guar gum, a starch, a chemically modified starch, a cellulose ether, an alkyl cellulose, a hydroxyalkyl cellulose, a hydroxyethyl cellulose, a hydroxypropyl cellulose, a methyl cellulose, a carboxymethyl cellulose, a methylhydroxyethylcellulose, a methylhydroxypropylcellulose, a hydroxypropylmethyl cellulose, a hydroxyethylcarboxymethylcellulose, a carboxymethylhydroxyethylcellulose, a hydroxypropyl guar gum, a soluble starch, a carboxyvinyl polymer, a polyvinylpyrrolidone, a polyvinyl alcohol, a polyacrylic acid polymer, a polymethacrylic acid polymer, a polyvinyl acetate polymer, a polyvinyl chloride polymer, a polyvinylidene chloride polymer, an acrylic acid/ethyl acrylate copolymer, a carboxyvinyl polymer, a silicone dioxide, a poly(acrylic)acid, a poly(methylvinyl ether/maleic anhydride) copolymer, a chitosan, an alginic acid, a hyaluronic acid, a pectin, a karaya gum, a cyclodextrin, a chemically modified cyclodextrin, hydroxypropyl-β-cyclodextrin, a poly(N-isopropylamide), a poloxamer, and mixtures of any two or more thereof; andwherein the composition is provided in an aerosol container and upon release expands to form a breakable foam that collapses upon application of shear force.
  • 31. The composition of claim 30, further comprising 0.1% to 5% by weight of the pharmaceutical composition of a therapeutically active foam adjuvant is selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having an double bond; a fatty acid having an double bond; a branched fatty alcohol; a branched fatty acid; a fatty acid substituted with a hydroxyl group; cetyl alcohol; stearyl alcohol; arachidyl alcohol; behenyl alcohol; 1-triacontanol; hexadecanoic acid; stearic acid; arachidic acid; behenic acid; octacosanoic acid; 12-hydroxy stearic acid; and a mixture of any two or more thereof.
  • 32. The composition of claim 31, wherein the concentration of the polymeric agent is 0.01% to 5% by weight of the pharmaceutical composition.
  • 33. A composition of any of claim 1, 12, 13, 14, 15, 16, 17, or 18, further comprising an antibiotic, a coal tar, a dicarboxylic acid, or a steroid.
  • 34. The composition of any of claim 12, 13, 14, 15, 16, 17, or 18, wherein the composition provides increased solubility of the active or beneficial agent.
  • 35. The composition of any of claim 12, 13, 14, 15, 16, 17, or 18, wherein the composition provides increased delivery of the active or beneficial agent.
  • 36. The composition of any of claim 1, 12, 13, 14, 15, 16, 17, or 18, wherein the composition provides enhanced skin barrier build up.
  • 37. The composition of any of claim 12, 13, 14, 15, 16, 17, or 18, wherein the composition provides increased penetration of the active agent.
  • 38. The composition of claim 16, wherein the at least one polar solvent comprises a polar solvent component of the liquid organic carrier and a polar solvent component of the extracts.
  • 39. The composition of claim 13, wherein the polar solvent further comprises propylene glycol; wherein the triglyceride comprises capric-caprylic triglycerides; wherein the surface-active agent comprises glyceryl stearate, PEG-40 stearate, polysorbate 80, or any mixtures of two or more thereof; wherein the polymeric agent comprises a xanthan gum, a methyl cellulose, or mixtures thereof; and wherein the composition further comprises a foam adjuvant comprising a cetostearyl alcohol.
  • 40. The composition of claim 30, wherein the polar solvent further comprises propylene glycol; wherein the triglyceride comprises capric-caprylic triglycerides; wherein the surface-active agent comprises glyceryl stearate, PEG-40 stearate, polysorbate 80, or any mixtures of two or more thereof; wherein the polymeric agent comprises a xanthan gum, a methyl cellulose, or mixtures thereof; and wherein the composition further comprises a foam adjuvant comprising a cetostearyl alcohol.
  • 41. The method of claim 24, wherein the polar solvent further comprises propylene glycol; wherein the triglyceride comprises capric-caprylic triglycerides; wherein the surface-active agent comprises glyceryl stearate, PEG-40 stearate, polysorbate 80, or any mixtures of two or more thereof; wherein the polymeric agent comprises a xanthan gum, a methyl cellulose, or mixtures thereof; and wherein the composition further comprises a foam adjuvant comprising a cetostearyl alcohol.
  • 42. The composition of claim 12, wherein the active agent is azelaic acid.
  • 43. The composition of claim 42, wherein the surface active agent is 0.1% to 5% by weight of the composition.
  • 44. The composition of claim 42, wherein the polymeric agent is 0.01% to 5% by weight of the composition.
  • 45. The composition of claim 42, wherein the polymeric agent is 0.01% to 1% by weight of the composition.
  • 46. The composition of claim 42, further comprising 0.1% to 5% by weight of the composition of a therapeutically active foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having an double bond; a fatty acid having an double bond; a branched fatty alcohol; a branched fatty acid; a fatty acid substituted with a hydroxyl group; cetyl alcohol; stearyl alcohol; arachidyl alcohol; behenyl alcohol; 1-triacontanol; hexadecanoic acid; stearic acid; arachidic acid; behenic acid; octacosanoic acid; 12-hydroxy stearic acid; and a mixture of any two or more thereof.
  • 47. The composition of claim 42, wherein the triglyceride is capric-caprylic triglyceride.
  • 48. The method of claim 20, wherein the active agent is azelaic acid.
  • 49. The method of claim 48, wherein the surface active agent is 0.1% to 5% by weight of the composition.
  • 50. The method of claim 48, wherein the polymeric agent is 0.01% to 5% by weight of the composition.
  • 51. The method of claim 48, wherein the polymeric agent is 0.01% to 1% by weight of the composition.
  • 52. The method of claim 48, further comprising 0.1% to 5% by weight of the composition of a therapeutically active foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having an double bond; a fatty acid having an double bond; a branched fatty alcohol; a branched fatty acid; a fatty acid substituted with a hydroxyl group; cetyl alcohol; stearyl alcohol; arachidyl alcohol; behenyl alcohol; 1-triacontanol; hexadecanoic acid; stearic acid; arachidic acid; behenic acid; octacosanoic acid; 12-hydroxy stearic acid; and a mixture of any two or more thereof.
  • 53. The method of claim 48, wherein the triglyceride is capric-caprylic triglyceride.
  • 54. The composition of claim 12, wherein the active agent comprises an anti-oxidant, a radical scavenger or mixtures thereof.
  • 55. The composition of claim 54, wherein the composition further comprises a foam adjuvant comprising behenyl alcohol.
  • 56. The method of claim 20, wherein the active agent comprises an anti-oxidant, a radical scavenger, or mixtures thereof.
  • 57. The method of claim 56, wherein the composition further comprises a foam adjuvant comprising behenyl alcohol.
  • 58. The composition of claim 12, further comprising a humectant, a film forming agent, or mixtures thereof.
  • 59. The composition of claim 40, further comprising an active agent.
  • 60. The composition of claim 59, wherein the propylene glycol is about 10% to about 20% by weight of the composition; wherein the dimethyl isosorbide is about 5% to about 10% by weight of the composition; wherein the capric-caprylic triglycerides is about 10% to about 20% by weight of the composition; wherein the surface-active agent comprises about 0.1% to about 5% by weight of the composition of glyceryl stearate, PEG-40 stearate, polysorbate 80, or mixtures of any two or more thereof; wherein the polymeric agent comprises about 0.01% to about 5% by weight of the composition of a xanthan gum, a methyl cellulose, or mixtures thereof; and wherein the cetostearyl alcohol is about 0.4% to about 2.5% by weight of the composition.
  • 61. The composition of claim 60, further comprising a humectant, a film forming agent, or mixtures thereof.
  • 62. The composition of claim 39, wherein the hydrophobic organic carrier is in an amount of about 10% to about 20% by weight of the composition, or about 20% to about 50% by weight of the composition.
  • 63. The composition of claim 39, wherein the ratio between the polar solvent and the hydrophobic organic carrier is selected from the group consisting of between about 1:4 and about 4:1, between about 1:1 and about 4:1, between about 2:8 and about 1:1, about 1:4, about 1:2, about 3:4, about 1:1, about 5:4, about 4:2, about 3:1, about 4:1, about 6:4, and about 7:4.
  • 64. The composition of claim 62, wherein the surface-active agent is less than about 2% or less than about 1% by weight of the composition.
  • 65. The composition of claim 39, wherein the propylene glycol is about 10% to about 20% by weight of the composition; wherein the dimethyl isosorbide is about 5% to about 10% by weight of the composition; wherein the capric-caprylic triglycerides is about 10% to about 20% by weight of the composition; wherein the surface-active agent comprises about 0.1% to about 5% by weight of the composition of glyceryl stearate, PEG-40 stearate, polysorbate 80, or mixtures of any two or more thereof; wherein the polymeric agent comprises about 0.01% to about 5% by weight of the composition of a xanthan gum, a methyl cellulose, or mixtures thereof; and wherein the cetostearyl alcohol is about 0.4% to about 2.5% by weight of the composition.
  • 66. The composition of claim 13, further comprising a humectant, an emollient, or a mixture thereof, wherein the emollient is selected from the group consisting of isopropyl myristate, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, cetyl acetate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, octyl dodecanol, sucrose esters of fatty acids, octyl hydroxystearate and mixtures of any two or more thereof; and wherein upon release from a pressurized container, the composition expands to form a foam that collapses upon application of shear force but does not immediately collapse upon exposure to skin temperature.
  • 67. The method of claim 27, wherein the at least one polar solvent comprises a polar solvent component of the liquid organic carrier and a polar solvent component of the extracts.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 60/700,702, filed on Jul. 19, 2005, entitled “Foamable Composition Combining a Polar Solvent and a Hydrophobic Carrier,” which is herein incorporated by reference in its entirety. This application is a continuation-in-part application of co-pending U.S. application Ser. No. 11/124,676, filed on May 9, 2005, entitled “Vasoactive Kit and Compositions and Uses Thereof,” which is a continuation-in-part application of co-pending International Patent Application No. IB03/005527, designating the United States and filed on Oct. 24, 2003, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Patent Application Ser. No. 60/429,546, filed on Nov. 29, 2002, both entitled “Cosmetic and Pharmaceutical Foam,” and which claims the benefit of priority under 35 U.S.C. § 119(a) to Israeli Patent Application No. 152486, filed Oct. 25, 2002, all of which are hereby incorporated in their entirety by reference. This application is also a continuation-in-part application of co-pending U.S. patent application Ser. No. 10/911,367, filed on Aug. 4, 2004, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Patent Application Ser. No. 60/492,385, filed on Aug. 4, 2003, both entitled “Foam Carrier Containing Amphiphilic Copolymer Gelling Agent” and both hereby incorporated in their entirety by reference. This application is also a continuation-in-part application of co-pending U.S. patent application Ser. No. 10/835,505, filed on Apr. 28, 2004, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Patent Application Ser. No. 60/530,015, filed on Dec. 16, 2003, and U.S. Patent Application Ser. No. 60/492,385, filed on Aug. 4, 2003, all entitled “Oleaginous Pharmaceutical and Cosmetic Foam” and all hereby incorporated in their entirety by reference. This application is also a continuation-in-part application of co-pending U.S. patent application Ser. No. 10/922,358, filed Aug. 20, 2004, entitled “Penetrating Pharmaceutical Foam,” which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Patent Application Ser. No. 60/497,648, filed on Aug. 25, 2003, both of which are incorporated by reference.

US Referenced Citations (1023)
Number Name Date Kind
1159250 Moulton Nov 1915 A
1666684 Carstens Apr 1928 A
1924972 Beckert Aug 1933 A
2085733 Bird Jul 1937 A
2390921 Clark Dec 1945 A
2524590 Boe Oct 1950 A
2586287 Apperson Feb 1952 A
2617754 Neely Nov 1952 A
2767712 Waterman Oct 1956 A
2968628 Reed Jan 1961 A
3004894 Johnson et al. Oct 1961 A
3062715 Reese Nov 1962 A
3067784 Gorman Dec 1962 A
3092255 Hohman Jun 1963 A
3092555 Horn Jun 1963 A
3141821 Compeau Jul 1964 A
3142420 Gawthrop Jul 1964 A
3144386 Brighttenback Aug 1964 A
3149543 Naab Sep 1964 A
3154075 Weckesser Oct 1964 A
3178352 Erickson Apr 1965 A
3236457 Kennedy et al. Feb 1966 A
3244589 Sunnen Apr 1966 A
3252859 Silver May 1966 A
3261695 Sienciewicz Jul 1966 A
3263867 Lehmann Aug 1966 A
3263869 Corsette Aug 1966 A
3298919 Charles et al. Jan 1967 A
3301444 Wittke Jan 1967 A
3303970 Breslau et al. Feb 1967 A
3330730 Hernaadez Jul 1967 A
3333333 Noack Aug 1967 A
3334147 Brunelle et al. Aug 1967 A
3342845 Sayigh et al. Sep 1967 A
3346451 Collins et al. Oct 1967 A
3366494 Bower Jan 1968 A
3369034 Chalmers Feb 1968 A
3377004 Wittke Apr 1968 A
3383280 Kuehns May 1968 A
3384541 Clark et al. May 1968 A
3395214 Mummert Jul 1968 A
3395215 Warren Jul 1968 A
3401849 Weber, III Sep 1968 A
3419658 Amsdon Dec 1968 A
3456052 Gordon Jul 1969 A
3527559 Sliwinski Sep 1970 A
3540448 Sunnen Nov 1970 A
3559890 Brooks et al. Feb 1971 A
3561262 Borocki Feb 1971 A
3563098 Weber, III Feb 1971 A
3574821 Pfirrmann Apr 1971 A
3577518 Shepherd May 1971 A
3667461 Zamarra Jun 1972 A
3751562 Nichols Aug 1973 A
3770648 Mackes Nov 1973 A
3787566 Gauvreau Jan 1974 A
3819524 Schubert et al. Jun 1974 A
3824303 Lanzet et al. Jul 1974 A
3841525 Siegel Oct 1974 A
3849569 Mead Nov 1974 A
3849580 Weinstein et al. Nov 1974 A
3865275 De Nunzio Feb 1975 A
3866800 Schmitt Feb 1975 A
3878118 Watson Apr 1975 A
3882228 Boncey et al. May 1975 A
3886084 Vassiliades May 1975 A
3890305 Weber et al. Jun 1975 A
3912665 Spitzer et al. Oct 1975 A
3912667 Spitzer et al. Oct 1975 A
3923970 Breuer Dec 1975 A
3929985 Webb, Jr. Dec 1975 A
3952916 Phillips Apr 1976 A
3953591 Snyder Apr 1976 A
3959160 Horsler et al. May 1976 A
3962150 Viola Jun 1976 A
3963833 DeSalva et al. Jun 1976 A
3966090 Prussin et al. Jun 1976 A
3966632 Colliopoulos et al. Jun 1976 A
3970219 Spitzer et al. Jul 1976 A
3970584 Hart et al. Jul 1976 A
3993224 Harrison Nov 1976 A
3997467 Jederstrom et al. Dec 1976 A
4001391 Feinstone et al. Jan 1977 A
4001442 Stahlberger et al. Jan 1977 A
4018396 Showmaker et al. Apr 1977 A
4019657 Spitzer et al. Apr 1977 A
4052513 Kaplan Oct 1977 A
4083974 Turi Apr 1978 A
4100426 Baranowski et al. Jul 1978 A
4102995 Hebborn Jul 1978 A
4110426 Barnhurst et al. Aug 1978 A
4124149 Spitzer et al. Nov 1978 A
4145411 Mende Mar 1979 A
4151272 Geary et al. Apr 1979 A
4160827 Cho et al. Jul 1979 A
4178373 Klein et al. Dec 1979 A
4213979 Levine Jul 1980 A
4214000 Papa Jul 1980 A
4226344 Booth et al. Oct 1980 A
4229432 Geria Oct 1980 A
4230701 Holick et al. Oct 1980 A
4241048 Durbak et al. Dec 1980 A
4241149 Labes et al. Dec 1980 A
4252787 Sherman et al. Feb 1981 A
4254104 Suzuki et al. Mar 1981 A
4268499 Keil May 1981 A
4271149 Winicov et al. Jun 1981 A
4278206 Prussin Jul 1981 A
4292250 DeLuca et al. Sep 1981 A
4292326 Nazzaro-Porro et al. Sep 1981 A
4299826 Luedders Nov 1981 A
4305936 Klein Dec 1981 A
4309995 Sacco Jan 1982 A
4310510 Sherman et al. Jan 1982 A
4323582 Siegel et al. Apr 1982 A
4323694 Scala, Jr. Apr 1982 A
4325939 Shah Apr 1982 A
4329990 Sneider May 1982 A
4335120 Holick et al. Jun 1982 A
4338211 Stiros Jul 1982 A
4352808 Rane et al. Oct 1982 A
4363806 Bergström et al. Dec 1982 A
4385161 Caunt et al. May 1983 A
4386104 Nazzaro-Porro May 1983 A
4393066 Garrett et al. Jul 1983 A
4427670 Ofuchi et al. Jan 1984 A
4439416 Cordon et al. Mar 1984 A
4439441 Hallesy et al. Mar 1984 A
4440320 Wernicke Apr 1984 A
4447486 Hoppe et al. May 1984 A
4469674 Shah et al. Sep 1984 A
4508705 Chaudhuri et al. Apr 1985 A
4522948 Walker Jun 1985 A
4529601 Broberg et al. Jul 1985 A
4529605 Lynch et al. Jul 1985 A
4552872 Cooper et al. Nov 1985 A
4574052 Gupte et al. Mar 1986 A
4576961 Lorck et al. Mar 1986 A
4595526 Lai Jun 1986 A
4603812 Stoesser et al. Aug 1986 A
4607101 Bernstein Aug 1986 A
4612193 Gordon et al. Sep 1986 A
4627973 Moran et al. Dec 1986 A
4628063 Haines et al. Dec 1986 A
4661340 Nagy née Kricsfalussy et al. Apr 1987 A
4661524 Thomson et al. Apr 1987 A
4672078 Sakai et al. Jun 1987 A
4673569 Shernov et al. Jun 1987 A
4678463 Millar Jul 1987 A
4701320 Hasegawa et al. Oct 1987 A
4725609 Kull, Jr. et al. Feb 1988 A
4738396 Doi et al. Apr 1988 A
4741855 Grote et al. May 1988 A
4752465 Mackles Jun 1988 A
4770634 Pellico Sep 1988 A
4772427 Dawson et al. Sep 1988 A
4780309 Geria et al. Oct 1988 A
4784842 London et al. Nov 1988 A
4792062 Goncalves Dec 1988 A
4798682 Ansmann Jan 1989 A
4804674 Curtis-Prior et al. Feb 1989 A
4806262 Snyder Feb 1989 A
4808388 Beutler et al. Feb 1989 A
4822613 Rodero Apr 1989 A
4822614 Rodero Apr 1989 A
4826048 Skorka et al. May 1989 A
4827378 Gillan et al. May 1989 A
4828837 Uster et al. May 1989 A
4836217 Fischer et al. Jun 1989 A
4837019 Georgalas et al. Jun 1989 A
4837378 Borgman Jun 1989 A
4844902 Grohe Jul 1989 A
4847068 Dole et al. Jul 1989 A
4849117 Bronner et al. Jul 1989 A
4849211 Schrauzer Jul 1989 A
4851154 Grollier et al. Jul 1989 A
4855294 Patel et al. Aug 1989 A
4863900 Pollock et al. Sep 1989 A
4867967 Crutcher Sep 1989 A
4873078 Edmundson et al. Oct 1989 A
4874794 Katz Oct 1989 A
4876083 Grollier et al. Oct 1989 A
4877805 Kligman Oct 1989 A
4885282 Thornfeldt Dec 1989 A
4897262 Nandagiri et al. Jan 1990 A
4902281 Avoy Feb 1990 A
4906453 Tsoucalas Mar 1990 A
4913893 Varco et al. Apr 1990 A
4919934 Deckner et al. Apr 1990 A
4933330 Jorgensen et al. Jun 1990 A
4950420 Svarz Aug 1990 A
4954487 Cooper et al. Sep 1990 A
4956049 Bernheim et al. Sep 1990 A
4957732 Grollier et al. Sep 1990 A
4963351 Weston Oct 1990 A
4965063 Casey et al. Oct 1990 A
4966779 Kirk Oct 1990 A
4970067 Panandiker et al. Nov 1990 A
4975466 Bottcher et al. Dec 1990 A
4981367 Brazelton Jan 1991 A
4981677 Thau Jan 1991 A
4981679 Briggs et al. Jan 1991 A
4981845 Pereira et al. Jan 1991 A
4985459 Sunshine et al. Jan 1991 A
4992478 Geria Feb 1991 A
4993496 Riedle et al. Feb 1991 A
4996193 Hewitt et al. Feb 1991 A
5002540 Brodman et al. Mar 1991 A
5002680 Schmidt et al. Mar 1991 A
5007556 Lover Apr 1991 A
5013297 Cattanach May 1991 A
5015471 Birtwistle et al. May 1991 A
5019375 Tanner et al. May 1991 A
5034220 Helioff et al. Jul 1991 A
5035895 Shibusawa et al. Jul 1991 A
5053228 Mori et al. Oct 1991 A
5071648 Rosenblatt Dec 1991 A
5071881 Parfondry et al. Dec 1991 A
5073371 Turner et al. Dec 1991 A
5082651 Healey et al. Jan 1992 A
5087618 Bodor Feb 1992 A
5089252 Grollier et al. Feb 1992 A
5091111 Neumiller Feb 1992 A
5094853 Hagarty Mar 1992 A
5100917 Flynn et al. Mar 1992 A
5104645 Cardin et al. Apr 1992 A
5112359 Murphy et al. May 1992 A
5114718 Damani May 1992 A
5122519 Ritter Jun 1992 A
5130121 Kopolow et al. Jul 1992 A
5133972 Ferrini et al. Jul 1992 A
5135915 Czarniecki et al. Aug 1992 A
5137714 Scott Aug 1992 A
5143717 Davis Sep 1992 A
5156765 Smrt Oct 1992 A
5160665 Owada et al. Nov 1992 A
5164357 Bartman et al. Nov 1992 A
5164367 Pickart Nov 1992 A
5167950 Lins Dec 1992 A
5171577 Griat et al. Dec 1992 A
5196405 Packman Mar 1993 A
5204090 Han Apr 1993 A
5204093 Victor Apr 1993 A
5208031 Kelly May 1993 A
5217707 Szabo et al. Jun 1993 A
5219877 Shah et al. Jun 1993 A
5221534 DesLauriers et al. Jun 1993 A
5221696 Ke et al. Jun 1993 A
5230897 Griffin et al. Jul 1993 A
5236707 Stewart, II Aug 1993 A
5252246 Ding et al. Oct 1993 A
5254334 Ramirez et al. Oct 1993 A
5262407 Leveque et al. Nov 1993 A
5266592 Grub et al. Nov 1993 A
5279819 Hayes Jan 1994 A
5286475 Louvet et al. Feb 1994 A
5294365 Welch et al. Mar 1994 A
5300286 Gee Apr 1994 A
5301841 Fuchs Apr 1994 A
5308643 Osipow et al. May 1994 A
5314904 Egidio et al. May 1994 A
5318774 Alban et al. Jun 1994 A
5322683 Mackles et al. Jun 1994 A
5326557 Glover et al. Jul 1994 A
5344051 Brown Sep 1994 A
5346135 Vincent Sep 1994 A
5352437 Nakagawa et al. Oct 1994 A
5369131 Poli et al. Nov 1994 A
5378451 Gorman et al. Jan 1995 A
5378730 Lee et al. Jan 1995 A
5380761 Szabo Anna Z. et al. Jan 1995 A
5384308 Henkin Jan 1995 A
5385943 Nazzaro-Porro Jan 1995 A
5389305 Repinec et al. Feb 1995 A
5389676 Michaels Feb 1995 A
5397312 Rademaker et al. Mar 1995 A
5398846 Corba et al. Mar 1995 A
5399205 Shinohara et al. Mar 1995 A
5411992 Eini et al. May 1995 A
5422361 Munayyer et al. Jun 1995 A
5429815 Faryniarz et al. Jul 1995 A
5435996 Glover et al. Jul 1995 A
5439670 Purewal et al. Aug 1995 A
5439682 Wivell et al. Aug 1995 A
5447725 Damani et al. Sep 1995 A
5449520 Frigerio et al. Sep 1995 A
5451404 Furman Sep 1995 A
5482965 Rajadhyaksha Jan 1996 A
5491245 Gruning et al. Feb 1996 A
5500211 George et al. Mar 1996 A
5508033 Briand et al. Apr 1996 A
5512555 Waldstreicher Apr 1996 A
5514367 Lentini et al. May 1996 A
5514369 Salka et al. May 1996 A
5520918 Smith May 1996 A
5523078 Baylin Jun 1996 A
5527534 Myhling Jun 1996 A
5527822 Scheiner Jun 1996 A
5529770 McKinzie et al. Jun 1996 A
5531703 Skwarek et al. Jul 1996 A
5534261 Rodgers et al. Jul 1996 A
5536743 Borgman Jul 1996 A
5540853 Trinh et al. Jul 1996 A
5545401 Shanbrom Aug 1996 A
5547989 Chamness Aug 1996 A
5558872 Jones et al. Sep 1996 A
5560859 Hartmann et al. Oct 1996 A
5567420 McEleney et al. Oct 1996 A
5576016 Amselem et al. Nov 1996 A
5578315 Chien et al. Nov 1996 A
5585104 Ha et al. Dec 1996 A
5589157 Hatfield Dec 1996 A
5589515 Suzuki et al. Dec 1996 A
5597560 Bergamini et al. Jan 1997 A
5603940 Candau et al. Feb 1997 A
5605679 Hansenne et al. Feb 1997 A
5608119 Amano et al. Mar 1997 A
5611463 Favre Mar 1997 A
5612056 Jenner et al. Mar 1997 A
5613583 Kono et al. Mar 1997 A
5613623 Hildebrandt Mar 1997 A
5614171 Clavenna et al. Mar 1997 A
5614178 Bloom et al. Mar 1997 A
5618516 Clavenna et al. Apr 1997 A
5635469 Fowler et al. Jun 1997 A
5641480 Vermeer Jun 1997 A
5643600 Mathur Jul 1997 A
5645842 Gruning et al. Jul 1997 A
5648380 Martin Jul 1997 A
5650554 Moloney Jul 1997 A
5658575 Ribier et al. Aug 1997 A
5658749 Thornton Aug 1997 A
5658956 Martin et al. Aug 1997 A
5663208 Martin Sep 1997 A
5672634 Tseng et al. Sep 1997 A
5679324 Lisboa et al. Oct 1997 A
5683710 Akemi et al. Nov 1997 A
5686088 Mitra et al. Nov 1997 A
5693258 Tonomura et al. Dec 1997 A
5695551 Buckingham et al. Dec 1997 A
5695747 Forestier et al. Dec 1997 A
5700396 Suzuki et al. Dec 1997 A
5705472 Hayes et al. Jan 1998 A
5716611 Oshlack et al. Feb 1998 A
5716621 Bello Feb 1998 A
5719122 Chiodini et al. Feb 1998 A
5719197 Kanios et al. Feb 1998 A
5725872 Stamm et al. Mar 1998 A
5725874 Oda Mar 1998 A
5730964 Waldstreicher Mar 1998 A
5733558 Breton et al. Mar 1998 A
5733572 Unger et al. Mar 1998 A
5747049 Tominaga May 1998 A
5753241 Ribier et al. May 1998 A
5753245 Fowler et al. May 1998 A
5753270 Beauchamp et al. May 1998 A
5759520 Sachetto Jun 1998 A
5759579 Singh et al. Jun 1998 A
5767104 Bar-Shalom et al. Jun 1998 A
5773410 Yamamoto Jun 1998 A
5783202 Tomlinson et al. Jul 1998 A
5788664 Scalise Aug 1998 A
5792448 Dubief et al. Aug 1998 A
5792922 Moloney Aug 1998 A
5797955 Walters Aug 1998 A
5804546 Hall et al. Sep 1998 A
5807571 List Sep 1998 A
5817322 Xu et al. Oct 1998 A
5824650 De Lacharriere et al. Oct 1998 A
5833960 Gers-Barlag et al. Nov 1998 A
5833961 Siegfried et al. Nov 1998 A
5837270 Burgess Nov 1998 A
5840744 Borgman Nov 1998 A
5840771 Oldham et al. Nov 1998 A
5843411 Hernandez et al. Dec 1998 A
5846983 Sandborn et al. Dec 1998 A
5849042 Lim et al. Dec 1998 A
5854246 Francois et al. Dec 1998 A
5856452 Moloney et al. Jan 1999 A
5858371 Singh et al. Jan 1999 A
5865347 Welschoff Feb 1999 A
5866040 Nakama et al. Feb 1999 A
5869529 Sintov et al. Feb 1999 A
5871720 Gutierrez et al. Feb 1999 A
5877216 Place et al. Mar 1999 A
5879469 Avram et al. Mar 1999 A
5881493 Restive Mar 1999 A
5885581 Massand Mar 1999 A
5889028 Sandborn et al. Mar 1999 A
5889054 Yu et al. Mar 1999 A
5891458 Britton et al. Apr 1999 A
5902574 Stoner et al. May 1999 A
5902789 Stoltz May 1999 A
5905092 Osborne et al. May 1999 A
5910382 Goodenough et al. Jun 1999 A
5911981 Dahms et al. Jun 1999 A
5912007 Pan et al. Jun 1999 A
5914122 Otterbeck et al. Jun 1999 A
5914310 Li et al. Jun 1999 A
5919830 Gopalkrishnan et al. Jul 1999 A
5922331 Mausner Jul 1999 A
5925669 Katz et al. Jul 1999 A
5939376 Durbut et al. Aug 1999 A
5948682 Moloney Sep 1999 A
5951544 Konwitz Sep 1999 A
5951989 Heymann Sep 1999 A
5951993 Scholz et al. Sep 1999 A
5952373 Lanzendorfer et al. Sep 1999 A
5952392 Katz et al. Sep 1999 A
5955414 Brown et al. Sep 1999 A
5959161 Kenmochi et al. Sep 1999 A
5961957 McAnalley Oct 1999 A
5961998 Arnaud et al. Oct 1999 A
5972310 Sachetto Oct 1999 A
5976555 Liu et al. Nov 1999 A
5980904 Leverett et al. Nov 1999 A
5990100 Rosenberg et al. Nov 1999 A
5993846 Friedman et al. Nov 1999 A
6001341 Genova et al. Dec 1999 A
6006948 Auer Dec 1999 A
6017912 Bussell Jan 2000 A
6019967 Breton et al. Feb 2000 A
6024942 Tanner et al. Feb 2000 A
6030630 Fleury et al. Feb 2000 A
6033647 Touzan et al. Mar 2000 A
6039936 Restle et al. Mar 2000 A
6042848 Lawyer et al. Mar 2000 A
6045779 Mueller et al. Apr 2000 A
6060041 Candau et al. May 2000 A
6071536 Suzuki et al. Jun 2000 A
6071541 Murad Jun 2000 A
6075056 Quigley, Jr. et al. Jun 2000 A
6080394 Lin et al. Jun 2000 A
6087310 Henkel Jul 2000 A
6087317 Gee Jul 2000 A
6090772 Kaiser et al. Jul 2000 A
6093408 Hasenoehrl et al. Jul 2000 A
6096756 Crain et al. Aug 2000 A
6110477 Hernandez et al. Aug 2000 A
6110966 Pollock Aug 2000 A
6113888 Castro et al. Sep 2000 A
6116466 Gueret et al. Sep 2000 A
6121210 Taylor Sep 2000 A
6126920 Jones et al. Oct 2000 A
6133327 Kimura et al. Oct 2000 A
6140355 Egidio et al. Oct 2000 A
6146645 Deckers et al. Nov 2000 A
6146664 Siddiqui Nov 2000 A
6162834 Sebillotte-Arnaud et al. Dec 2000 A
6165455 Torgerson et al. Dec 2000 A
6168576 Reynolds Jan 2001 B1
6171347 Kunz et al. Jan 2001 B1
6180662 Lanzendörfer et al. Jan 2001 B1
6180669 Tamarkin Jan 2001 B1
6183762 Deckers et al. Feb 2001 B1
6186367 Harrold Feb 2001 B1
6187290 Gilchrist et al. Feb 2001 B1
6189810 Nerushai et al. Feb 2001 B1
6190365 Abbott et al. Feb 2001 B1
6204285 Fabiano et al. Mar 2001 B1
6210656 Touzan et al. Apr 2001 B1
6210742 Deckers et al. Apr 2001 B1
6214318 Osipow et al. Apr 2001 B1
6214788 Velazco et al. Apr 2001 B1
6217887 Beerse et al. Apr 2001 B1
6221381 Shelford et al. Apr 2001 B1
6221823 Crisanti et al. Apr 2001 B1
6224888 Vatter et al. May 2001 B1
6231837 Stroud et al. May 2001 B1
6232315 Shafer et al. May 2001 B1
6241971 Fox et al. Jun 2001 B1
6251369 Stoltz Jun 2001 B1
6258374 Friess et al. Jul 2001 B1
6261544 Coury et al. Jul 2001 B1
6264964 Mohammadi Jul 2001 B1
6270781 Gehlsen Aug 2001 B1
6271295 Powell et al. Aug 2001 B1
6274150 Simonnet et al. Aug 2001 B1
6283336 Dwyer et al. Sep 2001 B1
6284802 Bissett et al. Sep 2001 B1
6287546 Reich et al. Sep 2001 B1
6294550 Place et al. Sep 2001 B1
6299023 Arnone Oct 2001 B1
6299032 Hamilton Oct 2001 B1
6299900 Reed et al. Oct 2001 B1
6305578 Hildebrandt et al. Oct 2001 B1
6306841 Place et al. Oct 2001 B1
6308863 Harman Oct 2001 B1
6319913 Mak et al. Nov 2001 B1
6328950 Franzke et al. Dec 2001 B1
6328982 Shiroyama et al. Dec 2001 B1
6333362 Lorant Dec 2001 B1
6335022 Simonnet et al. Jan 2002 B1
6341717 Auer Jan 2002 B2
6344218 Dodd et al. Feb 2002 B1
6348229 Eini et al. Feb 2002 B1
6352727 Takahashi Mar 2002 B1
6355230 Gers-Barlag et al. Mar 2002 B2
6358541 Goodman Mar 2002 B1
6358924 Hoffmann Mar 2002 B1
6364854 Ferrer et al. Apr 2002 B1
6372234 Deckers et al. Apr 2002 B1
6375936 Allard et al. Apr 2002 B1
6375960 Simonnet et al. Apr 2002 B1
6383471 Chen et al. May 2002 B1
6395258 Steer May 2002 B1
6395300 Straub et al. May 2002 B1
6403061 Candau et al. Jun 2002 B1
6403069 Chopra et al. Jun 2002 B1
6410036 De Rosa et al. Jun 2002 B1
6423323 Neubourg Jul 2002 B2
6423329 Sine et al. Jul 2002 B1
6428772 Singh et al. Aug 2002 B1
6433003 Bobrove et al. Aug 2002 B1
6433024 Popp et al. Aug 2002 B1
6433033 Isobe et al. Aug 2002 B1
6433068 Morrison et al. Aug 2002 B1
6437006 Yoon et al. Aug 2002 B1
6440429 Torizuka et al. Aug 2002 B1
6447801 Salafsky et al. Sep 2002 B1
6451777 Bradbury et al. Sep 2002 B1
6455076 Hahn et al. Sep 2002 B1
6468989 Chang et al. Oct 2002 B1
6479058 McCadden Nov 2002 B1
6479060 Jones et al. Nov 2002 B1
6479532 Kamimura et al. Nov 2002 B1
6482810 Brem et al. Nov 2002 B1
6486168 Skwierczynski et al. Nov 2002 B1
6488947 Bekele Dec 2002 B1
6511655 Muller et al. Jan 2003 B1
6514487 Barr Feb 2003 B1
6524594 Santora et al. Feb 2003 B1
6531118 Gonzalez et al. Mar 2003 B1
6534455 Maurin et al. Mar 2003 B1
6536629 van der Heijden Mar 2003 B2
6544530 Friedman Apr 2003 B1
6544562 Singh et al. Apr 2003 B2
6547063 Zaveri et al. Apr 2003 B1
6548074 Mohammadi Apr 2003 B1
6551604 Beck et al. Apr 2003 B1
6562355 Renault May 2003 B1
6566350 Ono et al. May 2003 B2
6582679 Stein et al. Jun 2003 B2
6582710 Deckers et al. Jun 2003 B2
6589509 Keller et al. Jul 2003 B2
6596287 Deckers et al. Jul 2003 B2
6599513 Deckers et al. Jul 2003 B2
6607716 Smith et al. Aug 2003 B1
6610315 Scholz et al. Aug 2003 B2
6620773 Stork et al. Sep 2003 B1
6638981 Williams et al. Oct 2003 B2
6649571 Morgan Nov 2003 B1
6649574 Cardis et al. Nov 2003 B2
6672483 Roy Jan 2004 B1
6682726 Marchesi et al. Jan 2004 B2
6682750 Loeffler et al. Jan 2004 B2
6691898 Hurray et al. Feb 2004 B2
6706290 Kajander et al. Mar 2004 B1
6709663 Espinoza Mar 2004 B2
6723309 Deane Apr 2004 B1
6730288 Abram May 2004 B1
6736860 Patel et al. May 2004 B2
6753000 Breton et al. Jun 2004 B2
6753013 Didriksen et al. Jun 2004 B1
6753167 Moloney et al. Jun 2004 B2
6762158 Lukenbach et al. Jul 2004 B2
6765001 Gans et al. Jul 2004 B2
6774114 Castiel et al. Aug 2004 B2
6777591 Chaudhary Aug 2004 B1
6790435 Ma et al. Sep 2004 B1
6796973 Contente et al. Sep 2004 B1
RE38623 Hernandez et al. Oct 2004 E
6811767 Bosch et al. Nov 2004 B1
6834778 Jinbo et al. Dec 2004 B2
6841547 Brown et al. Jan 2005 B2
6843390 Bristor Jan 2005 B1
6875438 Kraemer et al. Apr 2005 B2
6881271 Ochiai Apr 2005 B2
6890567 Nakatsu et al. May 2005 B2
6897195 Su et al. May 2005 B2
6902737 Quemin et al. Jun 2005 B2
6911211 Eini et al. Jun 2005 B2
6914057 Ryan et al. Jul 2005 B1
6946120 Wai-Chiu So et al. Sep 2005 B2
6946139 Henning Sep 2005 B2
6951654 Malcolm et al. Oct 2005 B2
6955816 Klysz Oct 2005 B2
6956062 Beilfuss et al. Oct 2005 B2
6958154 Andolino Brandt et al. Oct 2005 B2
6967023 Eini et al. Nov 2005 B1
6968982 Burns Nov 2005 B1
6969521 Gonzalez et al. Nov 2005 B1
RE38964 Shillington Jan 2006 E
6994863 Eini et al. Feb 2006 B2
7002486 Lawrence Feb 2006 B2
7014844 Mahalingam et al. Mar 2006 B2
7021499 Hansen et al. Apr 2006 B2
7029659 Abram et al. Apr 2006 B2
7060253 Mundschenk Jun 2006 B1
7078058 Jones et al. Jul 2006 B2
7083799 Giacomoni Aug 2006 B1
7137536 Walters et al. Nov 2006 B2
7195135 Garcia et al. Mar 2007 B1
7222802 Sweeton May 2007 B2
7225518 Eidenschink et al. Jun 2007 B2
7226230 Liberatore Jun 2007 B2
7235251 Hamer et al. Jun 2007 B2
7252816 Angel et al. Aug 2007 B1
7270828 Masuda et al. Sep 2007 B2
7455195 Mekata Nov 2008 B2
7497354 Decottignies et al. Mar 2009 B2
7575739 Tamarkin et al. Aug 2009 B2
7645803 Tamarkin et al. Jan 2010 B2
7654415 van der Heijden Feb 2010 B2
7682623 Eini et al. Mar 2010 B2
7700076 Tamarkin et al. Apr 2010 B2
7704518 Tamarkin et al. Apr 2010 B2
7758888 Lapidot et al. Jul 2010 B2
7793807 Goujon et al. Sep 2010 B2
7820145 Tamarkin et al. Oct 2010 B2
7842791 Britten et al. Nov 2010 B2
7960416 Sato et al. Jun 2011 B2
8114385 Tamarkin et al. Feb 2012 B2
8158109 Abram et al. Apr 2012 B2
8192749 Ashley Jun 2012 B2
8211874 Theobald et al. Jul 2012 B2
8343945 Tamarkin et al. Jan 2013 B2
8362091 Tamarkin et al. Jan 2013 B2
8435498 Tamarkin et al. May 2013 B2
8486375 Tamarkin et al. Jul 2013 B2
8518376 Tamarkin et al. Aug 2013 B2
8592380 Trumbore et al. Nov 2013 B2
8618081 Tamarkin et al. Dec 2013 B2
8623330 Gurge et al. Jan 2014 B2
8652443 Varanasi et al. Feb 2014 B2
8735377 Sipos May 2014 B1
8778365 Hardas et al. Jul 2014 B1
8784780 Gurge et al. Jul 2014 B2
8846039 Chung et al. Sep 2014 B2
8895536 Bannister et al. Nov 2014 B2
8992896 Tamarkin et al. Mar 2015 B2
9050253 Tamarkin et al. Jun 2015 B2
9101662 Tamarkin et al. Aug 2015 B2
9192558 Chen et al. Nov 2015 B2
9265725 Tamarkin Feb 2016 B2
9265740 Johnston et al. Feb 2016 B2
9439857 Tamarkin et al. Sep 2016 B2
9474720 Yamamoto Oct 2016 B2
9492412 Tamarkin et al. Nov 2016 B2
9539208 Tamarkin et al. Jan 2017 B2
9539266 Mansouri Jan 2017 B2
9549898 Tamarkin et al. Jan 2017 B2
9572775 Tamarkin et al. Feb 2017 B2
9592246 Salman et al. Mar 2017 B2
9622947 Tamarkin et al. Apr 2017 B2
9636405 Tamarkin et al. May 2017 B2
9662298 Tamarkin et al. May 2017 B2
9668972 Tamarkin et al. Jun 2017 B2
9675700 Tamarkin et al. Jun 2017 B2
9682021 Tamarkin et al. Jun 2017 B2
9713643 Friedman et al. Jul 2017 B2
9795564 Tamarkin et al. Oct 2017 B2
9849142 Tamarkin et al. Dec 2017 B2
9884017 Tamarkin et al. Feb 2018 B2
20010006654 Cannell et al. Jul 2001 A1
20010027218 Stern et al. Oct 2001 A1
20010027981 Yquel Oct 2001 A1
20010033838 Farmer Oct 2001 A1
20010036450 Verite et al. Nov 2001 A1
20010054574 Navarro Dec 2001 A1
20020002151 Ono et al. Jan 2002 A1
20020004063 Zhang Jan 2002 A1
20020013481 Schonrock et al. Jan 2002 A1
20020015721 Simonnet et al. Feb 2002 A1
20020031478 Keller et al. Mar 2002 A1
20020032171 Chen et al. Mar 2002 A1
20020035046 Lukenbach et al. Mar 2002 A1
20020035070 Gardlik et al. Mar 2002 A1
20020035087 Barclay Mar 2002 A1
20020035182 L'Alloret et al. Mar 2002 A1
20020039591 Dahle Apr 2002 A1
20020044659 Ohta Apr 2002 A1
20020045659 Michelet et al. Apr 2002 A1
20020048798 Avery et al. Apr 2002 A1
20020058010 Picard-Lesboueyries et al. May 2002 A1
20020072544 Miller et al. Jun 2002 A1
20020090386 Haslwanter et al. Jul 2002 A1
20020098215 Douin et al. Jul 2002 A1
20020111281 Vishnupad Aug 2002 A1
20020117516 Lasserre et al. Aug 2002 A1
20020134376 Castro et al. Sep 2002 A1
20020136755 Tyrrell et al. Sep 2002 A1
20020143188 Garvey et al. Oct 2002 A1
20020153390 Vlodek Oct 2002 A1
20020165170 Wilson et al. Nov 2002 A1
20020182162 Shahinpoor et al. Dec 2002 A1
20020182234 Riedel et al. Dec 2002 A1
20020187181 Godbey et al. Dec 2002 A1
20020198136 Mak et al. Dec 2002 A1
20030006193 Ikeda et al. Jan 2003 A1
20030013692 Gullans et al. Jan 2003 A1
20030017181 Rood et al. Jan 2003 A1
20030031693 Breton et al. Feb 2003 A1
20030053961 Eccard Mar 2003 A1
20030077297 Chen et al. Apr 2003 A1
20030077301 Maibach et al. Apr 2003 A1
20030078172 Guiramand et al. Apr 2003 A1
20030082120 Milstein May 2003 A1
20030108502 Uchida et al. Jun 2003 A1
20030114520 Pereira et al. Jun 2003 A1
20030118515 Jew et al. Jun 2003 A1
20030118527 Jager et al. Jun 2003 A1
20030129259 Mahalingam et al. Jul 2003 A1
20030130247 Gans et al. Jul 2003 A1
20030148949 Podolsky Aug 2003 A1
20030175232 Elliott et al. Sep 2003 A1
20030175315 Yoo et al. Sep 2003 A1
20030180347 Young et al. Sep 2003 A1
20030185839 Podolsky Oct 2003 A1
20030185861 Hori et al. Oct 2003 A1
20030194379 Brugger et al. Oct 2003 A1
20030195128 Deckman et al. Oct 2003 A1
20030206955 Sonneville-Aubrun et al. Nov 2003 A1
20030215418 Asmus et al. Nov 2003 A1
20030215472 Bonda et al. Nov 2003 A1
20030235597 Withiam et al. Dec 2003 A1
20040002550 Mercurio Jan 2004 A1
20040018228 Fischell et al. Jan 2004 A1
20040028752 Kamm et al. Feb 2004 A1
20040038912 Michelet et al. Feb 2004 A1
20040053797 Chen et al. Mar 2004 A1
20040058878 Walker Mar 2004 A1
20040063787 Villanueva Apr 2004 A1
20040067970 Foster et al. Apr 2004 A1
20040072638 Enos et al. Apr 2004 A1
20040076651 Brocks et al. Apr 2004 A1
20040078896 Hellyer et al. Apr 2004 A1
20040079361 Clayton et al. Apr 2004 A1
20040105825 Henning Jun 2004 A1
20040106688 Koike et al. Jun 2004 A1
20040120917 Perrier et al. Jun 2004 A1
20040127554 Ghisalberti Jul 2004 A1
20040138179 Goldstein et al. Jul 2004 A1
20040151671 Abram et al. Aug 2004 A1
20040151756 Richards et al. Aug 2004 A1
20040161447 Paul Aug 2004 A1
20040184992 Abram Sep 2004 A1
20040185123 Mazzio et al. Sep 2004 A1
20040191196 Tamarkin Sep 2004 A1
20040192754 Shapira et al. Sep 2004 A1
20040195276 Fuchs Oct 2004 A1
20040197276 Takase et al. Oct 2004 A1
20040197295 Riedel et al. Oct 2004 A1
20040198706 Carrara Oct 2004 A1
20040219122 Masuda et al. Nov 2004 A1
20040219176 Dominguez Nov 2004 A1
20040220187 Stephenson et al. Nov 2004 A1
20040229813 DiPiano et al. Nov 2004 A1
20040234475 Lannibois-Drean et al. Nov 2004 A1
20040241099 Popp et al. Dec 2004 A1
20040247531 Riedel et al. Dec 2004 A1
20040253275 Eini et al. Dec 2004 A1
20040258627 Riedel et al. Dec 2004 A1
20040258628 Riedel et al. Dec 2004 A1
20040265240 Tamarkin et al. Dec 2004 A1
20050002976 Wu Jan 2005 A1
20050013853 Gil-Ad et al. Jan 2005 A1
20050031547 Tamarkin et al. Feb 2005 A1
20050042182 Arkin Feb 2005 A1
20050054991 Tobyn et al. Mar 2005 A1
20050069566 Tamarkin et al. Mar 2005 A1
20050074414 Tamarkin et al. Apr 2005 A1
20050075407 Tamarkin et al. Apr 2005 A1
20050079139 Jacques et al. Apr 2005 A1
20050079228 Jaiswal et al. Apr 2005 A1
20050084551 Jensen et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050100517 Sanzgiri et al. May 2005 A1
20050101936 Gonzales et al. May 2005 A1
20050106197 Blin et al. May 2005 A1
20050123494 Swaile et al. Jun 2005 A1
20050123496 Shah et al. Jun 2005 A1
20050148552 Ryan et al. Jul 2005 A1
20050153943 Ashley Jul 2005 A1
20050164993 Ashley Jul 2005 A1
20050186142 Tamarkin et al. Aug 2005 A1
20050186147 Tamarkin et al. Aug 2005 A1
20050189377 Lanzendorfer et al. Sep 2005 A1
20050196414 Dake et al. Sep 2005 A1
20050205086 Tamarkin et al. Sep 2005 A1
20050207837 Kosh et al. Sep 2005 A1
20050222090 Cheng et al. Oct 2005 A1
20050232869 Tamarkin et al. Oct 2005 A1
20050244342 Friedman et al. Nov 2005 A1
20050244354 Speron Nov 2005 A1
20050245902 Cornish et al. Nov 2005 A1
20050252995 Westphal et al. Nov 2005 A1
20050255048 Hirsh et al. Nov 2005 A1
20050258189 Peterson et al. Nov 2005 A1
20050266035 Healy et al. Dec 2005 A1
20050268416 Sommers Dec 2005 A1
20050271596 Friedman et al. Dec 2005 A1
20050271598 Friedman et al. Dec 2005 A1
20050276836 Wilson et al. Dec 2005 A1
20050281749 Willcox et al. Dec 2005 A1
20050281755 Zarif et al. Dec 2005 A1
20050281766 Martin et al. Dec 2005 A1
20050285912 Delametter et al. Dec 2005 A1
20050287081 Aust et al. Dec 2005 A1
20060008432 Scarampi et al. Jan 2006 A1
20060018937 Friedman Jan 2006 A1
20060018938 Neubourg Jan 2006 A1
20060029565 Xu et al. Feb 2006 A1
20060051301 Galopin et al. Mar 2006 A1
20060054634 Mekata Mar 2006 A1
20060057168 Larm Mar 2006 A1
20060088561 Eini et al. Apr 2006 A1
20060099151 Neubourg May 2006 A1
20060108377 Glynn et al. May 2006 A1
20060110415 Gupta May 2006 A1
20060110418 Johnson May 2006 A1
20060114745 Ollmann et al. Jun 2006 A1
20060121073 Goyal et al. Jun 2006 A1
20060140984 Tamarkin et al. Jun 2006 A1
20060140990 Bortz et al. Jun 2006 A1
20060160713 Sekine et al. Jul 2006 A1
20060165616 Brock et al. Jul 2006 A1
20060177392 Walden Aug 2006 A1
20060193789 Tamarkin et al. Aug 2006 A1
20060193813 Simonnet Aug 2006 A1
20060204446 Lulla et al. Sep 2006 A1
20060222675 Sabnis et al. Oct 2006 A1
20060233721 Tamarkin et al. Oct 2006 A1
20060239937 Neubourg Oct 2006 A2
20060251684 Annis et al. Nov 2006 A1
20060254597 Thompson Nov 2006 A1
20060263323 Hoang et al. Nov 2006 A1
20060269485 Friedman et al. Nov 2006 A1
20060272199 Licciardello Dec 2006 A1
20060275218 Tamarkin et al. Dec 2006 A1
20060275221 Tamarkin et al. Dec 2006 A1
20060285912 Eini et al. Dec 2006 A1
20060292080 Abram et al. Dec 2006 A1
20070009607 Jones Jan 2007 A1
20070010580 De Paoli Ambrosi Jan 2007 A1
20070015739 Walker et al. Jan 2007 A1
20070017696 Lin et al. Jan 2007 A1
20070020213 Tamarkin Jan 2007 A1
20070020304 Tamarkin et al. Jan 2007 A1
20070027055 Koivisto et al. Feb 2007 A1
20070036831 Baker Feb 2007 A1
20070053943 Wang et al. Mar 2007 A1
20070059253 Popp et al. Mar 2007 A1
20070069046 Eini et al. Mar 2007 A1
20070071688 Illel et al. Mar 2007 A1
20070098647 Neubourg May 2007 A1
20070111956 Matsushima et al. May 2007 A1
20070134174 Irwin et al. Jun 2007 A1
20070140998 Kato et al. Jun 2007 A1
20070140999 Puglia et al. Jun 2007 A1
20070141086 Ohara et al. Jun 2007 A1
20070142263 Stahl et al. Jun 2007 A1
20070148112 Dingley et al. Jun 2007 A1
20070148194 Amiji et al. Jun 2007 A1
20070154402 Trumbore et al. Jul 2007 A1
20070160548 Riccardi et al. Jul 2007 A1
20070166274 Mazur et al. Jul 2007 A1
20070224143 Konis Sep 2007 A1
20070237724 Abram et al. Oct 2007 A1
20070253911 Tamarkin et al. Nov 2007 A1
20070264317 Yosha et al. Nov 2007 A1
20070271235 Frank et al. Nov 2007 A1
20070280891 Tamarkin et al. Dec 2007 A1
20070281999 Fox et al. Dec 2007 A1
20070292355 Tamarkin et al. Dec 2007 A1
20070292359 Friedman et al. Dec 2007 A1
20070292461 Tamarkin et al. Dec 2007 A1
20080008397 Kisilev Jan 2008 A1
20080015263 Bolotin et al. Jan 2008 A1
20080015271 Abram et al. Jan 2008 A1
20080031907 Tamarkin et al. Feb 2008 A1
20080031908 Aubrun-Sonneville et al. Feb 2008 A1
20080035155 Dahl Feb 2008 A1
20080044444 Tamarkin et al. Feb 2008 A1
20080050317 Tamarkin et al. Feb 2008 A1
20080058055 LeMay et al. Mar 2008 A1
20080063682 Cashman et al. Mar 2008 A1
20080069779 Tamarkin et al. Mar 2008 A1
20080131378 Keller et al. Jun 2008 A1
20080138293 Tamarkin et al. Jun 2008 A1
20080138296 Tamarkin et al. Jun 2008 A1
20080152596 Friedman et al. Jun 2008 A1
20080153789 Dmowski et al. Jun 2008 A1
20080166303 Tamarkin et al. Jul 2008 A1
20080167376 Bar-Or et al. Jul 2008 A1
20080181854 Eini et al. Jul 2008 A1
20080188445 Muldoon et al. Aug 2008 A1
20080188446 Muldoon et al. Aug 2008 A1
20080193762 Dubertret et al. Aug 2008 A1
20080206155 Tamarkin et al. Aug 2008 A1
20080206159 Tamarkin et al. Aug 2008 A1
20080206161 Tamarkin et al. Aug 2008 A1
20080241079 Neubourg Oct 2008 A1
20080253973 Tamarkin et al. Oct 2008 A1
20080255498 Houle Oct 2008 A1
20080260655 Tamarkin et al. Oct 2008 A1
20080292560 Tamarkin et al. Nov 2008 A1
20080299220 Tamarkin et al. Dec 2008 A1
20080311167 Oronsky et al. Dec 2008 A1
20080317679 Tamarkin et al. Dec 2008 A1
20090017147 Lintner et al. Jan 2009 A1
20090041680 Tamarkin et al. Feb 2009 A1
20090053290 Sand et al. Feb 2009 A1
20090061001 Hougaz Mar 2009 A1
20090068118 Eini et al. Mar 2009 A1
20090093514 Statham et al. Apr 2009 A1
20090130029 Tamarkin et al. May 2009 A1
20090131488 Harel et al. May 2009 A1
20090175799 Tamarkin et al. Jul 2009 A1
20090180970 Tamarkin et al. Jul 2009 A1
20090214628 De Rijk Aug 2009 A1
20090291917 Akama et al. Nov 2009 A1
20090317338 Tamarkin et al. Dec 2009 A1
20100111879 Tamarkin et al. May 2010 A1
20100137198 Eini et al. Jun 2010 A1
20100221194 Loupenok Sep 2010 A1
20100221195 Tamarkin et al. Sep 2010 A1
20100266510 Tamarkin et al. Oct 2010 A1
20100286417 Mendes et al. Nov 2010 A1
20110002857 Tamarkin et al. Jan 2011 A1
20110002969 Serraima et al. Jan 2011 A1
20110008266 Tamarkin et al. Jan 2011 A1
20110045037 Tamarkin et al. Feb 2011 A1
20110097279 Tamarkin et al. Apr 2011 A1
20110207765 Van Den Bussche et al. Aug 2011 A1
20110212033 Tamarkin et al. Sep 2011 A1
20110262542 Ashley Oct 2011 A1
20110268665 Tamarkin et al. Nov 2011 A1
20110281827 Tamarkin et al. Nov 2011 A1
20120064136 Baker, Jr. et al. Mar 2012 A1
20120082632 Phillips et al. Apr 2012 A1
20120087872 Tamarkin et al. Apr 2012 A1
20120128598 Trumbore et al. May 2012 A1
20120141384 Tamarkin Jun 2012 A1
20120148503 Tamarkin et al. Jun 2012 A1
20120156144 Tamarkin et al. Jun 2012 A1
20120164087 Carter Jun 2012 A1
20120181201 Heggie Jul 2012 A1
20120195836 Tamarkin et al. Aug 2012 A1
20120213709 Tamarkin et al. Aug 2012 A1
20120213710 Tamarkin et al. Aug 2012 A1
20120237453 Tamarkin et al. Sep 2012 A1
20130011342 Tamarkin et al. Jan 2013 A1
20130028850 Tamarkin et al. Jan 2013 A1
20130053353 Tamarkin et al. Feb 2013 A1
20130064777 Tamarkin et al. Mar 2013 A1
20130115173 Trumbore et al. May 2013 A1
20130161351 Eini et al. Jun 2013 A1
20130164225 Tamarkin et al. Jun 2013 A1
20130183250 Friedman et al. Jul 2013 A1
20130183251 Tamarkin et al. Jul 2013 A1
20130189191 Tamarkin et al. Jul 2013 A1
20130189193 Tamarkin et al. Jul 2013 A1
20130189195 Tamarkin et al. Jul 2013 A1
20130189196 Tamarkin et al. Jul 2013 A1
20130195769 Tamarkin et al. Aug 2013 A1
20130225536 Tamarkin et al. Aug 2013 A1
20130251644 Majhi et al. Sep 2013 A1
20130261565 Wong et al. Oct 2013 A1
20130295022 Friedman et al. Nov 2013 A1
20130296387 Saad Nov 2013 A1
20140050673 Tamarkin et al. Feb 2014 A1
20140066524 Tamarkin et al. Mar 2014 A1
20140086848 Tamarkin et al. Mar 2014 A1
20140121188 Tamarkin et al. May 2014 A1
20140140937 Gurge et al. May 2014 A1
20140147504 Salman et al. May 2014 A1
20140182585 Tamarkin et al. Jul 2014 A1
20140186269 Tamarkin et al. Jul 2014 A1
20140186442 Mansouri Jul 2014 A1
20140221320 Joks et al. Aug 2014 A1
20140227199 Tamarkin et al. Aug 2014 A1
20140228355 Kortagere et al. Aug 2014 A1
20140242016 Binks et al. Aug 2014 A1
20140248219 Tamarkin et al. Sep 2014 A1
20140271494 Tamarkin et al. Sep 2014 A1
20150025060 Tamarkin et al. Jan 2015 A1
20150098907 Tamarkin et al. Apr 2015 A1
20150118164 Tamarkin et al. Apr 2015 A1
20150125496 Yamamoto May 2015 A1
20150141381 Levy et al. May 2015 A1
20150157586 Tamarkin et al. Jun 2015 A1
20150164922 Tamarkin et al. Jun 2015 A1
20150174144 Bowser et al. Jun 2015 A1
20150190409 Tamarkin et al. Jul 2015 A1
20150196570 Tamarkin et al. Jul 2015 A1
20150209296 Yamamoto Jul 2015 A1
20150374625 Tamarkin et al. Dec 2015 A1
20160101051 Tamarkin et al. Apr 2016 A1
20160101184 Tamarkin et al. Apr 2016 A1
20160128944 Chawrai et al. May 2016 A1
20160158261 Friedman et al. Jun 2016 A1
20160213757 Edelson et al. Jul 2016 A1
20160279152 Chen et al. Sep 2016 A1
20160287615 Chan et al. Oct 2016 A1
20160354473 Tamarkin et al. Dec 2016 A1
20160361252 Franke Dec 2016 A1
20160361320 Zhao et al. Dec 2016 A1
20170014517 Tamarkin Jan 2017 A1
20170049712 Bhalani et al. Feb 2017 A1
20170119665 Tamarkin et al. May 2017 A1
20170157175 Tamarkin et al. Jun 2017 A1
20170172857 Tamarkin et al. Jun 2017 A1
20170181970 Tamarkin et al. Jun 2017 A1
20170216334 Tamarkin et al. Aug 2017 A1
20170231909 Tamarkin et al. Aug 2017 A1
20170274084 Friedman et al. Sep 2017 A1
20170340743 Tamarkin et al. Nov 2017 A1
20170348418 Tamarkin et al. Dec 2017 A1
20170354597 Tamarkin et al. Dec 2017 A1
20170360705 Tamarkin et al. Dec 2017 A1
20180000734 Tamarkin et al. Jan 2018 A1
20180064638 Tamarkin et al. Mar 2018 A1
Foreign Referenced Citations (369)
Number Date Country
198780257 Sep 1986 AU
782515 Dec 2005 AU
2010219295 Sep 2012 AU
2114537 Feb 1993 CA
2154438 Jan 1996 CA
2422244 Sep 2003 CA
2502986 Aug 2011 CA
2534372 Jan 2012 CA
2536482 Jul 2012 CA
639913 Dec 1983 CH
1 882 100 Nov 1963 DE
1926796 Nov 1965 DE
4140474 Jun 1993 DE
10009233 Aug 2000 DE
10138495 Feb 2003 DE
102004016710 Oct 2005 DE
2 608 226 Sep 2007 DE
52404 May 1982 EP
0156507 Oct 1985 EP
0186453 Jul 1986 EP
0 211 550 Feb 1987 EP
0 213 827 Mar 1987 EP
0214865 Mar 1987 EP
0 216 856 Apr 1987 EP
0270316 Jun 1988 EP
297436 Jan 1989 EP
0 326 196 Aug 1989 EP
0 336 812 Oct 1989 EP
0 391 124 Oct 1990 EP
0404376 Dec 1990 EP
414920 Mar 1991 EP
0 454 102 Oct 1991 EP
0 485 299 May 1992 EP
0484530 May 1992 EP
0488089 Jun 1992 EP
0 504 301 Sep 1992 EP
0 528 190 Feb 1993 EP
0535327 Apr 1993 EP
0 552 612 Jul 1993 EP
0569773 Nov 1993 EP
0598412 Nov 1993 EP
0 662 431 Jul 1995 EP
0676198 Oct 1995 EP
0738516 Oct 1996 EP
0 757 959 Feb 1997 EP
0824911 Feb 1998 EP
0 829 259 Mar 1998 EP
0 928 608 Jul 1999 EP
0 979 654 Feb 2000 EP
0993827 Apr 2000 EP
1 025 836 Aug 2000 EP
1055425 Nov 2000 EP
0 506 197 Jul 2001 EP
1215258 Jun 2002 EP
1287813 Mar 2003 EP
1 308 169 May 2003 EP
1 375 386 Jan 2004 EP
1428521 Jun 2004 EP
1438946 Jul 2004 EP
1189579 Sep 2004 EP
1475381 Nov 2004 EP
1 483 001 Dec 2004 EP
1 500 385 Jan 2005 EP
1 537 916 Jun 2005 EP
1 600 185 Nov 2005 EP
1 653 932 May 2006 EP
1 734 927 Dec 2006 EP
1 758 547 Mar 2007 EP
1584324 Nov 2007 EP
1 889 609 Feb 2008 EP
1 902 706 Mar 2008 EP
2 129 383 Dec 2009 EP
2422768 Feb 2012 EP
2494959 Sep 2012 EP
2 456 522 Dec 1980 FR
2 591 331 Jun 1987 FR
2 640 942 Jun 1990 FR
2 736 824 Jan 1997 FR
2 774 595 Aug 1999 FR
2 789 371 Aug 2000 FR
2 793 479 Nov 2000 FR
2 814 959 Apr 2002 FR
2 833 246 Jun 2003 FR
2 840 903 Dec 2003 FR
2 843 373 Feb 2004 FR
2 845 672 Apr 2004 FR
2 848 998 Jun 2004 FR
2 860 976 Apr 2005 FR
2915891 Nov 2008 FR
808104 Jan 1959 GB
808105 Jan 1959 GB
922930 Apr 1963 GB
933486 Aug 1963 GB
998 490 Jul 1965 GB
1026831 Apr 1966 GB
1 033 299 Jun 1966 GB
1 081 949 Sep 1967 GB
1121358 Jul 1968 GB
1 162 684 Aug 1969 GB
1 170 152 Nov 1969 GB
1 201 918 Aug 1970 GB
1 347 950 Feb 1974 GB
1 351 761 May 1974 GB
1 351 762 May 1974 GB
1 353 381 May 1974 GB
1 376 649 Dec 1974 GB
1397285 Jun 1975 GB
1 408 036 Oct 1975 GB
1 457 671 Dec 1976 GB
1 489 672 Oct 1977 GB
2 004 746 Apr 1979 GB
1 561 423 Feb 1980 GB
2114580 Aug 1983 GB
2 153 686 Aug 1985 GB
2 172 298 Sep 1986 GB
2 206 099 Dec 1988 GB
2166651 May 1996 GB
2337461 Nov 1999 GB
2 367 809 Apr 2002 GB
2 406 330 Mar 2005 GB
2 406 791 Apr 2005 GB
2 474 930 Jul 2012 GB
49491 Sep 1979 IL
0152486 May 2003 IL
60001113 Apr 1978 JP
55069682 May 1980 JP
57044429 Mar 1982 JP
56039815 Apr 1984 JP
61275395 Dec 1986 JP
62241701 Oct 1987 JP
63119420 May 1988 JP
01100111 Apr 1989 JP
01156906 Jun 1989 JP
2184614 Jul 1990 JP
2255890 Oct 1990 JP
4-51958 Feb 1992 JP
04282311 Oct 1992 JP
4312521 Nov 1992 JP
5070340 Mar 1993 JP
5213734 Aug 1993 JP
6100414 Apr 1994 JP
H06-263630 Jun 1994 JP
6329532 Nov 1994 JP
2007155667 Jun 1995 JP
7215835 Aug 1995 JP
8501529 Feb 1996 JP
2008040899 Feb 1996 JP
8119831 May 1996 JP
8165218 Jun 1996 JP
8277209 Oct 1996 JP
09 084855 Mar 1997 JP
9099553 Apr 1997 JP
9110636 Apr 1997 JP
10114619 May 1998 JP
3050289 Sep 1998 JP
2010332456 Dec 1998 JP
11501045 Jan 1999 JP
11250543 Sep 1999 JP
2000017174 Jan 2000 JP
2000080017 Mar 2000 JP
2000128734 May 2000 JP
2000191429 Jul 2000 JP
2000239140 Sep 2000 JP
2000354623 Dec 2000 JP
2000351726 Dec 2000 JP
2001002526 Jan 2001 JP
2001019606 Jan 2001 JP
2001072963 Mar 2001 JP
2002012513 Jan 2002 JP
2002047136 Feb 2002 JP
2002524490 Aug 2002 JP
2002302419 Oct 2002 JP
2003012511 Jan 2003 JP
2003055146 Feb 2003 JP
2004047136 Feb 2004 JP
2004250435 Sep 2004 JP
2004348277 Dec 2004 JP
2005314323 Nov 2005 JP
2005350378 Dec 2005 JP
2006008574 Jan 2006 JP
2006036317 Feb 2006 JP
2006103799 Apr 2006 JP
2006525145 Nov 2006 JP
2007131539 May 2007 JP
4892282 Mar 2012 JP
143232 Jul 1998 KR
2001003063 Jan 2001 KR
520014 May 2005 NZ
540166 Jun 2007 NZ
2277501 Jun 2006 RU
66796 Jun 2004 UA
8201821 Jun 1982 WO
WO-8605389 Sep 1986 WO
8801502 Mar 1988 WO
WO-8801863 Mar 1988 WO
8808316 Nov 1988 WO
WO-8906537 Jul 1989 WO
WO-9005774 May 1990 WO
WO-9111991 Aug 1991 WO
WO-9200077 Jan 1992 WO
9205142 Apr 1992 WO
9205763 Apr 1992 WO
WO-9211839 Jul 1992 WO
WO 9213602 Aug 1992 WO
9325189 Dec 1993 WO
9406440 Mar 1994 WO
WO 9603115 Feb 1996 WO
WO-9603115 Feb 1996 WO
WO-9619921 Jul 1996 WO
WO 9619921 Jul 1996 WO
9624325 Aug 1996 WO
9626711 Sep 1996 WO
WO-9627376 Sep 1996 WO
WO-9639119 Dec 1996 WO
9703638 Feb 1997 WO
9739745 Oct 1997 WO
9817282 Apr 1998 WO
WO-9818472 May 1998 WO
WO-9819654 May 1998 WO
WO-9821955 May 1998 WO
WO-9823291 Jun 1998 WO
WO 9831339 Jul 1998 WO
WO-9836733 Aug 1998 WO
9852536 Nov 1998 WO
WO-9908649 Feb 1999 WO
WO-9920250 Apr 1999 WO
WO-9937282 Jul 1999 WO
9953923 Oct 1999 WO
WO-0009082 Feb 2000 WO
WO-0015193 Mar 2000 WO
0023051 Apr 2000 WO
WO 0062776 Apr 2000 WO
0033825 Jun 2000 WO
0038731 Jul 2000 WO
WO-0061076 Oct 2000 WO
WO 0072805 Dec 2000 WO
WO-0076461 Dec 2000 WO
0105366 Jan 2001 WO
WO 0101949 Jan 2001 WO
0110961 Feb 2001 WO
WO-0108681 Feb 2001 WO
0153198 Jul 2001 WO
0154212 Jul 2001 WO
0162209 Aug 2001 WO
WO-0154679 Aug 2001 WO
WO-0170242 Sep 2001 WO
WO 200176579 Oct 2001 WO
0182880 Nov 2001 WO
0182890 Nov 2001 WO
0185102 Nov 2001 WO
0185128 Nov 2001 WO
0195728 Dec 2001 WO
WO-0200820 Jan 2002 WO
WO 0207685 Jan 2002 WO
0215860 Feb 2002 WO
0215873 Feb 2002 WO
WO 0224161 Mar 2002 WO
WO-0228435 Apr 2002 WO
WO-0241847 May 2002 WO
WO-0243490 Jun 2002 WO
WO-02062324 Aug 2002 WO
02078667 Oct 2002 WO
02087519 Nov 2002 WO
03000223 Jan 2003 WO
03002082 Jan 2003 WO
WO 03005985 Jan 2003 WO
03013984 Feb 2003 WO
WO 03015699 Feb 2003 WO
WO-03051294 Jun 2003 WO
03055454 Jul 2003 WO
WO-03053292 Jul 2003 WO
WO-03055445 Jul 2003 WO
03070301 Aug 2003 WO
03071995 Sep 2003 WO
WO-03075851 Sep 2003 WO
03097002 Nov 2003 WO
WO-03092641 Nov 2003 WO
WO 03094873 Nov 2003 WO
2004017962 Mar 2004 WO
2004037197 May 2004 WO
WO-2004037225 May 2004 WO
2004003284 Aug 2004 WO
2004064769 Aug 2004 WO
WO-2004064833 Aug 2004 WO
WO-2004071479 Aug 2004 WO
2004078158 Sep 2004 WO
WO-2004078896 Sep 2004 WO
2004093895 Nov 2004 WO
WO-2004112780 Dec 2004 WO
WO 2005009416 Feb 2005 WO
WO-2005011567 Feb 2005 WO
WO-2005018530 Mar 2005 WO
WO-2005018530 Mar 2005 WO
WO-2005032522 Apr 2005 WO
WO-2005044219 May 2005 WO
2005063224 Jul 2005 WO
WO-2005065652 Jul 2005 WO
WO-2005076697 Aug 2005 WO
WO-2005097068 Oct 2005 WO
WO-2005097068 Oct 2005 WO
2005102282 Nov 2005 WO
2005102539 Nov 2005 WO
WO-2005117813 Dec 2005 WO
WO-2006003481 Jan 2006 WO
2006011046 Feb 2006 WO
2006020682 Feb 2006 WO
WO-2006010589 Feb 2006 WO
2006028339 Mar 2006 WO
WO-2006031271 Mar 2006 WO
2006045170 May 2006 WO
2006079632 Aug 2006 WO
2006081327 Aug 2006 WO
WO-2006091229 Aug 2006 WO
WO-2006100485 Sep 2006 WO
2006121610 Nov 2006 WO
2006122158 Nov 2006 WO
WO-2006120682 Nov 2006 WO
WO-2006129161 Dec 2006 WO
WO-2006131784 Dec 2006 WO
WO-2007007208 Jan 2007 WO
WO 2007010494 Jan 2007 WO
WO-2007012977 Feb 2007 WO
WO-2007023396 Mar 2007 WO
WO-2007031621 Mar 2007 WO
WO-2007039825 Apr 2007 WO
WO-2007050543 May 2007 WO
WO-2007054818 May 2007 WO
WO-2007072216 Jun 2007 WO
WO 2007082698 Jul 2007 WO
WO-2007085899 Aug 2007 WO
WO-2007085902 Aug 2007 WO
WO-2007099396 Sep 2007 WO
2007111962 Oct 2007 WO
2008010963 Jan 2008 WO
WO-2008008397 Jan 2008 WO
2008041045 Apr 2008 WO
WO-2008038147 Apr 2008 WO
WO-2008075207 Jun 2008 WO
WO-2008087148 Jul 2008 WO
WO 2008104734 Sep 2008 WO
WO-2008110872 Sep 2008 WO
2008152444 Dec 2008 WO
WO-2009007785 Jan 2009 WO
WO-2009069006 Jun 2009 WO
WO-2009072007 Jun 2009 WO
2009090558 Jul 2009 WO
WO-2009087578 Jul 2009 WO
WO-2009090495 Jul 2009 WO
WO-2009090558 Jul 2009 WO
WO-2009098595 Aug 2009 WO
WO 2011006026 Jan 2011 WO
WO 2011013008 Feb 2011 WO
WO 2011013009 Feb 2011 WO
WO 2011026094 Mar 2011 WO
2011039637 Apr 2011 WO
2011039638 Apr 2011 WO
WO 2011064631 Jun 2011 WO
WO 2011106026 Sep 2011 WO
WO 2011138678 Nov 2011 WO
WO 2013136192 Sep 2013 WO
WO 2014134394 Sep 2014 WO
WO 2014134427 Sep 2014 WO
WO 2014151347 Sep 2014 WO
WO 2014201541 Dec 2014 WO
WO 2015075640 May 2015 WO
WO 2015114320 Aug 2015 WO
WO 2015153864 Oct 2015 WO
WO 2017029647 Feb 2017 WO
WO 2017030555 Feb 2017 WO
Non-Patent Literature Citations (406)
Entry
Machine translation of JP-08165218 (1996).
http://www.naturalwellbeing.com/learning-center/Cetearyl_Alcohol (accessed Jan. 13, 2014).
Effendy I. et al., “Surfactants and experimental irritant contact dermatitis”, Contact Dermatitis, 33(4), pp. 217-225 (1995) (abstract).
Barry, B.W. et al, Comparative bio-availability and activity of proprietary topical corticosteroid preparations: vasoconstrictor assays on thirty-one ointments, British Journal of Dermatology, 93, 563-571, 1975.
Martindale, The extra pharmacopoeia [28th] edition, Eds.: Reynolds, J.E.F. and Prasad, A.B., The Pharmaceutical Press, London, pp. 862-864, 1982.
Wormser et al., Protective effect of povidone-iodine ointment against skin lesions induced by sulphur and nitrogen mustards and by non-mustard vesicants, Arch. Toxicol., 1997, 71, 165-170.
Wormser, Early topical treatment with providone-iodine ointment reduces, and sometimes prevents, skin damage following heat stimulus, Letter to the Editor, Burns 24, pp. 383, 1998.
Alcohol SDA 40B.http://www.pharmco-prod.com/pages/MSDS/SDA_40B_200.pdf Accessed Dec. 9, 2008, 2 pages.
Ambrose, Ursual et al., “In Vitro Studies of Water Activity and Bacterial Growth Inhibition of Sucrose-Polyethylene Glycol 400-Hydrogen Peroxide and Xylose-Polyethylene Glycol 400-Hydrogen Peroxide Pastes Used to Treat Infected Wounds,” Antimicrobial Agents and Chemotherapy, vol. 35, No. 9, pp. 1799-1803, 1991.
Arisan, http://www.arisankimya.com/kozmetik.htm Accessed Dec. 10, 2008.
Benet, et al., Application of NMR for the Determination of HLB Values of Nonionic Surfactants, Journal of the American Oil Chemists Society, vol. 49, 1972, 499-500.
Bucks, Daniel A.W., et al., “Bioavailability of Topically Administered Steroids: A ‘Mass Balance’ Technique,” Journal of Investigative Dermatology, vol. 91, No. 1, Jul. 1988, pp. 29-33.
Carbowax 1000MSDS; http://www.sciencelab.com/xMSDS-Polyethylene_glycol_1000-9926622. Accessed Dec. 13, 2008, 6 pages.
Cheshire, et al., Disorders of Sweating, www.medscape.com, Semin Neurol 23(4):399-406, 2003.
Coetzee, “Acceptability and Feasibility of Micralax applicators and of methyl cellulose gel placebo for large-scale clinical trials of vaginal microbicides,” Nicol.AIDS 2001, vol. 15, No. 14, pp. 1837-1842.
D.W.A. Sharp Dictionary of Chemistry, Penguin Books, 1983, 3 pages.
Dalby, “Determination of Drug Solubility in Aerosol Propellants,” Pharmaceutical Research, vol. 8, No. 9, 1991, pp. 1206-1209.
Denatonium Benzoate http://www.newdruginfo.com/pharmaceopeia/usp28/v28230/usp28nf23s0_m22790.htm Accessed Dec. 9, 2008.
Emulsifiers with HLB values. http://www.theherbarie.com/files/resources-center/formulating/Emulsifiers_HLB_Values.pdf accessed Aug. 5, 2009 (3 pps).
Ethanol, Accessed http://www.sigmaaldrich.com/catalog/ProductDetail.do?N4=E7023SIAL&N5=SEARCH_CONCAT_PNOBRAND_KEY&F=SPEC Dec. 9, 2008, 2 pages.
European Patent Application No. 06831721, Official Action, dated Feb. 3, 2009, 9 pages.
Flick, Cosmetic and Toiletry Formulations, vol. 5, 2nd Edition, Copyright 1996.
Fontana, Anthony, J., “Water Activity: Why It Is Important for Food Safety,” International Conference on Food Safety, Nov. 16-18, 1998, 9 pages.
Galligan, John et al., “Adhesive Polyurethane Liners for Anterior Restorations,” J. Dent. Res., Jul.-Aug. 1968, pp. 629-632.
Gill, A.M, et al., “Adverse Drug Reactions in a Paediatric lntensitve Care Unit,” Acta Paediatr 84:438-441, 1995.
Glaser, et al., Hyperhidrosis: A Comprehensive and Practical Approach to Patient Management, Expert Rev. Dermatol. 1(6), 773-775 (2006).
Gschnait, F., et al., “Topical Indomethacin Protects from UVB and UVA Irriadiation,” Arch. Dermatol. Res. 276:131-132, 1984.
Hall, Karla, “Diaper Area Hemanglomas: A Unique Set of Concerns,” http://members.tripod.com/˜Michelle_G/diaper.html, Dec. 1, 2008, 8 pages.
Hashim, et al. “Tinea versicolor and visceral leishmaniasis,” Int J Dermatol., Apr. 1994; 33(4), pp. 258-259 (abstract only).
Hepburn, NC., “Cutaneous leishmaniasis,” Clin Exp Dermatol, Jul. 2000; 25(5), pp. 363-370 (abstract only).
Hill, Randall M. (Ed.) Silicone Surfactants, Table of Contents and Chapter 7, “Silicone Surfactants: Applicants in the Personal Care Industry,” by David T. Floyd, 1999 (30 Pages).
Innocenzi, Daniele et al., “An Open-Label Tolerability and Effacy Study of an Aluminum Sesquichlorhydrate Topical Foam in Axillary and Palmar Primary Hyperhidrosis,” Dermatologic Therapy, vol. 21, S27-S30, 2008.
International Search Report and Written Opinion, International Application No. PCT/IB2006/003628, Foamix Ltd., dated Dec. 7, 2007, 15 pages.
International Search Report and Written Opinion, International Application No. PCT/US2007/004459, Foamix Ltd., dated Dec. 9, 2008, 2 pages.
International Search Report for International Application No. PCT/IB2006/003974, dated Feb. 25, 2008 (3 pages).
International Search Report, International Patent Application No. PCT/IB2007/003463, Foamix, Ltd., dated Jul. 18, 2008, 3 pages.
International Search Report, International Patent Application No. PCT/IB2007/003759, Foamix Ltd., dated Jul. 8, 2008 (3 pages).
Kalkan, et al., The Measurement of Sweat Intensity Using a New Technique, Tr. J. of Medical Sciences 28, 515-517 (1998).
Kathon™ CG (product information sheet by Rohm and Haas, Jun. 2006).
Kinnunen, Contact Dermatitis Sep. 1989; 21(3): 154-8.
Koerber, S., “Humectants and Water Activity,” Water Activity News, 2000, ISSN No. 1083-3943.
Licking Vaginal Dryness without a Prescription. Accessed http://www.estronaut.com/a/vag_dryness.htm on Dec. 14, 2008.
Material Safety Data Sheet, Progesterone, Apr. 26, 2006, 5 pages.
Material Safety Data Sheet, Science Lab.com, Polyethylene Glycol 1000, MSDS, Nov. 6, 2008, 6 pages.
Merriam-Webster Online Dictionaary, 2008, “Mousse,” Merriam-Webster Online, Dec. 8, 2008 http://www.merriam-webster.com/dictionary/mousse.
Metronidazole. www.usp.org/pdf/EN/veterinary/metronidazole.pdf. accessed Sep. 10, 2009, 4 pages.
Morgan, Timothy M., et al., “Enhanced Skin Permeation of Sex Hormones with Novel Topical Spray Vehicles,” Journal of Pharmaceutical Sciences, vol. 87, No. 10, Oct. 1998, pp. 1213-1218.
OM Cinnamate. http://www.makingcosmetics.com/sunscreens/OM-Cinnamate-p102.html accessed Sep. 26, 2009.
Pendergrass, “The shape and dimensions of the human vagina as seen in three-dimensional vinyl polysiloxane casts,” Gynecol Obstet. Invest. 1996:42(3):178-82 (abstract).
Progesterone MSDS. http://www.usp.org.pdf.EN/referenceStandards/msds/1568007.pdf on Dec. 14, 2002, 5 pages.
Savin, et al., “Tinea versicolor treated with terbinafine 1% solution,” Int J. Dermatol, Nov. 1999; 38(11), pp. 863-865.
Schmidt A., “Malassezia furfur: a fungus belonging to the physiological skin flora and its relevance in skin disorders,” Curtis., Jan. 1997; 59(1), pp. 21-24 (abstract).
Scott as Published in Pharmaceutical Dosage Forms; Disperse Systems, vol. 3, Copyright 1998.
Shear, et al., “Pharmacoeconomic analysis of topical treatments for tinea infections,” Pharmacoeconomics. Mar. 1995; 7(3); pp. 251-267 (abstract only).
Sigma Aldrich, “HLB-Numbers in Lithography Nanopatterning,” http://www.sigmaaldrich.com/materials-science/micro-and-nanoelectronics/lithography-nanopatterning/hlb-numbers.html, accessed: Feb. 2, 2009, pp. 1-3.
Sigma-Aldrich, Material Safety Data Sheet, Hydroxyethyl Cellulose, Mar. 3, 2004, 5 pages.
Skin Biology, CP Serum—Copper-Peptide Serum for Skin Regeneration and Reducing Wrinkles, Skin Biology, http;//web.archive.org/web/20030810230608/http://www.skinbio.com/cpserum.html, Dec. 1, 2008, 21 pages.
Squire. J, “A randomised, single-blind, single-centre clinical trial to evaluate comparative clinical efficacy of shampoos containing ciclopirox olamine (1.5%) and salicylic acid (3%), or ketoconazole (2%, Nizoral) for the treatment of dandruff/seborrhoeic dermatitis,” Dermatolog Treat. Jun. 2002;13(2):51-60 (abstract only).
Tan et al., “Effect of Carbopol and Polyvinylpyrrolidone on the Mechanical, Rheological, and Release Properties of Bioadhesive Polyethylene Glycol Gels,” AAPS PharmSciTech, 2000; 1(3) article 24 (2000), 10 pages.
Torres-Rodriguez, JM., “New topical antifungal drugs,” Arch Med Res. 1993 Winter; 24(4), pp. 371-375 (abstract).
Toxicology and Carcinogenesis Studies of t-Butyl Alcohol (CAS No. 75-65-0) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies), http://ntp.niehs.nih.gob/?objectid-=0709F73D-A849-80CA-5FB784E866B576D1. Accessed Dec. 9, 2008.
Edirisinghe, et al., “Effect of fatty acids on endothelium-dependent relaxation in the rabbit aorta”, Clin Sci (Lond). Aug. 2006; 111(2): 145-51.
Encyclopedia of Pharmaceutical Technology, Second Edition, vol. 3, Copyright 2002.
Hakan, et al., “The protective effect of fish oil enema in acetic acid and ethanol induced colitis,” The Turkish Journal of Gasroenterology, 2000, vol. 11, No. 2, pp. 155-161.
http://ibabydoc.com/online/diseaseeczema.asp., Atopic Dermatitis, Copyright 2000.
http://web.archive.org/web/20000106225413/http://pharmacy.wilkes.edu/kibbeweb/lab7.html, Characteristics of Surfactants and Emulsions, Jan. 29, 2010, 5 pages.
http://www.agworkshop.com/p3.asp, AG&Co. Essential oil workshop, accessed Jan. 31, 2010.
Kanamoto, et al., “Pharmacokinetics of two rectal dosage forms of ketoprofen in patients after anal surgery,” J Pharmacobiodyn., Mar. 1988; 11(3):141-5.
Leung, et al., “Bioadhesive Drug Delivery in Water-Soluble Polymers,” American Chemical Society, Chapter 23, 1991, pp. 350-366.
Tarumoto, et al., Studies on toxicity of hydrocortisone 17-butyrate 21-propionate-1. Accute toxicity of hydrocortisone 17-butyrate 21-propionate and its analogues in mice, rats and dogs (author's trans), J Toxicol Sci., Jul. 1981; 6 Suppl: 1-16.
U.S. Appl. No. 60/789,186, filed Apr. 4, 2006, Tamarkin.
U.S. Appl. No. 60/815,948, filed Jun. 23, 2006, Tamarkin.
U.S. Appl. No. 60/818,634, filed Jul. 5, 2006, Friedman.
U.S. Appl. No. 60/843,140, filed Sep. 8, 2006, Tamarkin.
U.S. Appl. No. 61/248,144, filed Oct. 2, 2009, Tamarkin.
U.S. Appl. No. 61/322,148, filed Apr. 8, 2010, Tamarkin.
U.S. Appl. No. 61/363,577, filed Jul. 12, 2010, Eini.
“Burn patients need vitamin D supplements.” Decision News Media, Jan. 23, 2004, http://www.nutraingredients.com/Research/Burn-patients-need-vitamin-D-supplements, Accessed: May 5, 2010.
“HLB Systems”, http://pharmcal.tripod.com/ch17.htm, Accessed Sep. 17, 2010, pp. 1-3.
“Minocycline” accessed on Oct. 21, 2011 at en.wikipedia.org/wiki/Minocycline, 7 pages.
“Reaction Rate” Accessed at en.wikipedia.org/wiki/Reaction_rate on Dec. 18, 2011, 6 pages.
‘Niram Chemicals’ [online]. Niram Chemicals, [retrieved on Jul. 17, 2012]. Retrieved from the Internet: <URL: http://www.indiamart.com/niramchemicals/chemicals.html>, 7 pages.
‘Surfactant’ [online]. Wikipedia, 2010, [retrieved on Oct. 24, 2010]. Retrieved from the Internet: <URL: http://en.wikipedia.org/wiki/Surfactant>, 7 pages.
Adachi, Shuji. “Storage and Oxidative Stability of O/W/ Nano-emulsions.” Foods Food Ingredients. J. Jpn. vol. 209, No. 11. 2004. 1 page.
Anton, N. et al. “Water-in-Oil Nano-Emulsion Formation by the phase inversion Temperature Method: A Novel and General Concept, a New Template for Nanoencapsulation,” Proceedings of the 33rd Annual Meeting and Exposition of the Controlled Release Society, Jul. 2006, Vienna, Austria, 2 pages.
Arct et al., “Common Cosmetic Hydrophilic Ingredients as Penetration Modifiers of Flavonoids”, International Journal of Cosmetic Science, 24(6):357-366 (2002)—Abstract, 1 page.
Augsburger, Larry L. et al. “Bubble Size Analysis of High Consistency Aerosol Foams and Its Relationship to Foam Rheology. Effects of Container Emptying, Propellent Type, and Time.” Journal of Pharmaceutical Sciences. vol. 57, No. 4. Apr. 1968. pp. 624-631.
Austria, et al., “Stability of Vitamin C Derivatives in Solution and Topical Formulations”, Journal of Pharmaceutical and Biomedical Analysis, 15:795-801 (1997).
Barry and Badal, “Stability of minocycline, doxycycline, and tetracycline stored in agar plates and microdilution trays,” Current Microbiology, 1978, 1:33-36.
Bernstein, et al., Effects of the Immunomodulating Agent R837 on Acute and Latent Herpes Simplex Virus Type 2 Invections, Antimicrobial Agents and Chemotherapy, 33(9):1511-1515 (1989).
Blute, “Phase behavior of alkyl glycerol ether surfacants”, Physical Chemistry Tenside Sur. Det., 35(3):207-212 (1998).
Brenes, et al., “Stability of Copigmented Anthocyanins and Asorbics Acid in a Grape Juice Model System”, J. Agric Food Chem, 53(1):49-56 (2005)—Abstrace, 1 page.
Bronopol. Revtrieved online on Jun. 4, 2011. <URL:http://chemicalland21.com/specialtychem/perchem/BRONOPOL.html>. Jul. 17, 2006. 4 pages.
Buck, et al., “Treatment of Vaginal Intraephithelial Neoplasia (Primarily Low Grade) with Imiquimod 5% Cream”, Journal of Lower Genetial Tract Disease, 7(3):290-293 (2003).
Bunker,et al., “Alterations in Scalp Blood Flow after the Epicutaneous Application of 3% Minoxidil and 0.1% Hexyl Nicotinate in Alopecia”, Presented as a poster at the meeting of the British Society for Investigavie Dermatology, York, Sep. 1986 (2 pages).
Burton, et al., “Hypertrichosis Due to Minoxidil”, British Journal of Dermatology, 101:593-595 (1979).
Campos, et al., “Ascorbic Acid and Its Derivatives in Cosmetic Formulations”, Cosmetics and Toiletries, 115(6):59-62 (2000)—Abstract, 1 page.
Carelli, et al., “Effect of Vehicles on Yohimbine Permeation Across Excised Hairless Mouse Skin”, Pharm Acta Helv, 73(3):127-134 (1998)—Abstract, 1 page.
Chebil, et al., “Soulbility of Flavonoids in Organic Solvents”, J. Chem. Eng. Data, 52(5):1552-1556 (2007)—Abstract, 1 page.
Chiang, et al., “Bioavailability Assessment of Topical Delivery Systems: In Vitro Delivery of Minoxidil from Prototypical Semi-Solid Formulations”, Int. J. Pharm, 49(2):109-114 (1989)—Abstract, 1 page.
Chinnian, et al., “Photostability Profiles of Minoxidil Solutions”, PDA J. Pharm Sci Technol., 50(2):94-98 (1996)—Abstract, 1 page.
Chollet, et al., “Development of a Topically Active Imiquimod Formulation”, Pharmaceutical Development and Technology, 4(1):35-43 (1999).
Chollet, et al., “The Effect of Temperatures on the Solubility of Immiquimod in Isostearic Acid”, Abstract 3031, Pharmaceutical Research, vol. 14, No. 11 Supplemental (November), p. S475 (1997), 2 pages.
Colloidal Silica. Retrieved online on Jun. 4, 2011. <URL:http://www.grace.com/engineeredmaterials/materialsciences/colloidalsilica/default.aspx>. Copyright 2011. 4 pages.
Croda 2. Croda Cetomacrogol 1000 Product Information Sheet. 2011 (no month given). 1 page.
Croda. Aracel 165 Product Summary. 2011 (no month given). 1 page.
Dawber, et al., “Hypertrichosis in Females Applying Minoxidil Topical Solution and in Normal Controls”, JEADV, 17:271-275 (2003).
Dentinger, et al., “Stability of Nifedipine in an Extemporaneously Compounded Oral Solution”, American Journal of Health-System Pharmacy, 60(10):1019-1022 (2003)—Abstract, 1 page.
Disorder. (2007). In the American Heritage Dictionary of the English Language. Retrieved from http://www.credoreference.com/entry/hmdictenglang/disorder. 1 page.
Draelos, Z. D. “Antiperspirants and the Hyperhidrosis Patients.” Dermatologic Therapy. 2001. vol. 14. pp. 220-224.
Edens, et al., “Storage Stability and Safey of Active Vitamin C in a New Dual-Chamber Dispenser”, Journal of Applied Cosmetology, 17(4):136-143 (1999)—Abstract, 1 page.
Edwards, “Imiquimod in Clinical Practice”, J. Am Acad Dermatol., 43(1, Pt 2):S12-S17 (2000)—Abstract, 1 page.
Esposito, E. et al. “Nanosystems for Skin Hydration: A Comparative Study.” International Journal of Cosmetic Science. 29. 2007. pp. 39-47.
Ethylene Oxide Derivatives: An Essence of Every Industry. A definition of Emulsifier. Http://www.emulsifiers.in/ethylene_oxide_derivatives2.htm. Accessed Jul. 12, 2011. 3 pages.
Farahmand, et al., “Formulation and Evaluation of a Vitamin C Multiple Emulsion”, Pharmaceutical Development and Technology, 11(2):255-261 (2006)—Abstract, 1 page.
Final Office Action for U.S. Appl. No. 11/430,437, Tamarkin et al., dated Dec. 16, 2008, 24 pages.
Gallarate, et al., “On the Stability of Ascorbic Acid in Emulsified Systems for Topical and Cosmetic Use”, International Journal of Pharmaceutics, 188:233-241 (1999).
Gelbard et al. “Primary Pediatric Hyperhidrosis: A Review of Current Treatment Options.” Pediatric Dermatology. 2008. 25 (6). pp. 591-598.
Gladkikh, “Ascorbic Acid and Methods of Increasing its Stability in Drugs”, Translated from Khimiko-Farmatsevticheskii Zhurnal, 4(12):37-42 (1970)—1 page.
Graves, S. et al. “Structure of Concentrated Nanoemulsions.” The Journal of Chemical Physics . . . 122 America Institute of Physics. Published Apr. 1, 2005. 6 pages.
Groveman, et al., “Lack of Efficacy of Polysorbate 60 in the Treatment of Male Pattern Baldness”, Arch Intern Med, 145:1454-1458 (1985).
Hallstar. Retrieved online on Jun. 4, 2011. <URL:http://www.hallstar.com/pis.php?product=1H022>. 1 page.
Hargreaves, “Chemical Formulation, An Overview of Surfactant-Based Preparations Used in Everyday Life”, The Royal Society of Chemistry, pp. 114-115 (2003).
Harrison, et al., “Effects of cytokines and R-837, a cytokine inducer, on UV-irradiation augmented recurrent genital herpes in guinea pigs”, Antivial Res., 15(4):315-322 (1991).
Harrison, et al., “Modification of Immunological Responses and Clinical Disease During Topical R-837 Treatment of Genital HSV-2 Infection”, Antiviral Research, 10:209-224 (1988).
Harrison, et al., “Pharmacokinetics and Safety of Iminquimod 5% Cream in the Treatment of Actinic Keratoses of the Face, Scalp, or Hands and Arms”, Arch. Dermatol. Res., 296(1):6-11 (2004)—Abstract, 1 page.
Harrison, et al., “Posttherapy Suppression of Genital Herpes Simplex Virus (HSV) Recurrences and Enhancement of HSV-Specific T-Cell Memory by Imiquimod in Guinea Pigs”, Antimicrobial Agents and Chemotherapy, 38(9):2059-2064 (1994).
Heart Failure, The Merck Manual, 2008 <<http://www.merck.com/mmhe/sec03/ch025/ch025a.html>> 12 pages.
Hormones. Http://www.greenwillowtree.com/Page.bok?file=libido.html. Jan. 2001.
Hubbe, Martin. Mini-Encyclopedia of Papermaking Wet-End Chemistry: Additives and Ingredients, their Composition, Functions, Strategies for Use. Retrieved online on Jun. 4, 2011. <URL://http://www4.ncsu.edu/˜hubbe/CSIL.htm>. Feb. 1, 2001. 2 pages.
Hydroxyethylcellulose. Http: //terpconnect.umd.edu/-choi/MSDS/Sigma-Aldrich/HYDROXYETHYL%20CELLULOSE, 5 pages, Jan. 14, 2004.
ICI Americas Inc. “The HLB System: A Time-Saving Guide to Emulsifier Selection.” Mar. 1980. pp. 1-22.
Ikuta, et al., “Scanning Electron Microscopic Observation of Oil/Wax/Water/Surfacant System”, Journal of SCCJ, 34(4):280-291 (2004)—Abstract, 1 page.
Indomethacin. Retrieved online on Jun. 3, 2011. <URL:http://it03.net/com/oxymatrine/down/1249534834.pdf>. Aug. 15, 2009. 3 pages.
Izquierdo, P. et al. “Formation and Stability of Nano-Emulsions Prepared Using the Phase Inversion Temperature Method.” University of Barcelona. Sep. 17, 2001. 1 page.
Jan. “Troubled Times: Detergent Foam.” http://zetatalk.com/health/theall7c.htm. Accessed Feb. 9, 2012. 2 pages.
Joseph, “Understanding foams & foaming,” University of Minnesota (1997), at http://www.aem.umn.edu/people/faculty/joseph/archive/docs/understandingfoams.pdf, pp. 1-8.
Kang,et al., “Enhancement of the Stability and Skin Penetration of Vitamin C by Polyphenol”, Immune Netw., 4(4):250-254 (2004)—Abstract, 1 page.
Karasu, T.B. et al., “Treatment of Patients with Major Depressive Disorder, Second Edition,” pp. 1-78, 2000.
Kim, “Stability of Minoxidil in Aqueous Solution”, Yakhak Hoechi, 30(5):228-231 (1986)—Abstract, 1 page.
Kleber, M.D., H.D. et al., “Treatment of Patients with Substance Use Disorders, Second Edition,” pp. 1-276, 2006.
Kreuter, J. “Nanoparticles and microparticles for drug and vaccine delivery,” J. Anat. (1996) 189, pp. 503-505.
Kumar, J. et ak., “Application of Broad Spectrum Antiseptic Povidone Iodine as Powerful Action: A Review,” Journal of Pharmaceutical Science and Technology vol. 1(2), 2009, 48-58.
Kwak et al. “Study of Complete Transparent Nano-Emulsions which Contain Oils.” IFSCC Conference 2003, Seoul, Korea, Sep. 22-24, 2003. 3 pages.
Lautenschlager, Dr. Hans. “A Closer Look on Natural Agents: Facts and Future Aspects.” Kosmetic Konzept. Kosmetische Praxis. 2006 (no month given). (5), 8-10. 3 pages.
Lebwohl et al. “Treatment of Psoriasis. Part 1. Topical Therapy and Phototherapy.” J. Am. Acad. Dermatol. 45:487-498. Oct. 2001.
Lebwohl et al., “A randomized, double-blind, placebo-controlled study of clobestasol propionate 0.05% foam in the treatment of nonscalp psoriasis,” International Journal of Dermatology, 2002, 41(5): 269-274.
Lee, et al., “The Stabilization of L-Ascorbic Acid in Aqueous Solution and Water-in-Oil-in-Water Double Emulsion by Controlling pH and Electrolyte Concentration”, J. Cosmet. Sci., 55:1-12 (Jan./Feb. 2004).
Li, et al., “Solubility Behavior of Imiquimod in Alkanoic Acids”, Abstract 3029, Pharmaceutical Research, vol. 14, No. 11 Supplemental (November), p. S475 (1997), 2 pages.
Lippacher, A. et al. “Liquid and Semisolid SLN Dispersions for Topical Application” Rheological Characterization. European Journal of Pharmaceutics and Biopharmaceutics. 58. 2004. pp. 561-567.
Lupo, “Antioxidants and Vitamins in Cosmetics”, Clinics in Dermatology, 19:467-473 (2001).
Martindale. 33 ed. London, Bath Press, 2002. pp. 1073 and 1473.
Merck index, 10th edition, Merck & Co., Inc.: Rahway, NJ, 1983, pp. 39 (entry 242 for allantoin).
Merck index, 14th edition, O'Neill, ed., 2006, entry for p-amino benzoic acid.
Merck index, 14th edition, O'Neill, ed., 2006, entry for zinc oxide.
Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition. O'Neil et al eds. Entries 1058, 2350, 6143, and 8803. 2001. 7 pages.
Merck Manual Home Edition. “Excessive Sweating: Sweating Disorders.” Accessed Apr. 14, 2011 at www.merckmanuals.com/home/print/sec18/ch206/ch206c.html. 2 pages.
Merriam Webster Online Dictionary [online] retrieved from http://www.merriam-webster.com/cgi-bin/dictionary?book=dictionary&va=derivative on Jul. 5, 2008; 1 page.
Messenger, et al., “Minoxidil: Mechanisms of Action on Hair Growth”, British Journal of Dermatology, 150:186-194 (2004).
Metz, et al., “A Phase I Study of Topical Tempol for the Prevention of Alopecia Induced by Whole Brain Radiotherapy”, Clinical Cancer Research, 10:6411-6417 (2004).
Meucci, et al., “Ascorbic Acid Stability in Aqueous Solutions”, Acta Vitaminol Enzymol, 7(3-4):147-153 (1985)—Abstract, 1 page.
MMP Inc. International Development and Manufacturing, “Formulating specialities,” http://mmpinc.com, 3 pages. Feb. 2, 2010.
Molan, Peter Clark, “World Wide Wounds,” Dec. 2001, 13 pages.
Neutrogena. Http://www.cosmetoscope.com/2010/04/neutrogea-clinical-with-johnson-johnsons-cytomimic-techology/. Published Apr. 28, 2010. Accessed Sep. 11, 2010, 5 pages.
Nietz, “Molecular orientation at surfaces of solids,” J. Phys. Chem., 1928, 32(2): 255-269.
No Author Listed. “Opitmization of Nano-Emulsions Production by Microfluidization.” European Food Research and Technology. vol. 225, No. 5-6. Sep. 2007. Abstract. 1 page.
Office Action for U.S. Appl. No. 11/430,437, Tamarkin et al., dated May 9, 2008, 27 pages.
Office Action received from the U.S. Patent Office, U.S. Appl. No. 11/430,599, dated Jul. 28, 2008 (59 pages).
Oil. Dictionary of Chemistry. Editor: DWA Sharp. Copyright 1990.
Olsen, et al., “A Multicenter, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of a Novel Formulation of 5% Minoxidil Topical Foam Versus Placebo in the Treatment of Androgenetic Alopecia in Men”, J. Am. Acad Dermatol, 57:767-774 (2007).
Padhi et al., “Phospho-olicines as positive-electrode materials for rechargeable lithium batteries,” J. Electrochemical Soc., 1997, 144(4): 1188-1194.
Pakpayat, et al., “Formulation of Ascorbic Acid Microemulstions with Alkyl Polyglycosides”, European Journal of Pharmaceutics and Biopharmaceutics, 72:444-452 (2009).
Paula. http://ww.cosmeticscop.com/cosmetic-ingredient-dictionary/definition/259/c12-15-alkyl-benzoate.aspx. Printed Oct. 24, 2010. 1 page.
Prescription Information for Aldara, Mar. 2007 (29 pages).
Prevent. (2007). In the American Heritage Dictionary of the English Language. Retrieved from http://www.credoreference.com/entry/hmdictenglang/prevent. 1 page.
Psoriasis, http://www.quickcare.org/skin/causes-of0psoriasis.html. Accessed Sep. 9, 2010—3 pages.
Purcell, Hal C. “Natural Jojoba Oil Versus Dryness and Free Radicals.” Cosmetics and Toiletries Manufacture Worldwide. 1988. 4 pages.
Raschke, et al., “Topical Activity of Ascorbic Acid: From In Vitro Optimization to In Vivo Efficacy”, Skin Pharmacology and Physiology, 17(4):200-206 (2004)—Abstract, 1 page.
Ravet et al., “Electroactivity of natural and synthetic triphylite,” J. of Power Sources, 2001, 97-98: 503-507.
Raymond, Iodine as an Aerial Disinfectant, Journal of Hygiene, vol. 44, No. 5 (May 1946), pp. 359-361.
Receptacle. Merriam Webster. Http://www.merriam-webster.com/dictionary/receptacle. Accessed Jul. 12, 2011. 1 page.
Richwald, “Imiquimod”, Drugs Today, 35(7):497 (1999)—Abstract, 1 page.
Rieger and Rhein. “Emulsifier Selection/HLB.” Surfactants in Cosmetics. 1997 (no month given). 1 page.
Rosacea, http://clinuvel.com/skin-conditions/common-skin-conditions/rosacea#h0-6-prevention. Accessed Sep. 9, 2010, 5 pages.
Schulze, M.D., Harry “Iodine and Sodium Hypochlorite as Wound Disinfectants,” The British Medical Journal, pp. 921-922, 1915.
Scientific Discussion for the approval of Aldara, EMEA 2005 (10 pages).
Seborrheic Dermatitis, http://www.cumc.columbia.edu/student/health/pdf/R-S/Seborrhea%20Dermatitis.pdf. Access Sep. 9, 2010, 2 pages.
Sheu, et al., “Effect of Tocopheryl Polyethylene Glycol Succinate on the Percutaneous Penetration of Minoxidil from Water/Ethanol/Polyethylene Glycol 400 Solutions”, Drug Dev. Ind. Pharm., 32(5):595-607 (2006)—Abstract, 1 page.
Shim, et al., “Transdermal Delivery of Mixnoxidil with Block Copolymer Nanoparticles”, J. Control Release, 97(3):477-484 (2004)—Abstract, 1 page.
Shrestha et al., Forming properties of monoglycerol fatty acid esters in nonpolar oil systems, Langmuir, 2006, 22: 8337-8345.
Silicone. Definition. Retrieved Apr. 19, 2011 from http://www.oxforddictionaries.com/definition/silicone?view=uk. 1 page.
Simovic, S. et al., “The influence of Processing Variables on Performance of O/W Emulsion Gels Based on Polymeric Emulsifier (Pemulen ÒTR-2NF),” International Journal of Cosmetic Science, vol. 2(2): abstract only. Dec. 24, 2001, 1 page.
Skin Deep Cosmetics. PPG-40-PEG-60 Lanolin Oil http://www.cosmeticsdatabase.com/ingredient/722972/PPG-40-PEG-60_Lanolin_Oil/?ingred06=722972. 3pages.
Smith, Anne. “Sore Nipples.” Breastfeeding Mom's Sore Nipples: Breastfeeding Basics. http://breastfeedingbasics.com/articles/sore-nipples. Accessed Feb. 8, 2012. 9 pages.
Sonneville-Aubrun, O. et al. “Nanoemulsions: A New Vehicle for Skincare Products.” Advances in Colloid and Interface Science. 108-109.. 2004. pp. 145-149.
Sreenivasa, et al., “Preparation and Evaluation of Minoxidil Gels for Topical Application in Alopecia”, Indian Journal of Pharmaceutical Sciences, 68(4):432-436 (2006), 11 pages.
Stehle et al., Uptake of minoxidil from a new foam formulation devoid of propylene glycol to hamster ear hair follicles, J. Invest. Dermatol., 2005, 124(4), A101.
Sugisaka, et al., “The Physiochemical Properties of Imiquimod, the First Imidazoquinoline Immune Response Modifier”, Abstract 3030, Pharmaceutical Research, vol. 14, No. 11 Supplemental (November), p. S475 (1997), 2 pages.
Surfactant. Chemistry Glossary. Http://chemistry.about.com/od/chemistryglossary/g/surfactant.htm, 2012, 1 page.
Sweetman, Sean C. Martindale: The Complete Drug Reference. 33rd Edition. London. Pharmaceutical Press. Jun. 21, 2002. pp. 1073 and 1473. 5 pages.
Tadros, Tharwat F. “Surfactants in Nano-Emulsions.” Applied Surfactants: Principles and Applications. Wiley-VCH Verlag GmbH & Co. Weinheim. ISBN: 3-527-30629-3. 2005. pp. 285-308.
Tanhehco, “Potassium Channel Modulators as Anti-Inflammatory Agents”, Expert Opinion on Therapeutic Patents, 11(7):1137-1145 (2001)—Abstract, 3 pages.
Tata, et al., “Penetration of Minoxidil from Ethanol Propylene Glycol Solutions: Effect of Application Volume on Occlusion”, Journal of Pharmaceutical Sciences, 84(6):688-691 (1995).
Tata, et al., “Relative Influence of Ethanol and Propylene Glycol Cosolvents on Deposition of Minoxidil into the Skin”, Journal of Pharmaceutical Sciences, 83(10):1508-1510 (1994).
Third Party Submission for U.S. Appl. No. 12/014,088, Feb. 4, 2009, 4 pages.
Trofatter, “imiquimod in clinical Practice”, European Journal of Dermatology, 8(7 Supp.):17-19 (1998)—Abstract, 1 page.
Tsai, et al., “Drug and Vehicle Deposition from Topical Applications: Use of In Vitro Mass Balance Technique with Minosidil Solutions”, J. Pharm. Sci., 81(8):736-743 (1992)—Abstract, 1 page.
Tsai, et al., “Effect of Minoxidil Concentration on the Deposition of Drug and Vehicle into the Skin”, International Journal of Pharmaceutics, 96(1-3):111-117 (1993)—Abstract, 1 page.
Tsai, et al., “Influence of Application Time and Formulation Reapplication on the Delivery of Minoxidil through Hairless Mouse Skin as Measured in Franz Diffusion Cells”, Skin Pharmacol., 7:270-277 (1994).
Tyring, “Immune-Response Modifiers: A New Paradigm in the Treatment of Human Papillomavirus”, Current Therapeutic Research, 61(9):584-596 (2000)—Abstract, 1 page.
Tzen, Jason T.C. et al. “Surface Structure and Properties of Plant Seed Oil Bodies.” Department of Botany and Plant Sciences, University of California, Riverside, California 92521. Apr. 15, 1992. 9 pages.
Uner, M. et al. “Skin Moisturizing Effect and Skin Penetration of Ascorbyl Palmitate Entrapped in Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) Incorporated into Hydrogel.” Pharmazie. 60. 2005. 5 pages.
Veron, et al., “Stability of Minoxidil Topical Formulations”, Ciencia Pharmaceutica, 2(6):411-414 (1992), Abstract, 1 page.
Wermuth, C.G. “Similarity in drugs: reflections on analogue design,” Drug Discovery Today, vol. 11, Nos. 7/8, Apr. 2006, pp. 348-354.
Williams, “Scale up of an olive/water cream containing 40% diethylene glycol momoethyl ether”, Dev. Ind. Pharm., 26(1):71-77 (2000).
Yamada and Chung, “Crystal Chemistry of the Olivine-Type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as Possible 4 V Cathode Materials for Lithium Batteries,” J. Electrochemical Soc., 2001, 148(8): A960-967.
“Coal tars and coal-tar pitches,” Report on Carcinogens, Twelfth Edition, 2011, 3 pages.
Adisen et al. “Topical tetracycline in the treatment of acne vulgaris,” J Drugs Dermatol., 2008, 7:953-5.
Baskaran et al., “Poloxamer-188 improves capillary blood flow and tissue viability in a cutaneous burn wound,” J. Surg. Res., 2001, 101(1):56-61.
Bell-Syer et al. “A systematic review of oral treatments for fungal infections of the skin of the feet,” J. Dermatolog. Treat., 2001, 12:69-74.
Boehm et al. 1994, “Synthesis of high specific activity [.sup.3 H]-9-cis-retinoic acid and its application for identifying retinoids with unusual binding properties,” J. Med. Chem., 37:408-414.
Carapeti et al., “Topical diltiazem and bethanechol decrease anal sphincter pressure and heal anal fissures without side effects,” Dis Colon Rectum, 2000, 43(10):1359-62.
Cook and Mortensen, “Nifedipine for treatment of anal fissures,” Dis Colon Rectum, 2000, 43(3):430-1.
Dumortier et al., “A review of poloxamer 407 pharmaceutical and pharmacological characteristics,” Pharmaceutical Res., 2006, 23(12):2709-2728.
Ebadi et al., “Healing effect of topical nifedipine on skin wounds of diabetic rats,” DARU, 2003, 11(1):19-22.
Effendy and Maibach. “Surfactants and Experimental Irritant Contact Dermatitis.” Contact Dermatol., 1995, 33:217-225.
Elias and Ghadially, “The aged epidermal permeability barrier,” Clinical Geriatric Medicine, Feb. 2002, pp. 103-120.
Fantin et al., “Critical influence of resistance to streptogramin B-type antibiotics on activity of RP 59500 (Quinupristin-dalfopristin) in experimental endocarditis due to Staphylococcus aureus,” Antimicrob Agents and Chemothery, 1999, 39:400-405.
Fluhr et al., “Glycerol accelerates recovery of barrier function in vivo,” Acta Derm. Venereol,. 1999, 79:418-21.
Garti et al. “Sucrose Esters microemulsions,” J. Molec. Liquids, 1999, 80:253-296.
Hammer et al. “Anti-Microbial Activity of Essential Oils and other Plant extracts,” J. Applied Microbiology, 1999, 86:985-990.
Hwang et al. “Isolation and identification of mosquito repellents in Artemisia vulgaris,” J. Chem. Ecol., 11: 1297-1306, 1985.
Knight et al., “Topical diltiazem ointment in the treatment of chronic anal fissure,” Br. J. Surg., 2001, 88(4):553-6.
Kucharekova et al., “Effect of a lipid-rich emollient containing ceramide 3 in experimentally induced skin barrier dysfunction,” Contact Dermatitis, Jun. 2002, pp. 331-338.
Leive et al, “Tetracyclines of various hydrophobicities as a probe for permeability of Escherichia coli outer membrane,” Antimicrobial Agents and Chemotherapy, 1984, 25:539-544.
Luepke and Kemper, “The HET-CAM Test: An Alternative to the Draize Eye Test,” FD Chem. Toxic., 1986, 24:495-196.
Osborne and Henke, “Skin Penetration Enhancers Cited in the Technical Literature,” Pharm. Technology, Nov. 1997, pp. 58-86.
Padi. “Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms,” Eur J. Pharmacol, 2008, 601:79-87.
Palamaras and Kyriakis, “Calcium antagonists in dermatology: a review of the evidence and research-based studies,” Derm. Online Journal, 2005, 11(2):8.
Passi et al., Lipophilic antioxidants in human sebum and aging, Free Radical Research, 2002, pp. 471-477.
Perrotti et al., “Topical Nifedipine With Lidocaine Ointment vs. Active Control for Treatment of Chronic Anal Fissure,” Dis Colon Rectum, 2002, 45(11):1468-1475.
Repa et al. “All-trans-retinol is a ligand for the retinoic acid receptors,” Proc. Natl. Acad Sci, USA, 90: 7293-7297, 1993.
Ruledge, “Some corrections to the record on insect repellents and attractants,” J. Am. Mosquito Control Assoc, 1988, 4(4): 414-425.
Sakai et al., “Characterization of the physical properties of the stratum corneum by a new tactile sensor,” Skin Research and Technology, Aug. 2000, pp. 128-134.
Schaefer, “Silicone Surfactants,” Tenside, Surfactants, Deterg., 1990, 27(3): 154-158.
Simoni et al., “Retinoic acid and analogs as potent inducers of differentiation and apoptosis. New promising chemopreventive and chemotherapeutic agents in oncology,” Pure Appl Chem., 2001, 73(9):1437-1444.
Smith, “Hydroxy acids and skin again,” Soap Cosmetics Chemical Specialties, 1993, pp. 54-59.
Solans et al. “Overview of basic aspects of microemulsions,” Industrial Applications of Microemulsions, Solans et al Eds, New York, 1997, 66:1-17.
Squillante et al., “Codiffusion of propylene glycol and dimethyl isosorbide in hairless mouse skin,” European J. Pharm. Biopharm., 1998, 46(3):265-71.
Todd et al. “Volatile Silicone Fluids for Cosmetics,” 91 Cosmetics and Toiletries, 1976, 27-32.
Torma et al., “Biologic activities of retinoic acid and 3, 4-dehydroretinoic acid in human keratinoacytes are similar and correlate with receptor affinities and transactivation properties,” J. Invest. Dermatology, 1994, 102: 49-54.
USP23/NF 18 The United States Pharmacopeia: The National Formulary, US Pharmacopoeia, 1995, p. 10-14.
Van Slyke, “On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution,” J. Biol. Chem., 1922, 52:525-570.
Van Cutsem et al., “The antiinflammatory efects of ketoconazole,” J. Am. Acad. Dermatol.,1991, 25(2 pt 1):257-261.
Wang and Chen, “Preparation and surface active properties of biodegradable dextrin derivative surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281(1-3):190-193.
Weindl et al., “Hyaluronic acid in the treatment and prevention of skin diseases: molecular biological, pharmaceutical and clinical aspects,” Skin Pharmacology and Physiology, 2004, 17: 207-213.
Xynos et al., “Effect of nifedipine on rectoanal motility,” Dis Colon Rectum, 1996, 39(2):212-216.
Yamada et al., “Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats,” J. Pharmacol. Exp. Ther., 2003, 307(1)17-23.
Paragraph E.3.1 of regulation (EC) No. 2003 (See Directive 67/548/EEC OJ 196, 16.8, 1967, p. 1.
Tzen et al., Lipids, proteins and structure of seed oil bodies from diverse species; Plant Physiol., 1993, 101:267-276.
Brown et al. “Structural dependence of flavonoid interactions with Cu2+ inos: implications for their antioxidant properties,” Biochem. J., 1998, 330:1173-1178.
Cloez-Tayarani. et al., “Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5-hydroxytryptamine2A receptors,” Int. Immunol., 2003, 15:233-40.
“Mineral oil USP,” Chemical Abstracts Service Registry No. 8012-95-1, 2011, 7 pages.
“Tea tree oil,” Chemical Abstract No. 68647-73-4, 2012, 2 pages.
Lin et al., “Ferulic acid stabilizes a solution of vitamins c and e and doubles its protoprotection of skin,” J Invest Dermatol, 2005, 125:826-32.
“Arquad HTL8-MS,”AkzoNobel Functional Applications, retrieved on Mar. 18, 2013, Retrieved from the Internet: <URL: http://sc.akzonobel.com/en/fa/Pages/product-detail.aspx?prodID=8764>, 1 page.
“Can tuberous sclerosis be prevented?,” Sharecare, 2002, retrieved on Aug. 29, 2013, <URL: http://www.sharecare.com/health/autosomal-dominant-genetic-disorders/can-tuberous-sclerosis-be-prevented;jsessionid=850579B60520A907DE75930E061E60E6>, 2 pages.
“Crohn's Disease,” Merch Manual Home Edition, retrieved on Jan. 16, 2013, <http://www.merckmanuals.com/home/digestive_disorders/inflammatory_bowel_diseases_ibd/crohn_disease.html?qt=crohn's disease&alt=sh>, 3 pages.
“Dacarbazine,” Chemical Book, 2010, retrieved on Oct. 18, 2013, <URL: http://www.chemicalbook.com/ChemicalProductProperty_EN_CB7710656.htm>, 2 pages.
“Drug Index (Professional)—Dacarbazine,” BC Cancer Agency, Jun. 2004, retrieved on Oct. 18, 2013, <URL:http://www.bccancer.bc.ca/HPI/DrugDatabase/DrugIndexPro/Dacarbazine.htm>, 6 pages.
“Fully refined paraffin waxes (FRP Wax),” Industrial Raw Materials LLC, Feb. 21, 2008, retrieved on Aug. 22, 2013, <http://irmwax.com/Wax/Paraffin/fully_refined.asp> 1 page.
“Gas Gangrene,” Merch Manual Home Edition, 2008, retrieved on Jan. 16, 2013, <http://www.merckmanuals.com/home/infections/bacterial_infections/gas_gangrene.html?qt=gasgangrene&alt=sh>1 page.
“Human Immunodeficiency Virus Infection,” Merch Manual Home Edition, 2008, retrieved on Jan. 16, 2013, <http://www.merckmanuals.com/home/infections/human_immunodeficiency_virus_hiv_infection/human_immunodeficiency_virus_infection.html?qt=human immunodeficiency virus infection&alt=sh>, 11 pages.
“Minocycline (DB01017),” DrugBank, Feb 8, 2013, retrieved on Aug. 15, 2013, <http://www.drugbank.ca/drugs/DB01017>, 10 pages.
“New Nanomaterials to deliver anticancer drugs to cells developed,” Science Daily, Jun. 2007, retrieved on Oct. 14, 2013, <URL: http://www.sciencedaily.com/releases/2007/06/070607112931.htm>, 3 pages.
“Product Data Sheet for Meclocycline,” bioaustralis fine chemicals, Jun. 28, 2013, 1 page.
“Shear,” Vocabulary.com, retrieved on Aug. 23, 2013, <URL: https://www.vocabulary.com/dictionary/shear>, 3 pages.
“Sheer,” Vocabulary.com, retrieved on Aug. 23, 2013, <URL: https://www.vocabulary.com/dictionary/sheer>, 3 pages.
“View of NCT01171326 on Dec. 7, 2010,” ClinicalTrials.gov_archive, Dec. 7, 2010, retrieved on Sep. 9, 2013, <http://clinicaltrials.gov/archive/NCT01171326/2010_12_07>, 4 pages.
“View of NCT01362010 on Jun. 9, 2011,” ClinicalTrials.gov_archive, Jun. 9, 2011, retrieved on Sep. 9, 2013, <http://clinicaltrials.gov/archive/NCT01362010/2011_06_09>, 3 pages.
“What is TSC?,” Tuberous Sclerosis Alliance, Jan. 1, 2005, retrieved on Feb. 6, 2014, <URL: http://www.tsalliance.org.pages.aspx?content=2>, 3 pages.
Abrams et al., “Ciclopirox gel treatment of scalp seborrheic dermatitis,” Hydroxy-Piridones as Antifungal Agents with Special Emphasis on Onychomycosis, 1999, Chapter 8, 45-50.
Blaney and Cook, “Topical use of tetracycline in the treatment of acne,” Arch Dermatol, Jul. 1976, 112:971-973.
Chevrant-Breton, et al., “Etude du Traitement Capillaire <<Bioscalin>> dans les Alopecies Diffuses de la Femme”, Gazette Medicale, 93(17):75-79 (1986) [English abstract only].
Cunha, “Minocycline versus Doxycycline in the treatment of Lyme Neuroborreliosis,” Clin. Infect. Diseases, 2000, 30: 237-238.
Durian et al., “Scaling behavior in shaving cream,” The Americal Physical Society, Dec. 1991, 44(12):R7902-7905.
Google search strategy for minocycline solubility, retrieved on Aug. 15, 2013, <http://www.googl.com/search?rls=com.microsoft%3Aen-us%3AIE-SearchBox&q-melocycline+solubility>, 1 page.
Harry, “Skin Penetration,” The British Journal of Dermatology and Syphillis, 1941, 53:65-82.
Lee et al., “Historical review of melanoma treatment and outcomes,” Clinics in Dermatology, 2013, 31: 141-147.
Livingstone and Hubel, “Segregation of form, color, movement, and depth: Anatomy, physiology, and perception,” Science, May 1988, 240:740-749.
Molins PLC v. Textron Inc., 48 F.3d 1172, 33 USPQ2d 1823 (Fed. Cir. 1995), 19 pages.
Natural Skincare Authority, “Disodium EDTA: Cosmetic Toxin Data,” 2011, retrieved on Nov. 17, 2013, http://www.natural-skincare-authority.com/DISODIUM-EDTA.html, 4 pages.
Neves et al., “Rheological Properties of Vaginal Hydrophilic Polymer Gels,” Current Drug Delivery, 2009, 6:83-92.
Prud'homme et al., Foams: theory, measurements and applications, Marcel Dekker, Inc., 1996, 327-328.
Purdy et al., “Transfusion-transmitted malaria: unpreventable by current donor exclusion guidelines?” Transfusion, Mar. 2004, 44:464.
Reregistration Eligibility Decision for Pyrethrins, EPA, Jun. 7, 2006, 108 pages.
Schmolka, “A review of block polymer surfactants,” Journal of the American Oil Chemists Society, Mar. 1977, 54: 110-116.
Schott, “Rheology,” Remington's Pharmaceutical Sciences, 17th Edition, 1985, 330-345.
Sciarra, “Aerosol Technology,” Kirk-Othmer Encyclopedia of Chemical Technology, Jul. 2012, 20 pages.
Scully et al., “Cancers of the oral mucosa treatment and management,” Medscape Drugs, Diseases and Procedures, Apr. 20, 2012, retrieved on Oct. 12, 2013, <http://emedicine.medscape.com/article/1075729-treatment>, 10 pages.
Sehgal, “ Ciclopirox: a new topical pyrodonium antimycotic agent: A double-blind study in superficial dermatomycoses,” British Journal of Dermatology, 1976, 95:83-88.
Softemul-165: Product Data Sheet, Mohini Organics PVT LTD, retrieved Apr. 10, 2014, http://www.mohiniorganics.com/Softemull65.html#, 1 page.
Sun Pharmaceutical Industried Ltd. v. Eli Lilly and Co., 611 F.3d 1381, 95 USPQ2d 1797 (Fed. Cir. 2010),7 pages.
Tavss et al., “Anionic detergent-induced skin irritation and anionic detergent-induced pH rise of bovine serum albumin,” J. Soc. Cosmet. Chem., Jul./Aug. 1988, 39:267-272.
Tirmula et al., “Abstract: D28.00011: Enhanced order in thinfilms of Pluronic (A-B-A) and Brij (A-B) Block copolymers blended with poly (acrylic acid),” Session D28: Block Copolymer Thin Films, Mar. 13, 2006, 1 page, Abstract.
“Alcohol,” Wikipedia, the free encyclopeida, retrieved on May 17, 2014, http://en.wikipedia.org/wiki/Alcohol, 17 pages.
Cole and Gazewood, “Diagnosis and Treatment of Impetigo,” Am Fam Physician, Mar. 15, 2007, 75(6):859-864.
Oranje et al., “Topical retapamulin ointment, 1%, versus sodium fusidate ointment, 2%, for impetigo: a randomized, observer-blinded, noninferiority study,” Dermatology, 2007, 215(4):331-340.
Clobetasol Propionate Cream and Ointment, Apr. 2006, retrieved Jul. 3, 2014, http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=994, 7 pages.
Gels, UNC, The Pharmaceutics and Compounding Laboratory, retrieved on Aug. 25, 2014, http://pharmlabs.unc.edu/labs/gels/agents/htm, 4 pages.
Griffin, “Calculation of HLB Values of Non-Ionic Surfactants,” Journal of the Society of Cosmetic Chemists, May 14, 1954, 249-256.
Klucel Hydroxypropylcellulose; Chemical and Physical Properties, Hercules Limited, copyright 1986, retrieved on Aug. 25, 2014, http://legacy.library.ucsf.edu/tid/cnf81a99/pdf, 35 pages.
Le Vine et al., “Components of the Goeckerman Regimen,” Journal of Investigative Dermatology, 1979, 73:170-173.
Omega-9 Fatty Acids (Oleic Acid), Orthomolecular.org, Dec. 2004, retrieved on Aug. 15, 2014, http://orthomolecular.org/nutrients/omega9.html. 1 page.
Polystyrene, Wikipedia the free encyclopedia, retrieved Apr. 21, 2014, http://web.archive.org/web/20060312210423/http://en.wikipedia.org/wiki/Polystyrene, 4 pages.
Vera et al., “Scattering optics of Foam,” Applied Optics, Aug. 20, 2001, 40(24):4210-4214.
Al-Mughrabi et al., “Effectiveness of Essential Oils and Their Combinations with Aluminum Starch Octenylsuccinate on Potato Storage Pathogens,” TEOP, 2013, 16(1):23-31.
Beauty Banter, “Interesting list of comedogenic ingredients!!!!!!!!!!!” QVC blog, Interesting list of comedogenic ingredients, 2014, 1-14.
Chemical Characteristics, The Olive Oil Source, © 1998-2015, retrieved on Jun. 12, 2015, http://www.oliveoilsource.com/page/chemical-characteristics, 10 pages.
CODEX Standard for Olive Oils and Olive Pomace Oils CODEX Stan 33-1981, Adopted in 1981, recently amended 2013, 8 pages.
Communication of a Notice of Opposition in European Application No. 03772600.7, dated Jan. 13, 2015, 36 pages.
Cremophor A Grades, BASF The Chemical Company, Jan. 2008, 6 pages.
Devos and Miller, “Antisense Oligonucleotides: Treating neurodegeneration at the Level of RNA,” Neurotherapeutics, 2013, 10:486-497.
Ellis et al., “The Treatment of Psoriasis with Liquor Carbonis Detergens,” J. Invest Dermatology, 1948, 10:455-459.
Luviquat Polymer Grades, BASF The Chemical Company, May 2012, 32 pages.
Mailer, “Chemistry and quality of olive oil,” NSW Dept. of Primary Industries, Aug. 2006, Primefact 227, 1-4.
Material Safety Data Sheet, Luvitol EHO, Caelo, Nov. 28, 2013, 4 pages.
Material Safety Data Sheet, Liquor carbonis detergens, Caelo, Nov. 28, 2013, 5 pages.
Material Safety Data Sheet, Mineral Oil, Macron Fine Chemicals, Oct. 24, 2011, 6 pages.
Oh et al., “Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria moncylogenes,” Int. J. Food Microbiology, 1993, 20:239-246.
Permethrin (Insecticide), Wildpro, retrieved on Jun. 4, 2015, http://widlpro.twycrosszoo.org/S/00Chem/ChComplex/perm.htm, 5 pages.
Refina, “Viscosity Guide for Paints, Petroleum & Food Products,” accessed Mar. 4, 2015, http://www.refina.co.uk/webpdfs/info_docs/Viscosity_guide_chart.pdf, 2 pages.
Rohstoffinformationen, Hoffmann Mineral, 2008, 8 pages (with English translation).
Thorgeirsdottir et al., “Antimicrobial activity of monocaprin: a monoglyceride with potential use as a denture disinfectant,” Acta Odontologica Scandinavica, Feb. 2006, 64:21-26 (Abstract only).
United States Standards for Grades of Olive Oil and Olive-Pomace Oil, United States Dept. of Agriculture, Oct. 25, 2010, 21 pages.
WebMD, “Psoriasis Health Center,” 2014, retrieved Apr. 13, 2015, http://www.webmd.com/skin-problems-and-treatments/psoriasis/psoriasis-symptoms, 3 pages.
WebMD, “Understanding Rosacea—the Basics,” 2014, retrieved Apr. 13, 2015, http://www.webmd.com/skin-problems-and-treatments/understanding-rosacea-basics, 5 pages.
Williams et al., “Acne vulgaris,” Lancet, 2012, 379:361-372.
Ziolkowsky, “Moderne Aerosolschaume in der Kosmetik (Modern Aerosol Foams in Chemical and Marketing Aspects),”, Seifen-Ole-Fette-Wachse, Aug. 1986, 112(13): 427-429 (with English translation).
Haw, “The HLB System: A Time Saving Guide to Surfactant Selection,” Presentation to the Midwest Chapter of the Society of Cosmetic Chemists, Mar. 9, 2004, 39 pages.
Allantoin, Römpp Online, retrieved on Sep. 23, 2015, https://roempp.thieme.de/roempp4.0/do/data/RD-O 1-01552, 5 pages.
Coconut Oil, Wikipedia, the free encyclopedia, retrieved on Jul. 3, 2015, https://en.wikipedia.org/wiki/Coconut_oil, 8 pages.
Communication of a Notice of Opposition in European Application No. 03772600.7, dated Sep. 24, 2015, 30 pages.
Communication of a Notice of Opposition in European Application No. 03772600.7, dated Sep. 23, 2015, 42 pages.
Diethyltoluamid, Wikipedia, the free encyclopedia, retrieved on Sep. 11, 2015, https://de.wikipedia.org/wiki/Diethyltoluamid, 12 pages.
Dimethylphthalate, Wikipedia, the free encyclopedia, retrieved on Sep. 11, 2015, http://de.wikipedia.org/wiki/Dimethylphthalat, 8 pages.
Everything but the Olive, (the Olive Oil Source 1998-2016). http://www.oliveoilsource.com/pageAchemical-characteristics).
Healy, “Gelled Emollient Systems for Controlled Fragrance Release and Enhanced Product Performance,” Cosmetics and toiletries, 2002, 117(2): 47-54.
Lamisil, Lamisil.http://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm052213.pdf, Published: Apr. 2001.
Leunapon-F, Leuna-Tenside, Screenshot, retrieved on Sep. 18, 2015, http://www.leuna-tenside.de/2006_7_14_3143/2006_8_7 5750/2006_8_7 241/cas-68439-49-6, 1 page.
Mead, “Electrostatic Mechanisms Underlie Neomycin Block of the Cardiac Ryanodine Receptor Channel (RyR2),” Biophysical Journal, 2004, (87): 3814-3825.
Rowe et al., “Glyceryl Monooleate,” Handbook of Pharmaceutical Excipients, 2011, pp. 1-5, retrieved on Dec. 19, 2011, http://www.medicinescomplete.com/mc/excipients/current/1001938996.htm?q=glyceryl%20monooleate&t=search&ss=text&p=1# hit.
Rowe et al., “Octyldodecanol,” Handbook of Pharmaceutical Excipients, 2011, pp. 1-4, retrieved on Dec. 19, 2011, URL:http://www.medicinescomplete.com/mc/excipients/current/1001942450.htm?q=octyldodecanol&t=search&ss=text&p=1# hit.
Rowe et al., “Sucrose Palmitate,” Handbook of Pharmaceutical Excipients, 2011, pp. 1-5, retrieved on Dec. 19, 2011, URL:http://www.medicinescomplete.com/mc/excipients/current/EXP-TD-c46-mn0001.htm?q=sucrose%20stearate&t=search&ss=text&p=1# hit.
Rowe et al., “Sucrose Stearate,” Handbook of Pharmaceutical Excipients, 2011, pp. 1-4, retrieved on Dec. 19, 2011, URL:http://www.medicinescomplete.com/mc/excipients/current/EXP-TD-c11-mnOOO1-mnOOO1.htm?q=sucrose%20stearate&t=search&ss=text&p=3# hit.
RSES (Oil in Refrigerator Systems, Service Application Manual, 2009).
Security Datasheet, Luvitol EHO, Cetearyloctanoat, Nov. 27, 2013, 10 pages.
Sigma-Aldrich. http://www.sigmaaldrich.com/catalog/product/sial/p1754?lang=en&reg ion=. Published:Mar. 5, 2014.
Suppositories?, CareCure, http://sci.rutgers.edu/forum/showthread.php?4176-Suppositories. Published: Apr. 16, 2002.
Triethanolamine, haute.de, retrieved on Sep. 14, 2015, http://www.haut.de/service/inci/anzeige&id=16384&query=Triethanolamine&funktio . . . , 3 pages.
Valenta, “Effects of Penetration Enhancers on the In-vitro Percutaneous Absorption of Progesterone,” J. Phann Pharrnacol., 1997, 49: 955-959.
Wenninger et al., “International Cosmetic Ingredient Dictionary and Handbook,” The Cosmetic, Toiletry, and Fragrance Association, Washington, DC., 1997, vol. 1, 4 pages.
Williams et al., “Urea analogues in propylene glycol as penetration enhancers in human skin,” International Journal of Pharmaceutics, 1989, 36, 43-50.
Wu et al., “Interaction of Fatty Acid Monolayers with Cobalt Nanoparticles,” Nano Letters, 2004, 4(2): 383-386.
Kaur et al., “Formulation Development of Self Nanoemulsifying Drug Delivery System (SNEDDS) of Celecoxib for Improvement of Oral Bioavailability,” Pharmacophore, 2013, 4(4):120-133.
Material Safety Data Sheet, Butane, Gas Innovations, Sep. 7, 2007, 3 pages.
Material Safety Data Sheet, Carbon Dioxide, Airgas, Feb. 11, 2016, 11 pages.
Material Safety Data Sheet, Dimethyl Ether, Airgas, May 14, 2015, 12 pages.
Material Safety Data Sheet, N-Butane, Airgas, May 7, 2015, 13 pages.
Material Safety Data Sheet, Nitrous Oxide, Airgas, Feb. 11, 2016, 11 pages.
Material Safety Data Sheet, Propane, Airgas, Oct. 20, 2015, 12 pages.
Sanders et al., “Stabilization of Aerosol Emulsions and Foams,” J. Soc. Cosmet. Chem., 1970, 21:377-391.
Albrecht et al., “Topical minocycline foam for moderate to severe acne vulgaris: Phase 2 randomized double-blind, vehicle-controlled study results,” J. Am. Acad. Dermatol., 2016, 74(6):1251-1252.
Chapter 1 Meaning of HLB Advantages and Limitations 1980; 4 pages.
Material Safety Data Sheet, Squalane, TCI America, 5 pages, https://www.spectrumchemical.com/MSDS/TC1-H0096.pdf. Published: Oct. 6, 2014.
Sorbitan Esters, [online] retrieved on Jul. 1, 2016 from: http://www.drugfuture.com/chemdata/sorbitan-esters.html 2 pages.
Sreenivasan et al., “Studies on Castor Oil. I. Fatty Acid Composition of Castor Oil,” Journal of the American Oil Chemists Society. 1956, 33:61-66.
Abdullah, G.Z. et al. (Jan. 2013) “Carbopol 934, 940 and Ultrez 10 as viscosity modifiers of palm olein esters based nano-scaled emulsion containing ibuprofen” Pak J Pharm Sci, 26(1):75-83.
Craig, D.Q.M. et al. (Jul. 1994) “An investigation into the structure and properties of Carbopol 934 gels using dielectric spectroscopy and oscillatory rheometry” J Controlled Rel, 30(3):213-223 (Abstract).
European Patent Application No. 03772600.7 (Patent No. 1556009): Interlocutory Decision in Opposition Proceedings, dated Feb. 3, 2017, 54 pages.
European Patent Application No. 03772600.7 (Patent No. 1556009): Minutes of Oral Proceedings, dated Feb. 3, 2017, 6 pages.
Foamix Pharmaceuticals Ltd. (May 1, 2017) “Foamix Pharmaceuticals Announces Plans for Additional Phase 3 Trial for FMX101 in Moderate to Severe Acne,” Press Release [online]. Retrieved from: http://www.foamix.co.il/news.asp?nodeID=564&itemID=204, on Jun. 12, 2017, 5 pages.
Frankel, A.J. et al. (2010) “Coal Tar 2% Foam in Combination with a Superpotent Corticosteroid Foam for Plaque Psoriasis. Case Report and Clinical Implications” J Clin Aesthet Dermatol, 3(10):42-45.
Ghica, M.V. et al. (2011) “Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wound infections” Pharmazie, 66:853-861.
Kanicky, J.R. and D.O. Shah (2002) “Effect of Degree, Type, and Position of Unsaturation on the pKa , of Long-Chain Fatty Acids” J Colloid and Interface Science, 256:201-207.
Kircik, L.H. and S. Kumar (Aug. 2010) “Scalp Psoriasis” J Drugs Dermatol, 9(8 Suppl):s101-s137.
Milton, D.T. et al. (2006) “A Phase I/II Study of Weekly High-Dose Erlotinib in Previously Treated Patients With Nonsmall Cell Lung Cancer” Cancer, 107:1034-1041.
Musial, W. and A. Kubis (2004) “Carbopols as factors buffering triethanolamine interacting with artificial skin sebum” Polim Med, 34(4):17-30 (Abstract).
Pharmaceutical Benefits Advisory Committee (PBAC) of Australia. PBAC Public Summary Document -Nov. 2014 Meeting(5 pages).
Penreco, “Intelligent Gel Technology Product Specifications,” Rev. 06/16 (2 pages).
Promius™ Pharma LLC (2012) Scytera™ (coal tar) Foam, 2%. Product Information Sheet, 1 page.
Sigma Aldrich, “Surfactants Classified by HLB Numbers” 2017 [online]. Retrieved from the Internet: www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=22686648, on Jul. 8, 2017 (3 pages).
Solodyn® (Minocycline HCl, USP) Prescribing Information; revised Jun. 2016, 2 pages.
Sung, J.H. et al. (2010) “Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan” Intl J Pharmaceut, 392:232-240.
Tamarkin, D. (2013) “Foam: A Unique Delivery Vehicle for Topically Applied Formulations” in: Formulating Topical Applications—a Practical Guide. Dayan N, Ed., Carol Stream, IL: CT Books, Chapter 9, pp. 233-260.
Tjulandin, S. et al. (2013) “Phase I, dose-finding study of AZD8931, an inhibitor of EGRF (erbB1), HER2 (erbB2) and HER3 (erbB3) signaling, in patients with advanced solid tumors” Invest New Drugs, 32(11:145-153.
Water Jel Technologies, “Material Safety Data Sheet for Neomycin Antibiotic Ointment,” Dec. 1, 2004, 7 pages.
WebMD (2017) “User Reviews & Ratings—Scytera topical” [online]. Retrieved Mar. 1, 2017; retrieved from the Internet: http://www.webmd.com/drugs/drugreview-151502-Scytera+topical.aspx?drugid=151502&drugname=Scyterai+topical&sortby=3 (2 pages).
Wrightson, W.R. et al. (1998) “Analysis of minocycline by high-performance liquid chromatography in tissue and serum” J Chromatography B, 706:358-361.
Zeichner, J.A. (2010) “Use of Topical Coal Tar Foam for the Treatment of Psoriasis in Difficult-to-treat Areas” J Clin Aesthet Dermatol, 3(9):37-40.
Aslam et al. (2015) “Emerging drugs for the treatment of acne” Expert Opin Emerging Drugs, 20:91-101.
Beuchat (Feb. 1983) “Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds” J Food Prot, 46(2):135-141.
Brisaert, M. et al. (1996) “Investigation on the chemical stability of erythromycin in solutions using an optimization system” Pharm World Sci, 18(5):182-186.
Canavan et al. (2016) “Optimizing Non-Antibiotic Treatments for Patients with Acne: A Review” Dermatol Ther, 6:555-578.
Fontana (Apr. 1999) “Pharmaceutical Applications for Water Activity” Pharmaceutical Online [online]. Retrieved from https://www.pharmaceuticalonline.com/doc/pharmaceutical-applications-for-water-activit- . . . , on Jan. 17, 2018 (4 pages).
Sarpotdar, P.P. et al. (Jan. 1986) “Effect of Polyethylene Glycol 400 on the Penetration of Drugs Through Human Cadaver Skin in Vitro” J Pharma Sci, 75(1):26-28.
Related Publications (1)
Number Date Country
20070020213 A1 Jan 2007 US
Provisional Applications (5)
Number Date Country
60429546 Nov 2002 US
60492385 Aug 2003 US
60497648 Aug 2003 US
60530015 Dec 2003 US
60700702 Jul 2005 US
Continuations (1)
Number Date Country
Parent 10532618 US
Child 11124676 US
Continuation in Parts (4)
Number Date Country
Parent 10835505 Apr 2004 US
Child 11488989 US
Parent 10911367 Aug 2004 US
Child 10835505 US
Parent 10922358 Aug 2004 US
Child 10911367 US
Parent 11124676 May 2005 US
Child 10922358 US