Foamed cement compositions comprising oil-swellable particles

Information

  • Patent Grant
  • 8030253
  • Patent Number
    8,030,253
  • Date Filed
    Thursday, August 20, 2009
    15 years ago
  • Date Issued
    Tuesday, October 4, 2011
    13 years ago
Abstract
Of the many compositions provided herein, an embodiment includes a foamed cement composition comprising a cementitious component, an oil-swellable particle comprising at least one swellable elastomer selected from the group consisting of acrylate butadiene rubber, polyacrylate rubber, isoprene rubber, choloroprene rubber, butyl rubber, brominated butyl rubber, chlorinated butyl rubber, chlorinated polyethylene, neoprene rubber, styrene butadiene block copolymer, sulphonated polyethylene, ethylene acrylate rubber, epichlorohydrin ethylene oxide copolymer, ethylene-propylene rubber, ethylene vinyl acetate copolymer, fluorosilicone rubber, silicone rubber, and combinations thereof, a foaming and stabilizing surfactant, gas, and water. Another embodiment includes a foamed cement composition comprising a cementitious component, an oil-swellable particle comprising a block copolymer of styrene butadiene rubber, a foaming and stabilizing surfactant, and gas.
Description
BACKGROUND

The present invention relates to cementing operations, and more particularly in certain embodiments, to the application of an oil-swellable particle to foamed cement compositions, and methods of using such compositions in surface and subterranean applications.


Cement compositions are commonly utilized above ground (e.g., in the construction industry) and in subterranean operations, particularly subterranean well completion and remedial operations. For example, cement compositions are used in primary cementing operations whereby pipe strings such as casings and liners may be cemented in well bores. In performing primary cementing, hydraulic cement compositions may be pumped into the annular space between the walls of a well bore and the exterior surface of the pipe string disposed therein. The cement composition is permitted to set in the annular space, thereby forming an annular sheath of hardened substantially impermeable cement therein that substantially supports and positions the pipe string in the well bore and bonds the exterior surface of the pipe string to the walls of the well bore. Cement compositions also may be used in remedial cementing operations such as plugging highly permeable zones or fractures in well bores, plugging cracks and holes in pipe strings, and the like.


Cement compositions utilized in subterranean operations may be lightweight to prevent excessive hydrostatic pressure from being exerted on subterranean formations penetrated by the well bore, whereby the formations may be unintentionally fractured. One type of lightweight cement composition is a foamed cement composition, i.e., a cement composition that comprises a gas and a foaming surfactant. In addition to being lightweight, the gas contained in the foamed cement composition may improve the ability of the composition to maintain pressure and prevent the flow of formation fluids into and through the cement composition during its transition time, i.e., the time during which the cement composition changes from a true fluid to a set mass. Foamed cement compositions may be advantageous because they can have low fluid loss properties and may act to prevent the loss of fluid during circulation. Additionally, foamed cement compositions when set should have a lower modulus of elasticity than non-foamed cements, which is often desirable as it enables the resultant set cement, inter alia, to resist hoop stresses exerted on the set cement in the annulus.


Once set, the cement sheath may be subjected to a variety of cyclic, shear, tensile, impact, flexural, and/or compressive stresses that may lead to failure of the cement sheath. Such failure may be the result of fractures, cracks, and/or debonding of the cement sheath from the pipe string and/or the formation. Undesirably, cement-sheath failure may lead to loss of zonal isolation, resulting, for example, in the undesirable migration of fluids between formation zones. This may lead to undesirable consequences such as lost production, costly remedial operations, environmental pollution, hazardous rig operations resulting from unexpected fluid flow from the formation caused by the loss of zonal isolation, and/or hazardous production operations. Furthermore, failure of the cement sheath also may be caused by forces exerted by shifts in subterranean formations surrounding the well bore, cement erosion, and repeated impacts from the drill bit and the drill pipe.


SUMMARY

The present invention relates to cementing operations, and more particularly in certain embodiments, to the application of an oil-swellable particle to foamed cement compositions, and methods of using such compositions in surface and subterranean applications.


An embodiment of the present invention provides a method comprising: introducing a foamed cement composition into a subterranean formation, wherein the foamed cement composition comprises: a cementitious component; a foaming and stabilizing surfactant; an oil-swellable particle; gas; and water; and allowing the settable composition to set in the subterranean formation.


Another embodiment of the present invention provides a method comprising: introducing a foamed cement composition into an annulus between a pipe string and a subterranean formation, wherein the foamed cement composition comprises comprising: a cementitious component; a foaming and stabilizing surfactant; an oil-swellable particle; gas; and water; and allowing the settable composition to set in the annulus.


Another embodiment of the present invention provides a foamed cement composition comprising: a cementitious component, a foaming and stabilizing surfactant, a swellable particle, gas, and water.


The features and advantages of the present invention will be apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.







DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to cementing operations, and more particularly in certain embodiments, to the application of an oil-swellable particle to foamed cement compositions, and methods of using such compositions in surface and subterranean applications.


The foamed cement compositions of the present invention generally comprise a cementitious component, water, a gas, a foaming and stabilizing surfactant, and an oil-swellable particle. As used herein, the term “cementitious component” refers to a material or combination of materials that sets and hardens by reaction with water. The foamed cement compositions of the present invention should have a density suitable for a particular application as desired by those of ordinary skill in the art, with the benefit of this disclosure. In some embodiments, the foamed settable compositions of the present invention may have a density in the range of from about 8 ppg to about 13 ppg.


Embodiments of the foamed cement compositions of the present invention comprise a cementitious component that may comprise cement kiln dust (“CKD.”) “CKD,” as that term is used herein, refers to a partially calcined kiln feed which may be removed from the gas stream and collected in a dust collector during the manufacture of cement. CKD generally may comprise a variety of oxides, such as SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O. The CKD may be included in the foamed cement compositions in an amount sufficient to provide the desired compressive strength, density, and/or cost reduction. In some embodiments, the CKD may be present in the settable compositions of the present invention in an amount of at least about 25% by weight of the cementitious component. In some embodiments, the CKD may be present in the settable compositions of the present invention in an amount in the range of from about 1% to about 75% by weight of the cementitious component. In some embodiments, the CKD may be present in the settable compositions of the present invention in an amount in the range of from about 25% to about 50% by weight of the cementitious component.


Embodiments of the foamed cement compositions of the present invention may comprise a cementitious component that also comprises a hydraulic cement. In certain embodiments, the cementitious component may comprise hydraulic cement and CKD. A variety of hydraulic cements may be utilized in accordance with the present invention, including, but not limited to, those comprising calcium, aluminum, silicon, oxygen, iron, and/or sulfur, which set and harden by reaction with water. Suitable hydraulic cements include, but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, slag cements, silica cements, and combinations thereof. In certain embodiments, the hydraulic cement may comprise a Portland cement. In some embodiments, the Portland cements that are suited for use in the present invention include those classified as Classes A through H according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990. In certain embodiments, API Class A, C, G and H hydraulic cements may be preferred.


Where present, the hydraulic cement generally may be included in the cement compositions in an amount sufficient to provide the desired compressive strength, density, and/or cost. In some embodiments, the hydraulic cement may be present in the cement compositions of the present invention in an amount of about 0.1% to about 100% by weight of cementitious materials. In some embodiments, the hydraulic cement may be present in the cement compositions of the present invention in an amount of about 0.1% to about 95% by weight of cementitious materials. In some embodiments, the hydraulic cement may be present in the cement compositions of the present invention in an amount of about 20% to about 95% by weight by weight of cementitious materials. In some embodiments, the hydraulic cement may be present in the cement compositions of the present invention in an amount in the range of from about 50% to about 90% by weight of cementitious materials.


In some embodiments, a pozzolana cement that may be suitable for use comprises fly ash. As used herein, “fly ash” refers to the residue from the combustion of powdered or ground coal, wherein the fly ash carried by flue gases may be recovered, for example, by electrostatic precipitation. A variety of fly ashes may be suitable, including fly ash classified as Class C and Class F fly ash according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990. Class C fly ash comprises both silica and lime so that, when mixed with water, it sets to form a hardened mass. Class F fly ash generally does not contain sufficient lime, so an additional source of calcium ions is required for the Class F fly ash to form a cement composition with water. In some embodiments, lime may be mixed with Class F fly ash in an amount in the range of from about 0.1% to about 25% by weight of the fly ash. In some instances, the lime may be hydrated lime. Suitable examples of fly ash include, but are not limited to, “POZMIX® A” cement additive, commercially available from Halliburton Energy Services, Inc., Duncan, Okla.


Where present, the fly ash generally may be included in the cement compositions in an amount sufficient to provide the desired compressive strength, density, and/or cost. In some embodiments, the fly ash may be present in the cement compositions of the present invention in an amount of about 5% to about 75% by weight of cementitious materials. In some embodiments, the fly ash may be present in the cement compositions of the present invention in an amount of about 5% to about 50% by weight of cementitious materials.


In some embodiments, a slag cement that may be suitable for use may comprise slag. As used herein, “slag” refers to a granulated, blast furnace by-product formed in the production of cast iron and generally comprises oxidized impurities found in iron ore. Slag generally does not contain sufficient basic material, so slag cement further may comprise a base to produce a cement composition that may react with water to set to form a hardened mass. Examples of suitable sources of bases include, but are not limited to, sodium hydroxide, sodium bicarbonate, sodium carbonate, lime, and combinations thereof.


Where present, the slag cement generally may be included in the cement compositions in an amount sufficient to provide the desired compressive strength, density, and/or cost. In some embodiments, the slag cement may be present in the cement compositions of the present invention in an amount of 0% to about 75% by weight of cementitious materials. In some embodiments, the slag cement may be present in the cement compositions of the present invention in an amount of about 5% to about 40% by weight of cementitious materials.


The water used in the foamed cement compositions of the present invention may be freshwater, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater produced from subterranean formations), or seawater, or combinations thereof. Generally, the water may be from any source, provided that it does not contain an excess of compounds that may adversely affect other components in the cement composition. The water may be present in an amount sufficient to form a pumpable slurry. More particularly, the water may be present in an amount in the range of from about 33% and about 200% by weight of the cementitious materials. In some embodiments, the water may be present in an amount in the range of from about 35% and about 70% by weight of cementitious materials.


The gas utilized in the foamed cement compositions of the present invention may be any gas suitable for foaming a cement composition, including, but not limited to, air or nitrogen, or combinations thereof. Generally, the gas should be present in the foamed cement compositions of the present invention in an amount sufficient to form a suitable foam. In certain embodiments, the gas may be present in an amount in the range of from about 10% and about 80% by volume of the composition.


Any suitable foaming and stabilizing surfactant may be used in the foamed cement composition of the present invention. Among other things, the foaming and stabilizing surfactants may facilitate the foaming of a cement composition and/or also stabilize the resultant foamed cement composition formed therewith. Suitable foaming and stabilizing surfactants may include, but are not limited to: mixtures of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; mixtures of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; hydrolyzed keratin; mixtures of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; aqueous solutions of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and combinations thereof. An example of a suitable hydrolyzed keratin is described in U.S. Pat. No. 6,547,871, the disclosure of which is incorporated herein by reference. Example of suitable mixtures of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant is described in U.S. Pat. No. 6,063,738, the disclosure of which is incorporated herein by reference. Examples of suitable aqueous solutions of an alpha-olefinic sulfonate surfactant and a betaine surfactant are described in U.S. Pat. No. 5,897,699, the disclosure of which is incorporated herein by reference. In one embodiment, the foaming and stabilizing surfactant comprises a mixture of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water.


Generally, the foaming and stabilizing surfactants should be present in the foamed cement compositions of the present invention in an amount sufficient to provide a suitable foam. In some embodiments, the foaming and stabilizing surfactant may be present in an amount in the range of from about 0.8% and about 5% by volume of the water (“bvow”) present in the foamed cement composition.


Embodiments of the foamed cement compositions may comprise an oil-swellable particle. As used herein, a particle is characterized as oil-swellable when it swells upon contact with oil. Oil-swellable particles suitable for use in embodiments of the present invention may generally swell by up to about 50% of their original size at the surface. Under downhole conditions, this swelling may be more, or less, depending on the conditions presented. For example, the swelling may be at least 10% at downhole conditions. In some embodiments, the swelling may be up to about 50% under downhole conditions. However, as those of ordinary skill in the art, with the benefit of this disclosure, will appreciate, the actual swelling when the oil-swellable particles are included in a foamed cement composition may depend on, for example, the concentration of the swellable particles included in the settable composition. In accordance with embodiments of the present invention, the swellable particles may be included in the settable composition, for example, to counteract the formation of cracks in the cement sheath and/or micro-annulus between the cement sheath and the pipe string or the formation. In general, the oil-swellable particles should be capable of swelling when contacted by oil to inhibit fluid flow through the crack and/or micro-annulus. Accordingly, the oil-swellable particles may prevent and/or reduce the loss of zonal isolation in spite of the formation of cracks and/or micro-annulus, potentially resulting in an improved annular seal for the foamed cement compositions.


An example of an oil-swellable particle that may be utilized in embodiments of the present invention comprises an oil-swellable elastomer. Oil-swellable elastomers suitable for use in embodiments of the present invention may generally swell by up to about 100% of their original size at the surface when contacted by oil. Under downhole conditions, this swelling may be more, or less, depending on the conditions presented. For example, the swelling may be at least 10% at downhole conditions. In some embodiments, the swelling may be up to about 50% under downhole conditions. However, as those of ordinary skill in the art, with the benefit of this disclosure, will appreciate, the actual swelling when the swellable elastomer is included in a foamed cement composition may depend on, for example, the concentration of the oil-swellable elastomer included in the foamed cement composition, downhole pressure, and downhole temperature, among other factors. Some specific examples of suitable swellable elastomers include, but are not limited to, natural rubber, acrylate butadiene rubber, polyacrylate rubber, isoprene rubber, choloroprene rubber, butyl rubber (IIR), brominated butyl rubber (BIIR), chlorinated butyl rubber (CIIR), chlorinated polyethylene (CM/CPE), neoprene rubber (CR), styrene butadiene copolymer rubber (SBR), styrene butadiene block copolymer rubber, sulphonated polyethylene (CSM), ethylene acrylate rubber (EAM/AEM), epichlorohydrin ethylene oxide copolymer (CO, ECO), ethylene-propylene rubber (EPM and EDPM), ethylene-propylene-diene terpolymer rubber (EPT), ethylene vinyl acetate copolymer, fluorosilicone rubbers (FVMQ), silicone rubbers (VMQ), poly 2,2,1-bicyclo heptene (polynorborneane), alkylstyrene, and crosslinked vinyl acrylate copolymers. Combinations of suitable oil-swellable elastomers may also be utilized. One example of a suitable oil-swellable elastomer comprises a block copolymer of a styrene butadiene rubber. Other swellable elastomers that behave in a similar fashion with respect to oil also may be suitable. Those of ordinary skill in the art, with the benefit of this disclosure, will be able to select an appropriate oil-swellable elastomer for use in the compositions of the present invention based on a variety of factors, including the application in which the composition will be used and the desired oil-swellable characteristics.


Where used, the oil-swellable particle generally may be included in the cement compositions in an amount sufficient to provide the desired mechanical properties. In some embodiments, the oil-swellable particle may be present in the foamed cement compositions in an amount up to about 27% bwoc (e.g., about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, etc.), alternatively in a range of about 1% to about 25% bwoc, and alternatively in a range of about 4% to about 20% bwoc.


In addition, the oil-swellable particle that is utilized may have a wide variety of shapes and sizes of individual particles suitable for use in accordance with embodiments of the present invention. By way of example, the oil-swellable particle may have a well-defined physical shape as well as an irregular geometry, including the physical shape of platelets, shavings, fibers, flakes, ribbons, rods, strips, spheroids, beads, toroids, pellets, tablets, or any other physical shape. In some embodiments, the oil-swellable particle may have a particle size in the range of about 5 microns to about 1,500 microns. In some embodiments, the oil-swellable particle may have a particle size in the range of about 20 microns to about 500 microns. However, particle sizes outside these defined ranges also may be suitable for particular applications. Particle sizes may be measured using a laser light scattering particle size analyzer from the Malvern Company.


In certain embodiments, the settable compositions of the present invention further may comprise metakaolin. Generally, metakaolin is a white pozzolan that may be prepared by heating kaolin clay, for example, to temperatures in the range of from about 600° to about 800° C. In some embodiments, the metakaolin may be present in the settable compositions of the present invention in an amount in the range of from about 1% to about 50% by weight. In some embodiments, the metakaolin may be present in an amount in the range of from about 10% to about 50% by weight.


In certain embodiments, the settable compositions of the present invention further may comprise shale. Among other things, shale included in the settable compositions may react with excess lime to form a suitable cementing material, for example, calcium silicate hydrate. A variety of shales are suitable, including those comprising silicon, aluminum, calcium, and/or magnesium. An example of a suitable shale comprises vitrified shale. Suitable examples of vitrified shale include, but are not limited to, “PRESSUR-SEAL® FINE LCM” material and “PRESSUR-SEAL® COARSE LCM” material, which are commercially available from TXI Energy Services, Inc., Houston, Tex. Generally, the shale may have any particle size distribution as desired for a particular application. In certain embodiments, the shale may have a particle size distribution in the range of from about 37 micrometers to about 4,750 micrometers.


Where present, the shale may be included in the settable compositions of the present invention in an amount sufficient to provide the desired compressive strength, density, and/or cost. In some embodiments, the shale may be present in an amount in the range of from about 1% to about 75% by weight. In some embodiments, the shale may be present in an amount in the range of from about 5% to about 35% by weight. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of the shale to include for a chosen application.


In certain embodiments, the settable compositions of the present invention further may comprise zeolite. Zeolites generally are porous alumino-silicate minerals that may be either a natural or synthetic material. Synthetic zeolites are based on the same type of structural cell as natural zeolites, and may comprise aluminosilicate hydrates. As used herein, the term “zeolite” refers to all natural and synthetic forms of zeolite.


In certain embodiments, suitable zeolites for use in present invention may include “analcime” (which is hydrated sodium aluminum silicate), “bikitaite” (which is lithium aluminum silicate), “brewsterite” (which is hydrated strontium barium calcium aluminum silicate), “chabazite” (which is hydrated calcium aluminum silicate), “clinoptilolite” (which is hydrated sodium aluminum silicate), “faujasite” (which is hydrated sodium potassium calcium magnesium aluminum silicate), “ferrierite”, “harmotome” (which is hydrated barium aluminum silicate), “heulandite” (which is hydrated sodium calcium aluminum silicate), “laumontite” (which is hydrated calcium aluminum silicate), “mesolite” (which is hydrated sodium calcium aluminum silicate), “natrolite” (which is hydrated sodium aluminum silicate), “paulingite” (which is hydrated potassium sodium calcium barium aluminum silicate), “phillipsite” (which is hydrated potassium sodium calcium aluminum silicate), “scolecite” (which is hydrated calcium aluminum silicate), “stellerite” (which is hydrated calcium aluminum silicate), “stilbite” (which is hydrated sodium calcium aluminum silicate), and “thomsonite” (which is hydrated sodium calcium aluminum silicate), and combinations thereof. In certain embodiments, suitable zeolites for use in the present invention include chabazite and clinoptilolite. An example of a suitable source of zeolite is available from the C2C Zeolite Corporation of Calgary, Canada.


In some embodiments, the zeolite may be present in the settable compositions of the present invention in an amount in the range of from about 1% to about 40% by weight. In certain embodiments, the zeolite may be present in an amount in the range of from about 5% to about 25% by weight.


In certain embodiments, the settable compositions of the present invention further may comprise a set retarding additive. As used herein, the term “set retarding additive” refers to an additive that retards the setting of the settable compositions of the present invention. Examples of suitable set retarding additives include, but are not limited to, ammonium, alkali metals, alkaline earth metals, metal salts of sulfoalkylated lignins, hydroxycarboxy acids, copolymers that comprise acrylic acid or maleic anhydride, and combinations thereof. One example of a suitable sulfoalkylate lignin comprises a sulfomethylated lignin. Suitable set retarding additives are disclosed in more detail in U.S. Pat. No. Re. 31,190, the entire disclosure of which is incorporated herein by reference. Suitable set retarding additives are commercially available from Halliburton Energy Services, Inc. under the tradenames “HR® 4,” “HR® 5,” HR® 7,” “HR® 12,” “HR® 15,” HR® 25,” “SCR™ 100,” and “SCR™ 500.” Generally, where used, the set retarding additive may be included in the settable compositions of the present invention in an amount sufficient to provide the desired set retardation. In some embodiments, the set retarding additive may be present in an amount in the range of from about 0.1% to about 5% by weight.


Optionally, other additional additives may be added to the settable compositions of the present invention as deemed appropriate by one skilled in the art, with the benefit of this disclosure. Examples of such additives include, but are not limited to, accelerators, weight reducing additives, heavyweight additives, lost circulation materials, filtration control additives, dispersants, and combinations thereof. Suitable examples of these additives include crystalline silica compounds, amorphous silica, salts, fibers, hydratable clays, microspheres, pozzolan lime, latex cement, thixotropic additives, combinations thereof and the like.


The foamed cement compositions of the present invention may be prepared in accordance with any suitable technique. For example, the cementitious component and water may be combined and mixed for a sufficient period of time to form a pumpable cement composition. Liquid additives, if any, may be mixed with the water prior to combination with the cementitious component. Dry solid additives, if any, may be dry blended with the cement prior to combination with the water. In certain embodiments, the cement composition then may be pumped to the well bore, and the foaming and stabilizing surfactant followed by the gas may be injected into the cement composition, e.g., at a foaming mixing “T,” as the cement composition is being pumped, in an amount sufficient to form a foamed cement composition. After foaming, the foamed cement composition, may be placed in a desired location within the well bore and allowed to set. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize other suitable techniques for preparing the foamed cement compositions of the present invention.


An example of a method of cementing of the present invention comprises: placing a foamed cement composition in a location to be cemented, wherein the foamed cement composition comprises a cementitious component comprising a hydraulic cement and CKD, water, a foaming and stabilizing surfactant, and an oil-swellable particle; and allowing the foamed cement composition to set. The location to be cemented may be any suitable location, including a location above ground or a portion of a subterranean formation, such as between the walls of a well bore and the exterior surface of a pipe string disposed therein.


Another example of a method of cementing of the present invention comprises: providing a cement composition that comprises a cementitious component comprising a hydraulic cement and CKD, water, a foaming and stabilizing surfactant, and an oil-swellable particle; combining the cement composition with a gas to form a foamed cement composition; placing the foamed cement composition in a portion of a subterranean formation; and allowing the foamed cement composition to set therein.


To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention.


EXAMPLE 1

A 14 lb/gal Portland class H cement slurry was prepared. The slurry contained 5% amorphous silica (by weight of cement) and 20% oil-swellable elastomer (by weight of cement). The oil-swellable rubber was a block polymer of styrene-butadiene. The slurry was foamed down to 11 lb/gal using 2% foamer 760 by volume of water. Foam weight reached the desired level by mixing in a pressurized foam blending jar for five seconds. For comparison purposes, a slurry was also prepared without the oil-swellable elastomer. The foamed slurries were cured at 140° F. for 24 hours. Physical and mechanical properties are reported in Table 1. Compressive strength testing was performed in accordance with API Recommended Practices 10B, Twenty-Second Edition, December 1997. The Young's Modulus of Elasticity and the Poisson's Ratio were determined in accordance with ASTM D3148-02.









TABLE I







Premium cement mixed at 14 lbs/gal, with 2% bvow foamer












Oil-Swellable
24-hr Strength,
Young's
Poisson's


Sample
Elastomer, % bwoc
PSI
Modulus
Ratio














No. 1

801
2.75E+05
0.1575


No. 2
20
1060
3.53E+05
0.184









Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims
  • 1. A foamed cement composition comprising: a cementitious component,an oil-swellable particle comprising at least one swellable elastomer selected from the group consisting of acrylate butadiene rubber, polyacrylate rubber, isoprene rubber, chloroprene rubber, butyl rubber, brominated butyl rubber, chlorinated butyl rubber, chlorinated polyethylene, neoprene rubber, styrene butadiene block copolymer, sulphonated polyethylene, ethylene acrylate rubber, epichlorohydrin ethylene oxide copolymer, ethylene-propylene rubber, ethylene vinyl acetate copolymer, fluorosilicone rubber, silicone rubber, and combinations thereof,a foaming and stabilizing surfactant,a gas, andwater.
  • 2. The foamed cement composition of claim 1 wherein the cementitious component comprises cement kiln dust.
  • 3. The foamed cement composition of claim 1 wherein the cementitious component comprises hydraulic cement.
  • 4. The foamed cement composition of claim 1 wherein the cementitious component comprises cement kiln dust in an amount of about 1% to about 75% by weight of the cementitious component.
  • 5. The foamed cement composition of claim 1 wherein the oil-swellable particle is present in the foamed cement composition in an amount of about 1% to about 27% by weight of the cementitious component.
  • 6. The foamed cement composition of claim 1 wherein the oil-swellable particle is capable of swelling by at least 10% at downhole conditions.
  • 7. The foamed cement composition of claim 1 wherein the foaming and stabilizing surfactant comprises at least one surfactant selected from the group consisting of: a mixture of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; a mixture of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; a hydrolyzed keratin; a mixture of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; an aqueous solution of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and combinations thereof.
  • 8. The foamed cement composition of claim 1 wherein the foamed cement composition comprises at least one additive selected from the group consisting of fly ash, slag, metakaolin, shale, zeolite, a crystalline silica compound, amorphous silica, salt, fiber, hydratable clay, a microsphere, pozzolan lime, latex cement, a thixotropic additive, and combinations thereof.
  • 9. The foamed cement composition of claim 1 wherein the foamed cement composition comprises at least one additive selected from the group consisting of a set retarding additive, an accelerator, a weight reducing additive, a heavyweight additive, a lost circulation material, a filtration control additive, a dispersant, and combinations thereof.
  • 10. The foamed cement composition of claim 1 wherein the foamed cement composition has a density of about 8 pounds per gallon to about 13 pounds per gallon, and wherein the gas is present in an amount of about 10% to about 80% by volume of the foamed cement composition.
  • 11. A foamed cement composition comprising: a cementitious component,an oil-swellable particle comprising a block copolymer of styrene butadiene rubber,a foaming and stabilizing surfactant, anda gas.
  • 12. The foamed cement composition of claim 11 wherein the cementitious component comprises cement kiln dust.
  • 13. The foamed cement composition of claim 11 wherein the cementitious component comprises hydraulic cement.
  • 14. The foamed cement composition of claim 11 wherein the cementitious component comprises cement kiln dust in an amount of about 1% to about 75% by weight of the cementitious component.
  • 15. The foamed cement composition of claim 11 wherein the oil-swellable particle is present in the foamed cement composition in an amount of about 1% to about 27% by weight of the cementitious component.
  • 16. The foamed cement composition of claim 11 wherein the oil-swellable particle is capable of swelling by at least 10% at downhole conditions.
  • 17. The foamed cement composition of claim 11 wherein the foaming and stabilizing surfactant comprises at least one surfactant selected from the group consisting of: a mixture of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; a mixture of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; a hydrolyzed keratin; a mixture of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; an aqueous solution of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and combinations thereof.
  • 18. The foamed cement composition of claim 11 wherein the foamed cement composition comprises at least one additive selected from the group consisting of fly ash, slag, metakaolin, shale, zeolite, a crystalline silica compound, amorphous silica, salt, fiber, hydratable clay, a microsphere, pozzolan lime, latex cement, a thixotropic additive, and combinations thereof.
  • 19. The foamed cement composition of claim 11 wherein the foamed cement composition comprises at least one additive selected from the group consisting of a set retarding additive, an accelerator, a weight reducing additive, a heavyweight additive, a lost circulation material, a filtration control additive, a dispersant, and combinations thereof.
  • 20. The foamed cement composition of claim 11 wherein the foamed cement composition has a density of about 8 pounds per gallon to about 13 pounds per gallon, and wherein the gas is present in an amount of about 10% to about 80% by volume of the foamed cement composition.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 12/263,800, entitled “Foamed Cement Compositions Comprising Oil-Swellable Particles and Methods of Use,” filed on Nov. 3, 2008, now U.S. Pat. No. 7,607,484, which is a continuation-in-part of U.S. patent application Ser. No. 12/283,398, filed on Sep. 11, 2008, entitled “Settable Compositions Comprising Cement Kiln Dust and Swellable Particles,” now U.S. Pat. No. 7,607,482, which is a continuation-in-part of U.S. patent application Ser. No. 11/223,669, filed on Sep. 9, 2005, now U.S. Pat. No. 7,445,669, entitled “Settable Compositions Comprising Cement Kiln Dust and Additive(s).” U.S. patent application Ser. No. 12,263,800 is also a continuation-in-part of U.S. patent application Ser. No. 12/152,327, filed on May 14, 2008, entitled “Extended Cement Compositions Comprising Oil-Swellable Particles and Associated Methods,” now U.S. Pat. No. 7,617,870. The disclosures of these related applications are incorporated herein by reference in their entirety.

US Referenced Citations (340)
Number Name Date Kind
2094316 Cross et al. Sep 1937 A
2329940 Ponzer Sep 1943 A
2842205 Allen et al. Jul 1958 A
2848051 Willaims Aug 1958 A
2871133 Palonen et al. Jan 1959 A
2880096 Hurley Mar 1959 A
2890169 Prokop Jun 1959 A
2945769 Gama et al. Jul 1960 A
3168139 Kennedy et al. Feb 1965 A
3381748 Peters et al. May 1968 A
3454095 Messenger et al. Jul 1969 A
3467193 Messenger Sep 1969 A
3499491 Wyant et al. Mar 1970 A
3557876 Tragesser Jan 1971 A
3748159 George Jul 1973 A
3876005 Fincher et al. Apr 1975 A
3887009 Miller et al. Jun 1975 A
3887385 Quist et al. Jun 1975 A
4018617 Nicholson Apr 1977 A
4031184 McCord Jun 1977 A
4036301 Powers et al. Jul 1977 A
4101332 Nicholson Jul 1978 A
4176720 Wilson Dec 1979 A
4268316 Wills et al. May 1981 A
4341562 Ahlbeck Jul 1982 A
RE31190 Detroit et al. Mar 1983 E
4407677 Wills et al. Oct 1983 A
4432800 Kneller et al. Feb 1984 A
4435216 Diehl et al. Mar 1984 A
4436850 Burdick et al. Mar 1984 A
4460292 Durham et al. Jul 1984 A
4494990 Harris Jan 1985 A
4515635 Rao et al. May 1985 A
4519452 Tsao et al. May 1985 A
4555269 Rao et al. Nov 1985 A
4614599 Walker Sep 1986 A
4624711 Styron Nov 1986 A
4633950 Delhommer et al. Jan 1987 A
4676317 Fry et al. Jun 1987 A
4676832 Childs et al. Jun 1987 A
4700777 Luers Oct 1987 A
4741782 Styron May 1988 A
4784223 Worrall et al. Nov 1988 A
4883125 Wilson et al. Nov 1989 A
4941536 Brothers et al. Jul 1990 A
4953620 Bloys et al. Sep 1990 A
4992102 Barbour Feb 1991 A
5030366 Wilson et al. Jul 1991 A
5049288 Brothers et al. Sep 1991 A
5058679 Hale et al. Oct 1991 A
RE33747 Hartley et al. Nov 1991 E
5086850 Harris et al. Feb 1992 A
5121795 Ewert et al. Jun 1992 A
5123487 Harris et al. Jun 1992 A
5125455 Harris et al. Jun 1992 A
5127473 Harris et al. Jul 1992 A
5183505 Spinney Feb 1993 A
5213160 Nahm et al. May 1993 A
5215585 Luthra et al. Jun 1993 A
5238064 Dahl et al. Aug 1993 A
5252128 Gopalkrishnan Oct 1993 A
5266111 Barbour Nov 1993 A
5295543 Terry et al. Mar 1994 A
5305831 Nahm Apr 1994 A
5314022 Cowan et al. May 1994 A
5327968 Onan et al. Jul 1994 A
5337824 Cowan Aug 1994 A
5352288 Mallow Oct 1994 A
5358044 Hale et al. Oct 1994 A
5358049 Hale et al. Oct 1994 A
5361841 Hale et al. Nov 1994 A
5361842 Hale et al. Nov 1994 A
5368103 Heathman et al. Nov 1994 A
5370185 Cowan et al. Dec 1994 A
5372641 Carpenter Dec 1994 A
5382290 Nahm et al. Jan 1995 A
5383521 Onan et al. Jan 1995 A
5383967 Chase Jan 1995 A
5398758 Onan et al. Mar 1995 A
5423379 Hale et al. Jun 1995 A
5430235 Hooykaas et al. Jul 1995 A
5439056 Cowan Aug 1995 A
5456751 Zandi et al. Oct 1995 A
5458195 Totten et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5472051 Brothers Dec 1995 A
5476144 Nahm et al. Dec 1995 A
5494513 Fu et al. Feb 1996 A
5499677 Cowan Mar 1996 A
5515921 Cowan et al. May 1996 A
5518996 Maroy et al. May 1996 A
5520730 Barbour May 1996 A
5529624 Riegler Jun 1996 A
5536311 Rodrigues Jul 1996 A
5542782 Carter et al. Aug 1996 A
5554352 Jaques et al. Sep 1996 A
5569324 Totten et al. Oct 1996 A
5575841 Dry Nov 1996 A
5580379 Cowan Dec 1996 A
5585333 Dahl et al. Dec 1996 A
5588489 Chatterji et al. Dec 1996 A
5641584 Andersen et al. Jun 1997 A
5660624 Dry Aug 1997 A
5663230 Haman Sep 1997 A
5673753 Hale et al. Oct 1997 A
5688844 Chatterji et al. Nov 1997 A
5711383 Terry et al. Jan 1998 A
5716910 Totten et al. Feb 1998 A
5728654 Dobson et al. Mar 1998 A
5779787 Brothers et al. Jul 1998 A
5795924 Chatterji et al. Aug 1998 A
5820670 Chatterji et al. Oct 1998 A
5851960 Totten et al. Dec 1998 A
5866516 Costin Feb 1999 A
5874387 Carpenter et al. Feb 1999 A
5897699 Chatterji et al. Apr 1999 A
5900053 Brothers et al. May 1999 A
5913364 Sweatman Jun 1999 A
5988279 Udarbe et al. Nov 1999 A
5989334 Dry Nov 1999 A
6022408 Stokes et al. Feb 2000 A
6060434 Sweatman et al. May 2000 A
6060535 Villar et al. May 2000 A
6063738 Chatterji et al. May 2000 A
6098711 Chatterji et al. Aug 2000 A
6138759 Chatterji et al. Oct 2000 A
6143069 Brothers et al. Nov 2000 A
6145591 Boncan et al. Nov 2000 A
6153562 Villar et al. Nov 2000 A
6167967 Sweatman Jan 2001 B1
6170575 Reddy et al. Jan 2001 B1
6230804 Mueller et al. May 2001 B1
6244343 Brothers et al. Jun 2001 B1
6245142 Reddy et al. Jun 2001 B1
6258757 Sweatman et al. Jul 2001 B1
6261360 Dry Jul 2001 B1
6277189 Chugh Aug 2001 B1
6312515 Barlet-Gouedard et al. Nov 2001 B1
6315042 Griffith et al. Nov 2001 B1
6328106 Griffith et al. Dec 2001 B1
6332921 Brothers et al. Dec 2001 B1
6367550 Chatterji et al. Apr 2002 B1
6379456 Heathman et al. Apr 2002 B1
6402833 O'Hearn et al. Jun 2002 B1
6409819 Ko Jun 2002 B1
6457524 Roddy Oct 2002 B1
6478869 Reddy et al. Nov 2002 B2
6488763 Brothers et al. Dec 2002 B2
6488764 Westerman Dec 2002 B2
6494951 Reddy et al. Dec 2002 B1
6500252 Chatterji et al. Dec 2002 B1
6502636 Chatterji et al. Jan 2003 B2
6508305 Brannon et al. Jan 2003 B1
6516884 Chatterji et al. Feb 2003 B1
6524384 Griffith et al. Feb 2003 B2
6527849 Dry Mar 2003 B2
6547871 Chatterji et al. Apr 2003 B2
6547891 Linden et al. Apr 2003 B2
6561273 Brothers et al. May 2003 B2
6562122 Dao et al. May 2003 B2
6565647 Day et al. May 2003 B1
6572697 Gleeson et al. Jun 2003 B2
6610139 Reddy et al. Aug 2003 B2
6626243 Go Boncan Sep 2003 B1
6631766 Brothers et al. Oct 2003 B2
6645288 Dargaud et al. Nov 2003 B1
6645290 Barbour Nov 2003 B1
6656265 Garnier et al. Dec 2003 B1
6660080 Reddy et al. Dec 2003 B2
6666268 Griffith et al. Dec 2003 B2
6668929 Griffith et al. Dec 2003 B2
6689208 Brothers Feb 2004 B1
6702044 Reddy et al. Mar 2004 B2
6706108 Polston Mar 2004 B2
6708760 Chatterji et al. Mar 2004 B1
6716282 Griffith et al. Apr 2004 B2
6729405 DiLullo et al. May 2004 B2
6767398 Trato Jul 2004 B2
6776237 Dao et al. Aug 2004 B2
6796378 Reddy et al. Sep 2004 B2
6797054 Chatterji et al. Sep 2004 B2
6811603 Brothers et al. Nov 2004 B2
6823940 Reddy et al. Nov 2004 B2
6832651 Ravi et al. Dec 2004 B2
6832652 Dillenbeck et al. Dec 2004 B1
6835243 Brothers et al. Dec 2004 B2
6837316 Reddy et al. Jan 2005 B2
6846357 Reddy et al. Jan 2005 B2
6848519 Reddy et al. Feb 2005 B2
6887833 Brothers et al. May 2005 B2
6889766 Creel et al. May 2005 B2
6889767 Reddy et al. May 2005 B2
6902001 Dargaud et al. Jun 2005 B2
6904971 Brothers et al. Jun 2005 B2
6907929 Leroy-Delage et al. Jun 2005 B2
6908508 Brothers Jun 2005 B2
6911078 Barlet-Gouedard et al. Jun 2005 B2
6926081 Sweatman et al. Aug 2005 B2
6962201 Brothers Nov 2005 B2
7007755 Reddy et al. Mar 2006 B2
7022179 Dry Apr 2006 B1
7022755 Chatterji et al. Apr 2006 B1
7026272 Reddy et al. Apr 2006 B2
7048053 Santra et al. May 2006 B2
7059415 Bosma et al. Jun 2006 B2
7077203 Roddy et al. Jul 2006 B1
7138446 Reddy et al. Nov 2006 B2
7143828 Reddy et al. Dec 2006 B2
7143832 Freyer Dec 2006 B2
7156173 Mueller Jan 2007 B2
7172022 Reddy et al. Feb 2007 B2
7174962 Roddy et al. Feb 2007 B1
7199086 Roddy et al. Apr 2007 B1
7204307 Roddy et al. Apr 2007 B2
7204310 Roddy et al. Apr 2007 B1
7213646 Roddy et al. May 2007 B2
7264053 Vargo, Jr. et al. Sep 2007 B2
7284609 Roddy et al. Oct 2007 B2
7284611 Reddy et al. Oct 2007 B2
7294194 Reddy et al. Nov 2007 B2
7296597 Freyer et al. Nov 2007 B1
7303014 Reddy et al. Dec 2007 B2
7335252 Roddy et al. Feb 2008 B2
7337841 Ravi Mar 2008 B2
7337842 Roddy et al. Mar 2008 B2
7338923 Roddy et al. Mar 2008 B2
7341104 Roddy et al. Mar 2008 B2
7351279 Brothers Apr 2008 B2
7353870 Roddy et al. Apr 2008 B2
7381263 Roddy et al. Jun 2008 B2
7387675 Roddy et al. Jun 2008 B2
7395860 Roddy et al. Jul 2008 B2
7404440 Reddy et al. Jul 2008 B2
7404855 Chatterji et al. Jul 2008 B2
7409990 Burts et al. Aug 2008 B1
7409991 Reddy et al. Aug 2008 B2
7422060 Hammami et al. Sep 2008 B2
7445669 Roddy et al. Nov 2008 B2
7451817 Reddy et al. Nov 2008 B2
7461696 Nguyen et al. Dec 2008 B2
7478675 Roddy et al. Jan 2009 B2
7478678 Farrar et al. Jan 2009 B2
7482309 Ravi et al. Jan 2009 B2
7607482 Roddy et al. Oct 2009 B2
7607484 Roddy et al. Oct 2009 B2
7627870 Michaeli et al. Dec 2009 B1
7631692 Roddy et al. Dec 2009 B2
7674332 Roddy et al. Mar 2010 B2
7743828 Roddy et al. Jun 2010 B2
7784542 Roddy et al. Aug 2010 B2
7789150 Roddy et al. Sep 2010 B2
20020033121 Marko Mar 2002 A1
20020073897 Trato Jun 2002 A1
20020117090 Ku Aug 2002 A1
20030116065 Griffith et al. Jun 2003 A1
20030116887 Scott Jun 2003 A1
20030167970 Polston Sep 2003 A1
20040007162 Morioka et al. Jan 2004 A1
20040040475 De La Roij et al. Mar 2004 A1
20040055748 Reddy et al. Mar 2004 A1
20040079260 Datta et al. Apr 2004 A1
20040107877 Getzlaf et al. Jun 2004 A1
20040108113 Luke et al. Jun 2004 A1
20040112600 Luke et al. Jun 2004 A1
20040129181 Lalande et al. Jul 2004 A1
20040144537 Reddy et al. Jul 2004 A1
20040168802 Creel et al. Sep 2004 A1
20040171499 Ravi et al. Sep 2004 A1
20040187740 Timmons Sep 2004 A1
20040188091 Luke et al. Sep 2004 A1
20040191439 Bour et al. Sep 2004 A1
20040211562 Brothers et al. Oct 2004 A1
20040211564 Brothers et al. Oct 2004 A1
20040244650 Brothers Dec 2004 A1
20040244977 Luke et al. Dec 2004 A1
20040244978 Shaarpour Dec 2004 A1
20040256102 Trato Dec 2004 A1
20040261990 Bosma et al. Dec 2004 A1
20040262000 Morgan et al. Dec 2004 A1
20050000734 Getzlaf et al. Jan 2005 A1
20050034867 Griffith et al. Feb 2005 A1
20050056191 Brothers et al. Mar 2005 A1
20050061206 Reddy et al. Mar 2005 A1
20050061505 Caveny et al. Mar 2005 A1
20050072599 Luke et al. Apr 2005 A1
20050077045 Chatterj et al. Apr 2005 A1
20050084334 Shi et al. Apr 2005 A1
20050098317 Reddy et al. May 2005 A1
20050113260 Wood May 2005 A1
20050113262 Ravi et al. May 2005 A1
20050133221 Chatterji et al. Jun 2005 A1
20050199401 Patel et al. Sep 2005 A1
20060025312 Santra et al. Feb 2006 A1
20060086501 Creel et al. Apr 2006 A1
20060086503 Reddy et al. Apr 2006 A1
20060089851 Silby et al. Apr 2006 A1
20060122071 Reddy et al. Jun 2006 A1
20060162926 Roddy Jul 2006 A1
20060166834 Roddy Jul 2006 A1
20060213662 Creel et al. Sep 2006 A1
20060260512 Nordmeyer Nov 2006 A1
20060278131 Hunt Dec 2006 A1
20070012436 Freyer Jan 2007 A1
20070017676 Reddy et al. Jan 2007 A1
20070056479 Gray Mar 2007 A1
20070062691 Reddy et al. Mar 2007 A1
20070102157 Rodldy et al. May 2007 A1
20070137528 LeRoy-Delage et al. Jun 2007 A1
20070151484 Reddy et al. Jul 2007 A1
20070151724 Ohmer et al. Jul 2007 A1
20070151730 Reddy et al. Jul 2007 A1
20070186820 O'Hearn Aug 2007 A1
20070204765 LeRoy-Delage et al. Sep 2007 A1
20070227734 Freyer Oct 2007 A1
20070246225 Hailey, Jr. et al. Oct 2007 A1
20070255457 Whitcomb et al. Nov 2007 A1
20080017376 Badalamenti et al. Jan 2008 A1
20080099203 Mueller et al. May 2008 A1
20080108524 Willberg et al. May 2008 A1
20080135250 Bosma et al. Jun 2008 A1
20080156491 Roddy et al. Jul 2008 A1
20080261027 Li et al. Oct 2008 A1
20080261834 Simon Oct 2008 A1
20090044726 Brouillette et al. Feb 2009 A1
20090071650 Roddy Mar 2009 A1
20090088348 Roddy Apr 2009 A1
20090114126 Roddy May 2009 A1
20090120640 Kulakofsky May 2009 A1
20090120644 Roddy May 2009 A1
20090124522 Roddy May 2009 A1
20090200029 Roddy Aug 2009 A1
20090320720 Roddy et al. Dec 2009 A1
20100041792 Roddy et al. Feb 2010 A1
20100044043 Roddy et al. Feb 2010 A1
20100089581 Nguyen et al. Apr 2010 A1
20100258312 Brenneis et al. Oct 2010 A1
20100273912 Roddy et al. Oct 2010 A1
20100282466 Brenneis et al. Nov 2010 A1
20100292365 Roddy et al. Nov 2010 A1
20100294496 Woytowich et al. Nov 2010 A1
Foreign Referenced Citations (38)
Number Date Country
2064682 Apr 1992 CA
2336077 Jan 2000 CA
2153372 Jan 2006 CA
1054620 Nov 1997 CN
0814067 Dec 1997 EP
1092693 Apr 2001 EP
1236701 Sep 2002 EP
1394137 Jul 2003 EP
1348831 Oct 2003 EP
2025732 Feb 2009 EP
1469954 Apr 1997 GB
2429725 Mar 2007 GB
2448099 Oct 2008 GB
52117316 Oct 1977 JP
10110487 Apr 1998 JP
2026959 Jan 1995 RU
2262497 Oct 2005 RU
1373781 Feb 1988 SU
WO 8301443 Apr 1983 WO
WO 9854108 Dec 1998 WO
WO 0063134 Jan 2000 WO
WO 03008756 Jan 2003 WO
03031364 Apr 2003 WO
WO 2004057715 Jul 2004 WO
WO 2004101951 Nov 2004 WO
WO2004101951 Nov 2004 WO
WO 2004101952 Nov 2004 WO
WO 2004109053 Dec 2004 WO
WO 2004109053 Dec 2004 WO
WO 2005047212 May 2005 WO
WO 2005061846 Jul 2005 WO
WO 2006032841 Mar 2006 WO
WO 2006053896 May 2006 WO
WO 2007028952 Mar 2007 WO
WO 2007048999 May 2007 WO
WO 2007128945 Nov 2007 WO
WO 2009015725 Feb 2009 WO
WO2009138747 Nov 2009 WO
Related Publications (1)
Number Date Country
20090312445 A1 Dec 2009 US
Divisions (1)
Number Date Country
Parent 12263800 Jan 2008 US
Child 12544915 US
Continuation in Parts (3)
Number Date Country
Parent 12283398 Sep 2008 US
Child 12263800 US
Parent 11223669 Sep 2005 US
Child 12283398 US
Parent 12152327 May 2008 US
Child 12263800 US