After a borehole is drilled, it is often useful to gain information about the quality and condition of certain areas of the wellbore. One way to obtain this information is through use of the borehole imaging system. The borehole imaging system provides an output signal, which is indicative of the nature of the borehole. The surface is illuminated with acoustic pulses and the acoustic pulse return signal is used in some fashion to obtain an indication of the surface of the surrounding borehole. This procedure is normally carried out in an open-hole condition where the well is filled with drilling fluid. The wall is intended to be at a controlled and specific distance from the transducer, which transmits and then receives the acoustic pulse. For optimum resolution, the acoustic energy is focused at some specific distance from the logging tool.
It is expected that focusing the acoustic energy will provide two advantages. First, the return signal from a focused acoustic pulse generally has a higher amplitude, which improves the signal-to-noise ratio of the measurement. Second, the focused pulse provides the measurements with increased distance sensitivity, which translates into an improved depth of field. Such sensitivity improves the system's response to surface roughness and other rugosity. Both of these anticipated advantages would contribute to improved detection of formation characteristics, boundaries between formation beds, and faults or other voids intersected by the borehole.
One way to focus the acoustic energy is to employ an annular ring transducer such as that described in U.S. Pat. No. 5,044,462 titled “Focused Planar Transducer” and filed Jul. 31, 1990 by inventor V. Maki. However, this and other existing annular ring transducer designs require deeply cut grooves for their operation. Previous fabrication methods cut grooves with a minimum depth of 80% of the piezoelectric material thickness to form annular rings at the surface. Such grooves can be difficult and expensive to cut, and may be expected to reduce yield and reliability.
A better understanding of the various disclosed system and method embodiments can be obtained when the following detailed description is considered in conjunction with the drawings, in which:
The issues identified in the background above can be addressed, at least in part, by devices and methods employing an improved focused acoustic transducer. In at least one embodiment, a focused acoustic transducer for use in a downhole environment includes a disk of piezoelectric material with low planar coupling and low Poisson's ratio mounted on a backing material and sealed inside an enclosure. The piezoelectric material disk has a pattern of electrodes deposited on an otherwise smooth, ungrooved surface. Despite the lack of grooves, the material's low planar coupling and low Poisson's ratio enables the electrodes to operate independently and provide focused acoustic pulses similar to those created by cut or deeply grooved transducers from the prior art. Moreover, the elimination of deep cuts offers a much lower cost of construction.
In at least some embodiments, the focused acoustic transducer is created by depositing a layer of silver or other conductive material on opposite surfaces of planar pieces of piezoelectric material. The conductive layer on one side provides a ground or reference electrode and the conductive layer on the other side can be patterned into annular rings or other desired shapes. This patterning can occur during the deposition process (e.g., using a silk-screen or other printing technique) or afterwards (e.g., with an etch technique that uses a pre- or post-deposition photoresist layer). The patterns may also be cut into the electrode material using mechanical processes. Wires or conductive lines are then provided to couple each electrode to phased transmit and receive electronics that provide for the creation of a focused acoustic wave.
In at least one system embodiment, the focused acoustic transducer is part of a borehole imaging system that further includes a logging tool with a processor coupled to a telemetry system. The processor is coupled to the planar focused transducer to generate an acoustic signal by driving the pattern of electrodes in a phased manner. In addition, the processor is further configured to receive an acoustic signal by combining signals from the pattern of electrodes in a phased way. Characteristics of the received acoustic signal are measured and communicated to the surface where they can be displayed as a log or image of the borehole wall.
Turning now to the figures,
Although the well borehole 26 has been represented as a relatively smooth surface, it can be irregular depending on the nature of the drilling process and the nature of the formations penetrated by the borehole 26.
The conductor 16 extends to the surface where it passes over a sheave 38. The sheave 38 directs the logging cable 16 to a drum 40 where it is spooled for storage. The conductors in the cable 16 are connected with surface located electronics 42. In at least some embodiments, the surface electronics 42 take the form of a digital controller or a general purpose digital processing system such as a computer, and they operate on the received signals to map the measured characteristics of the acoustic signals to the corresponding position and orientation of the transducer 20 in the borehole to form a log or image of the borehole wall. The output data is displayed on a display 44. The data is recorded electronically 48, simultaneously with depth and time. The time is obtained from a real time clock 52 with millisecond resolution. The depth may be provided by an electrical or mechanical depth measuring apparatus 46 which is connected with the sheave 38 and which also connects to the recorder 48. Alternatively, position and orientation sensors can be provided in the downhole tool. Such sensors can include accelerometers, gyroscopes, magnetometers, and inertial tracking systems.
The present apparatus further includes acoustic electronics 50 which are supported in the sonde 12 and coupled to transducer 20. Though the transducer in
An improved focused acoustic transducer 402 is illustrated in
The illustrative transducer is expected to withstanding harsh, downhole environment conditions. For example, the presented transducer may experience a normal operating pressure range of up to 20,000 to 30,000 psi gauge pressure, and may be expected to survive without permanent degradation following exposures to 30,000 psi gauge pressure. Further, the expected operating temperature range of the transducer may be a range of 150° to 200° C., and no permanent degradation is expected to result from storage or operation at temperatures between −40 to 185° C. Moreover, the transducer assembly is expected to withstand vibration levels of 15-25 G rms from 5 Hz to 500 Hz. In regards to shock, the transducer assembly may be expected to remain operable after shock levels up to 1000 G's. For some tool embodiments, the ceramic has a thickness of about 0.17 inches and a diameter of about 1.25 inches. The ceramic thickness to diameter ratio is about 0.12, though any value above 0.0625 may be regarded as acceptable.
When the transmit/receive switch is in the receive position, the receive signals pass through a delay line 88 having taps at different signal delays. (Alternatively, the signals can be digitized and the multi-tap delay line implemented digitally.) The range select logic 90 controls the tap selection and thereby controls the delays which determine the receiver focal distance. The appropriately-delayed signals from each of the electrodes are summed in the summing amplifier 98 to produce the focused signal output 102. A second output 104 is also made available which is the signal from only the center element, amplified by amplifier 100. The peak of the envelope of the signal 102 forms the amplitude signal. The time location of the onset of this signal is used to derive the travel time, indicating the range to the borehole wall. This forms the typical output signal provided to the surface through the telemetry so that the borehole imaging system presents an image of what is seen by the equipment in the borehole.
As another alternative, other polymers used in the construction of the transducer could be compatible with specific environmental conditions. Duralco 4460, Duralco 4700, Duralco 4538, Duralco 120, 124 or equivalent, high temp epoxy, rated to at least 185° C. can be used where appropriate. Procedures can be used to minimize the formation of voids in the epoxy and backing material. Epoxies should be fully degassed where appropriate (by stirring under vacuum) prior to their use.
As an alternative to lead metaniobate, an equivalent material with a low planar coupling and low Poisson's ratio and that can withstand very high temperatures while maintaining extremely stable piezoelectric activity can be used. For example, bismuth titanate is also suitable and may be preferred if the temperature requirements are much higher. Bizmuth titanate has a slightly higher planar coupling coefficient and Poisson's ratio, but can withstand very high temperatures while maintaining extremely stable piezoelectric activity. Other materials with high stability of dielectric constant and piezoelectric constant at various temperatures and pressures will be suitable for an equivalent.
These and other variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/021507 | 1/18/2011 | WO | 00 | 7/17/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/099573 | 7/26/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3086195 | Halliday | Apr 1963 | A |
3470457 | Howlett | Sep 1969 | A |
4012952 | Dory | Mar 1977 | A |
4241611 | Specht et al. | Dec 1980 | A |
4532615 | Ballinger | Jul 1985 | A |
4677367 | Goodman | Jun 1987 | A |
5044462 | Maki | Sep 1991 | A |
5122993 | Hikita et al. | Jun 1992 | A |
5142511 | Kanai et al. | Aug 1992 | A |
5359180 | Park et al. | Oct 1994 | A |
5570024 | Vail et al. | Oct 1996 | A |
5596534 | Manning | Jan 1997 | A |
5861771 | Matsuda et al. | Jan 1999 | A |
5992223 | Sabins et al. | Nov 1999 | A |
6268726 | Prammer et al. | Jul 2001 | B1 |
6353277 | Hahn-Jose | Mar 2002 | B1 |
6362619 | Prammer et al. | Mar 2002 | B2 |
6518756 | Morys et al. | Feb 2003 | B1 |
6583621 | Prammer et al. | Jun 2003 | B2 |
6636406 | Anthony | Oct 2003 | B1 |
6815930 | Goodman | Nov 2004 | B2 |
6825659 | Prammer et al. | Nov 2004 | B2 |
6930616 | Tang et al. | Aug 2005 | B2 |
6975112 | Morys et al. | Dec 2005 | B2 |
7154412 | Dodge et al. | Dec 2006 | B2 |
7463027 | Prammer et al. | Dec 2008 | B2 |
7696756 | Morys et al. | Apr 2010 | B2 |
7733086 | Prammer et al. | Jun 2010 | B2 |
20070103161 | San Martin et al. | May 2007 | A1 |
20090174288 | Theuerkauf | Jul 2009 | A1 |
20090309591 | Goodman et al. | Dec 2009 | A1 |
20130294203 | Goodman et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
899474 | Jun 1962 | GB |
2500359 | Sep 2013 | GB |
WO-2005059285 | Jun 2005 | WO |
WO-2007055790 | May 2007 | WO |
WO-2012099573 | Jul 2012 | WO |
Entry |
---|
Millman, Jacob “Microelectronics; Digital and Analog Circuits and Systems”, McGraw-Hill, Figures 16-8, 16-10(a), 16-11, 17-28, (1979),pp. 573-577 and 654. |
PCT International Search Report and Written Opinion, dated May 2, 2007, Appl No. PCT/US2006/034738, “Oil Based Mud Imaging Tool with Common Mode Voltage Compensation”, filed Sep. 7, 2006, 10 pgs. |
PCT International Search Report and Written Opinion, dated Jul. 11, 2008, Appl No. PCT/US2006/034959, “Displaced Electrode Amplifier”, filed Sep. 8, 2006, 5 pgs. |
PCT International Preliminary Report on Patentability, dated Mar. 26, 2009, Appl No. PCT/US2006/034959, “Displaced Electrode Amplifier”, filed Sep. 8, 2006, 2 pgs. |
PCT International Preliminary Report on Patentability, dated Jul. 17, 2008, Appl No. PCT/US2006/060774, “Displaced Electrode Amplifier”, filed Nov. 10, 2006, 2pgs. |
Brown, J. A., et al., “Design and Fabrication of Annular Arrays for High Frequency Ultrasound”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, No. 8, Aug. 2004., 8 pgs. |
Piezo Technologies, “Piezo Technologies Material Properties 2010”, 2010 PiezoTech, LLC, http:/www.PiezoTechnologies.com/pdf/keramos-material-specs.pdf, revised Sep. 2010., 1 pg. |
Morys, Marian et al., “Field Testing of an Advanced LWD Imager for Oil-Based Mud Applications”, SPWLA 51st Annual Logging Symposium, Jun. 19-23, 2010, pp. 1-13. |
Morys, Marian L., et al., Appl No. PCT/US2006/034738, Oil Based Mud Imaging Tool with Common Mode Voltage Compensation, filed Sep. 7, 2006, 24 pgs. |
PCT International Search Report and Written Opinion, dated Mar. 14, 2011, Appl No. PCT/US2011/021507, “An Improved Focused Acoustic Transducer”, filed Jan. 18, 2011, 9 pgs. |
PCT International Preliminary Report on Patentability, dated Feb. 26, 2013, Appl No. PCT/US2011/021507, “An Improved Focused Acoustic Transducer”, filed Jan. 18, 2011, 9 pgs. |
SG Written Opinion, dated Jul. 7, 2014, 2013053012, “An Improved Focused Acoustic Transducer,” Filed Jan. 18, 2011, 13 pgs. |
Number | Date | Country | |
---|---|---|---|
20130294203 A1 | Nov 2013 | US |