Social media applications implement computer-mediated technologies allowing for the creating and sharing of content that communicates information, ideas, career interests, and other forms of expression via virtual communities and networks. Social media platforms use web-based technologies, desktop computers, and mobile technologies (e.g., smart phones and tablet computers) to create highly interactive platforms through which individuals, communities, and organizations can share, co-create, discuss, and modify user-generated content or pre-made content posted online.
Mobile electronic devices on which end-user social media applications can be executed typically provide geolocation services that determine the geographic location of the mobile electronic device, by extension indicating the geographic location of the associated user.
In select
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
Some aspects of the disclosure are illustrated in the appended drawings. Note that the appended drawings illustrate example embodiments of the present disclosure and cannot be considered as limiting the scope of the disclosure.
The headings provided herein are merely for convenience and do not necessarily affect the scope or meaning of the terms used.
Embodiments described herein related to geographical map-based graphical user interfaces (GUIs). Some embodiments particularly describe a map GUI for a social media platform or application, to allow user access to map-based location information for other users in the system via the map-based GUI to ephemeral social media content. Various systems, methods, instructions, and user interface details are described for automatically presenting (e.g. automatically surfacing, display, populating, or auto-pop of information) information in such a map-based GUI.
For example, in some embodiments a social networking system is authorized by users and user selectable settings to track locations of user devices, and to share this information with other users. A map GUI with information on device locations can be presented to a user on a display of the user's client device. In such a system that displays simple icon's for device locations, a significant number of user interface actions can be needed to access basic information, such as a user's name and the time at which the displayed location was updated. However, reducing the number of interface actions by always including key information on the map GUI at all times results in unnecessary clutter.
Embodiments described herein improve the operation of a client device presenting a map-based GUI with an auto-pop feature that presents additional information about other user location data when a panning action in the GUI brings the relevant location within a defined area of the display (e.g. a box or circle in a display center), and by presenting the location data without the additional information when the location is outside the defined area of the display. As a user pans around a map using the map GUI, additional information is automatically presented as other users device locations enter the defined area, and the information is removed from the display while the user location is outside the defined area. A simple pan action in a map GUI displaying a location data for other user's devices can thus provide additional information via an automatic process that uses less GUI interactions, and therefore improves the operating efficiency of the device compared with previous systems that use selection actions to access such additional information. In one embodiment, actions via a GUI of tapping an icon of a target “friend” user to access additional information is replaced by panning interaction(s) to bring the icon within a defined (e.g. central area) of the GUI, with the information presented automatically via auto-pop operations in the GUI. In many instances, such a panning action to bring a target icon to a central GUI position occurs naturally in systems where a tapping selection is used, and so replacing the tapping action with the auto-pop eliminates an action, rather than simply replacing one action (e.g. a tap or other selection) with another action (e.g. the pan action).
As described in additional detail below, in some embodiments, such a map GUI includes representations of at least approximate respective positions of a user's friends or devices for connected accounts in a social network graph by means of friend icons or bitmojis. Such icons can be accessed by the social media application, with the social media application enabling the user to explore the world around the identified friend icons in a map by use of the GUI. Such friend icons can additionally be associated with messages and content from friend accounts. Thus, the map GUI. can in some embodiments enable the user to explore social media content (e.g., individual photos or video clips, or social media galleries such as stories comprising respective collections of photos, video clips, media, text chat, or other such content.)
The social media platform system 100 includes multiple client devices 102, each of which hosts a number of applications including a social media client application 104. Each social media client application 104 is communicatively coupled to other instances of the social media client application 104 and a social media application server system 108 via a network 106 (e.g., the Internet).
Accordingly, each social media client application 104 is able to communicate and exchange data with another social media client application 104 and with the social media application server system 108 via the network 106. The data exchanged between social media client applications 104, and between a social media client application 104 and the social media application server system 108, includes functions (e.g., commands to invoke functions) as well as payload data (e.g., text, audio, video, or other multimedia data).
The social media application server system 108 provides server-side functionality via the network 106 to a particular social media client application 104. While certain functions of the social media platform system 100 are described herein as being performed by either a social media client application 104 or by the social media application server system 108, it will be appreciated that the location of certain functionality either within the social media client application 104 or the social media application server system 108 is a design choice. For example, it may be technically expedient to initially deploy certain technology and functionality within the social media application server system 108, but to later migrate this technology and functionality to the social media client application 104 where a client device 102 has a sufficient processing capacity.
The social media application server system 108 supports various services and operations that are provided to the social media client application 104. Such operations include transmitting data to, receiving data from, and processing data generated by the social media client application 104. This data may include message content, client device information, geolocation information, media annotations and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the social media platform system 100 are invoked and controlled through functions available via user interfaces (Us) of the social media client application 104.
Turning now specifically to the social media application server system 108, an application programming interface (API) server 110 is coupled to and provides a programmatic interface to, an application server 112. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the application server 112.
Dealing specifically with the API server 110, this server receives and transmits message data (e.g., commands and message payloads) between the client device 102 and the application server 112. Specifically, the API server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the social media client application 104 in order to invoke functionality of the application server 112. The API server 110 exposes various functions supported by the application server 112, including account registration; login functionality; the sending of messages, via the application server 112, from a particular social media client application 104 to another social media client application 104; the sending of media files (e.g., images or video) from a social media client application 104 to a social media server application 114, for possible access by another social media client application 104; the setting of a collection of media data (e.g., a story or gallery); the retrieval of such collections; the retrieval of a list of friends of a user of a client device 102; the retrieval of messages and content; the adding and deletion of friends to and from a social graph; the location of friends within a social graph; opening an application event (e.g., relating to the social media client application 104); and so forth.
The application server 112 hosts a number of applications and subsystems, including the social media server application 114, an image processing system 116, and a social network system 122. The social media server application 114 implements a number of message processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content) included in messages received from multiple instances of the social media client application 104. As will be described in further detail, the text and media content from multiple sources may be aggregated into collections of content (e.g., called “stories” or “galleries”). These collections are then made available, by the social media server application 114, to the social media client application 104. Other processor- and memory-intensive processing of data may also be performed server-side by the social media server application 114, in view of the hardware requirements for such processing.
The application server 112 also includes the image processing system 116, which is dedicated to performing various image processing operations, typically with respect to images or video received within the payload of a message at the social media server application 114.
The social network system 122 supports various social networking functions and services, and makes these functions and services available to the social media server application 114. To this end, the social network system 122 maintains and accesses an entity graph 304 (described below with reference to
The ephemeral timer system 202 is responsible for enforcing the temporary access to content permitted by the social media client application 104 and the social media server application 114. To this end, the ephemeral timer system 202 incorporates a number of timers that, based on duration and display parameters associated with a message, or collection/gallery of, selectively display and enable access to messages and associated content via the social media client application 104. Further details regarding the operation of the ephemeral timer system 202 are provided below.
The collection management system 204 is responsible for managing collections of media (e.g., collections of text, image, video, and audio data). In some examples, a collection of content (e.g., messages, including images, video, text, and audio) may be organized into an “event gallery” or an “event story.” Such a collection may be made available for a specified time period, such as the duration of an event to which the content relates, or until expiry of a last message in the gallery. For example, content relating to a music concert may be made available as a “story” for the duration of that music concert, The collection management system 204 may also be responsible for publishing an icon that provides notification of the existence of a particular collection to the user interface of the social media client application 104. As will be described in greater detail with reference to the specific example embodiments that follow, the collection management system 204 may also be responsible for compiling and managing multiple location-based social media galleries based at least in part on geo-tag data of social media items or messages uploaded to the social media platform by multiple users. Other types of galleries that may be provided by the collection management system 204 include a “place story” that collects ephemeral messages having geotag data indicating a location within a predefined associated geographical area; and an ad-hoc story or spike story that is dynamically surfaced on a map GUI as described herein based on underlying location-based social media activity, e.g., based on geo-temporal volume or anomality/unusualness of social media items submitted by users for public consumption (e.g., for inclusion in a content collection).
The collection management system 204 furthermore includes a curation interface 208 that allows a human operator (e.g., a collection manager) to manage and curate a particular collection of content. For example, the curation interface 208 enables an event organizer to curate a collection of content relating to a specific event (e.g., to delete inappropriate content or redundant messages). Instead, or in addition, the collection management system 204 may employ machine vision (or image recognition technology), geotag data, and/or content rules to automatically compile and/or curate a content collection. In certain embodiments, compensation may be paid to a user for inclusion of user-generated content into a collection. In such cases, the curation interface 208 operates to automatically make payments to such users for the use of their content.
The annotation system 206 provides various functions that enable a user to annotate or otherwise augment, modify, or edit media content associated with a message. For example, the annotation system 206 provides functions related to the generation and publishing of media overlays for messages processed by the social media platform system 100. The annotation system 206 operatively supplies a media overlay to the social media client application 104 based on a geolocation of the client device 102. In another example, the annotation system 206 operatively supplies a media overlay to the social media client application 104 based on other information, such as social network information of the user of the client device 102. A media overlay may include audio and visual content and visual effects. Examples of audio and visual content include pictures, texts, logos, animations, and sound effects. An example of a visual effect includes color overlaying. The audio and visual content or the visual effects can be applied to a media content item (e.g., a photo) at the client device 102. For example, the media overlay includes text that can be overlaid on top of a photograph taken by the client device 102. In another example, the media overlay includes an identification of a location overlay (e.g., Venice Beach), a name of a live event, or a name of a merchant overlay (e.g., Beach Coffee House). In another example, the annotation system 206 uses the geolocation of the client device 102 to identify a media overlay that includes the name of a merchant at the geolocation of the client device 102. The media overlay may include other indicia associated with the merchant. The media overlays may be stored in the database 120 and accessed through the database server 118.
In one example embodiment, the annotation system 206 provides a user-based publication platform that enables users to select a geolocation on a map, and upload content associated with the selected geolocation. The user may also specify circumstances under which a particular media overlay should be offered to other users. The annotation system 206 generates a media overlay that includes the uploaded content and associates the uploaded content with the selected geolocation.
In another example embodiment, the annotation system 206 provides a merchant-based publication platform that enables merchants to select a particular media overlay associated with a geolocation via a bidding process. For example, the annotation system 206 associates the media overlay of a highest-bidding merchant with a corresponding geolocation for a predefined amount of time
The database 120 includes message data stored within a message table 314. An entity table 302 stores entity data, including an entity graph 304. Entities for which records are maintained within the entity table 302 may include individuals, corporate entities, organizations, objects, places, events, etc. Regardless of type, any entity regarding which the social media application server system 108 stores data may be a recognized entity. Each entity is provided with a unique identifier, as well as an entity type identifier (not shown).
The entity graph 304 furthermore stores information regarding relationships and associations between entities. Such relationships may be social, professional (e.g., work at a common corporation or organization), interested-based, or activity-based, merely for example.
The database 120 also stores annotation data, including in the example form of filters, in an annotation table 312. Filters for which data is stored within the annotation table 312 are associated with and applied to videos (for which data is stored in a video table 310) and/or images (for which data is stored in an image table 308). Filters, in one example, are overlays that are displayed as overlaid on an image or video during presentation to a recipient user. Filters may be of various types, including user-selected filters from a gallery of filters presented to a sending user by the social media client application 104 when the sending user is composing a message. Other types of filters include geolocation filters (also known as geo-filters), which may be presented to a sending user based on geographic location. For example, geolocation filters specific to a neighborhood or special location may be presented within a user interface by the social media client application 104, based on geolocation information determined by a Global Positioning System (GPS) unit of the client device 102. Another type of filter is a data filter, which may be selectively presented to a sending user by the social media client application 104, based on other inputs or information gathered by the client device 102 during the message creation process. Examples of data filters include a current temperature at a specific location, a current speed at which a sending user is traveling, a battery life for a client device 102, or the current time.
Yet further annotation data that may be stored within the annotation table 312 is user-generated annotations or augmentations provided by the user to overlay an underlying photographic image or video. Such augmentations/annotations can include, for example, text annotations and drawing annotations or augmentations provided by the user (e.g., via a client device touchscreen).
As mentioned above, the video table 310 stores video data which, in one embodiment, is associated with messages for which records are maintained within the message table 314. Similarly, the image table 308 stores image data associated with messages for which message data is stored in the message table 314. The entity table 302 may associate various annotations from the annotation table 312 with various images and videos stored in the image table 308 and the video table 310.
A story table 306 stores data regarding collections of messages and associated image, video, or audio data, which are compiled into a collection (e.g., a content story or a gallery). The creation of a particular collection may be initiated by a particular user (e.g., any user for whom a record is maintained in the entity table 302). A user may create a “personal story” in the form of a collection of content that has been created and sent/broadcast by that user. To this end, the user interface of the social media client application 104 may include an icon that is user selectable to enable a sending user to add specific content to his or her personal story. In the context of this description, such messages and stories/galleries are understood to be for private consumption, being limited for viewing via the social media application to particular users identified by the submitting user or to users who are members of a social network of the submitting user. This is to be contrasted with social media items provided for public or non-private consumption via the social media application, not being limited to a user-specific or user-specified subset of all users of the social media application.
As mentioned, a collection may also constitute a “Live Story,” which is a collection of content from multiple users that is created manually, automatically, or using a combination of manual and automatic techniques. For example, a “Live Story” may constitute a curated stream of user-submitted content from various locations and events. Users whose client devices have location services enabled and are at a common event location at a particular time may, for example, be presented with an option, via a user interface of the social media client application 104, to contribute content to a particular live story, The live story may be identified to the user by the social media client application 104, based on his or her location. The end result is a “live story” told from a community perspective. In accordance with some example embodiments of this disclosure, a submitting user can submit social media items or messages to a non-specific common live story. Such content is accessible to other users via a map-based graphical user interface, with such social media items or messages being accessible via the map GUI based on a respective location indicated by corresponding geo-tag data, either by forming part of a location-based gallery or story, or by such other users using location-based search mechanisms forming part of the map GUI.
A further type of content collection is known as a “location story.” which enables a user whose client device 102 is located within a specific geographic location (e.g., on a college or university campus) to contribute to a particular collection. In some embodiments, a contribution to a location story may require a second degree of authentication to verify that the end user belongs to a specific organization or other entity (e.g., is a student on the university campus). In some embodiments of this disclosure, a message uploaded to a content collection generally, without the user specifying a particular location story in which the message is to be included, can automatically or semi-automatically be included in a location story based at least in part on geo-tag data of the message.
A map tile table 320 stores multiple map tiles that can be used for presenting a map in a map viewport of a map-based GUI, according to some embodiments of this disclosure. In a particular example embodiment, each map view is composed of 9 or 16 map tiles stitched together. A plurality of sets of map tiles may be maintained for different map zoom levels. In some example embodiments, a superset of map tiles is maintained server-side, being forwarded to a requesting client device 102 for composing a map representation of specific requested areas.
A user location table 326 stores current or most recent user location data for multiple users of the social media application. The user location data may be based on location data received from respective client devices 102 associated with the respective users. Such user location data is in some example embodiments used to display in a map-based. GUI respective locations of a plurality of users who form part of the social network of the requesting user and/or who have provided permission for the requesting user to view their locations. Each such user may be represented on a map forming part of the map GUI by a respective user icon or bitmoji.
A message identifier 402: a unique identifier that identifies the message 400.
A message text payload 404: text, to be generated by a user via a user interface of the client device 102 and that is included in the message 400.
A message image payload 406: image data, captured by a camera component of a client device 102 or retrieved from memory of a client device 102, and that is included in the message 400.
A message video payload 408: video data, captured by a camera component or retrieved from a memory component of the client device 102 and that is included in the message 400.
A message audio payload 410: audio data, captured by a microphone or retrieved from the memory component of the client device 102, and that is included in the message 400.
A message annotation 412: annotation data (e.g., filters, stickers, or other enhancements) that represents annotations to be applied to the message image payload 406, message video payload 408, or message audio payload 410 of the message 400.
A display duration parameter 414: a parameter value indicating, in seconds, the amount of time for which content of the message (e.g., the message image payload 406, message video payload 408, and message audio payload 410) is to be presented or made accessible to a user via the social media client application 104. The display duration parameter 414 is also referred to herein as a “display duration timer.”
A message geolocation parameter 416: geolocation data or geo-tag data (e.g., latitudinal and longitudinal coordinates) associated with the content payload of the message 400. Multiple message geolocation parameter 416 values may be included in the payload, each of these parameter values being associated with respective content items included in the content (e.g., a specific image within the message image payload 406, ora specific video in the message video payload 408).
A message story identifier 418: identifier values identifying one or more content collections (e.g., “stories”) with which a particular content item in the message image payload 406 of the message 400 is associated. For example, multiple images within the message image payload 406 may each be associated with multiple content collections using identifier values. An example of such a message story identifier 418 can in some embodiments comprise one or more thumbnail images.
A message tag 420: each message 400 may be tagged with multiple tags, each of which is indicative of the subject matter of content included in the message payload. For example, where a particular image included in the message image payload 406 depicts an animal (e.g., a lion), a tag value may be included within the message tag 420 that is indicative of the relevant animal. Tag values may be generated manually, based on user input, or may be automatically generated using, for example, image recognition.
A message sender identifier 422: an identifier (e.g., a messaging system identifier, email address, or device identifier) indicative of a user of the client device 102 on which the message 400 was generated and from which the message 400 was sent.
A message receiver identifier 424: an identifier (e.g., a messaging system identifier, email address, or device identifier) indicative of a user of the client device 102 to which the message 400 is addressed.
The contents (e.g., values) of the various components of the message 400 may be pointers to locations in tables within which content data values are stored. For example, an image value in the message image payload 406 may be a pointer to (or address of) a location within an image table 308. Similarly, values within the message video payload 408 may point to data stored within a video table 310, values stored within the message annotation 412 may point to data stored in an annotation table 312, values stored within the message story identifier 418 may point to data stored in a story table 306, and values stored within the message sender identifier 422 and the message receiver identifier 424 may point to user records stored within an entity table 302.
The system 500 includes a map engine 508 to generate a map GUI, including the location-based social media information displayed in the map Thus, the map engine 508 is configured to generate or to facilitate generation of the map 618 in the map viewport 621 (e.g. an area of a display for map presentation) of the client device 102. To this end, the map engine 508 can be configured to surface and cause display of particular icons and to identify and cause display of respective icons such as friend bitmojis (e.g, friend bitmoji 640 or the friend bitmoji 720-728 of
As part of the operation of map engine 508, the icons can be adjusted during map presentation using auto-pop system 540. Such a system can be used to identify an area of a display or a sub-area of a map viewport which is designated as an area where additional information is presented on the map along with icons. This designated area can be a fixed area in a central part of a display or map viewport, or can be adjustable based on user inputs. In one embodiment, a designated auto-pop area of auto-pop system 540 is a rectangular area in a center of a device display. In other embodiments, a user can define an auto-pop area as a user selected geometric or freeform (e.g. drawn in a UI) area of a display or map viewport. Additionally, a user can define the information to be added as part of auto-pop operations for icons within the designated area. For example, map engine can have access to location information for friend devices associated with a user device via social media platform system 500. The map engine 508 can, in some embodiments, place friend icons on a map based on the location information. When a user pan input brings a particular friend icon within the designated auto-pop area of the display, a friend identifier and timing information can be added to the map display in addition to the icon. Such information can provide additional details on when the location data for a particular friend user was acquired by the system, and can confirm the friend identification (e.g. in cases where multiple friends may have similar icons). In other embodiments, auto-pop system 540 can additionally allow users to select the information to be added to a map when an icon is in the designated area. In addition to an identifier and the time associated with the location data (e.g. how many minutes it has been since the location data was collected), users can elect to have additional information provided, such as most recent communications with that friend account, details about group interactions with the friend account, links to other interfaces (e.g. chat, content collection, shared gallery photos, etc.) relevant to the friend account associated with the friend icon.
The system 500 also includes a content management system (CMS) 524. In this example embodiment, the CMS 524 provides an administration interface enabling operators to manage content, for example by defining various attributes of different place and/or event stories. The CMS 524 in this example embodiment can include the collection management system 204 of
The system 500 further includes a user location mechanism 537 configured to determine respective user locations, in this example embodiment indicated by the respective device locations, to determine for each user the particular friend users who are viewable via the map GUI, and to provide for display of associated user icons at corresponding display locations. The user location mechanism 537 in some embodiments comprises, as part of the server system 108, a user location datastore and an per-user access control list (AU) that lists the particular friend users viewable by each user. In some embodiments, the per-user ACL specifies respective viewing level granularity for each viewable user. The user location mechanism 537 in such example embodiments is additionally configured to determine and manage respective user display granularity. This includes calculating non-precise display locations for some users, and causing display of a corresponding user icons at the non-precise display locations.
As mentioned, the map GUI 612 includes a number of different user-selectable icons or UI elements that indicate different geographically based content or information. In this example embodiment, the map GUI 612 includes a plurality of different gallery icons, also referred to in this description as “story icons.” Each story icon corresponds in location on the map 618 to a respective location-based social media gallery or collection.
In the example embodiment of
In this example embodiment, the social media items that are selectively playable by selection of the corresponding story icons 631, 633 in the map GUI 612. are ephemeral social media items or messages. As described previously, ephemeral content is social media content (e.g., augmented and/or unaugmented video clips, pictures, and/or other messages) that is available for viewing by social media users via the map GUI 612 for only a predetermined limited period, also referred to herein as a respective gallery participation parameter or timer. After expiry of a respective gallery participation parameter or timer for any ephemeral message or content uploaded by a particular user, that ephemeral message or content is no longer available for viewing by other users via the map GUI 612 generated on their respective client devices 102.
As mentioned previously, the map GUI includes a graphical representation of associated locations of the user associated with the client device 102 and/or other users (e.g. friend devices or devices for associated accounts visible through location data of a social media platform), each user being represented by a respective user icon or friend icon (for users who are members of an in-application social graph associated with the viewing user), in the illustrated embodiments being in the form of respective bitmojis 640. In this example embodiment, a user of the social media platform will not be sharing their location if they have never interacted with the map GUT 612. The first time the user interacts with the map GUI 612, the user is taken through an on-boarding flow which allows for the setting of individual location sharing preferences.
As mentioned, a user can also select different groups of other users to via the location sharing preferences interface as friend accounts for location sharing. In some embodiments the user can specify different display attributes for the different respective groups or for different respective individuals, as well as selecting an icon (e.g. bitmoji) to represent the user in maps of friend accounts.
If all friend accounts are selected for location sharing, all new people added to the user's friends list will automatically be able to see their location, consistent with the granularity level selected by the user in system settings.
When viewing the map GUI, the user will thus be able to see the locations of all his/her friends that have shared their location with him/her on the map 618. As discussed, each user is in this example embodiment represented by a bitmoji 640. If the friend does not have a bitmoji 640, a profile picture within a generic UI element is shown. If no profile pictures available for a particular friend, a default icon (e.g., a blank profile) is displayed at the corresponding location.
In use, the map GUI 612 thus surfaces different types of location-based stories, which the user can view from the map 618. In the example embodiment of
In this example embodiment, the map 618 is not selectively rotatable by the user, having a fixed default orientation relative to the touchscreen 606. In other embodiments, the map 618 may have a fixed orientation relative to the Earth. In some embodiments, the map 618 is selectively rotatable, e.g., with all map content rotating around a fixed anchor.
As discussed at length above, in any particular map viewport 621, the displayed information can include:
In some embodiments, no spike icons 633 are shown at some levels of magnification. In a particular example embodiment, no spike icons 633 are shown at the original zoom level at which the map GUI 612 loads by default. In such an example, only the map 625, friend bitmojis 640, and a number of place icons 631 are displayed on the map 618 at the original zoom level. As the user zooms in, spike icons 633 are surfaced, representing respective clusters of activity.
It will be appreciated that different icons 631, 633 are surfaced at different zoom levels. In this example embodiment, the map GUI 612 displays no more than a predefined maximum number of place icons 631 and no more than a predefined maximum number of spike icons 633 in any particular view. For example, at any zoom level, the top three place stories (ranked by associated message or content volume) are surfaced by displaying respective place icons 631 in the map viewport 621. likewise, at any zoom level, the top three spike content collections (ranked by anomality or unusualness metric value) are surfaced by displaying respective spike icons 633 in the map viewport 621. In other embodiments, any other such surfacing mechanisms can be used for placing icons and associated information in a map GUI.
It will be appreciated that the map GUI 612 is dynamic, in that the information displayed therein changes dynamically with time. New information can be triggered or periodically provided to a system and distributed to client applications 104, The underlying social media items upon which surfacing of the icons 631, 633 and generation of the map 625 is based can further continually change due to the expiration of the availability data associated with the icons.
Viewport. 700 can be an entire area of a display device of a client device 102. in some embodiments. In other embodiments, viewport 700 is an area of a display designated for map GUI presentation, with other areas designated for other purposes.
In
As mentioned above, such auto-pop operations can improve the operation of a device by reducing the number of interface actions to access information. When a user of a client device 102. and an application 104 is browsing a map to check information for friend accounts, a GUI which requires selection of icons for the friend accounts is slower and requires more user interface actions to access this information. The embodiments described above use a simpler and more efficient pan action with auto-pop presentation of the additional information when map navigation brings a location with the predefined auto-pop area. In some embodiments, the pan input is an action to slide a user finger across a surface of a touchscreen display, as described in
In some embodiments, collisions can occur between images and icons associated with different friend accounts displayed in a map GUI. Various embodiments can address such collisions, where images overlap, in different ways. In one embodiment, the images can be allowed to overlap. Priority (e.g. top) placement can be determined by a proximity to a viewport center, a friend account ranking based on recent communications or frequency of communications with the friend accounts whose images are colliding in the map GUI, or other such prioritization mechanisms. In embodiments where significant amounts of information are presented as the additional auto-pop information, such information can be abbreviated or truncated in the case of a collision. In some embodiments, icons and images can be aggregated to form a joint image or joint icon.
Additionally, icons (e.g. bitmojis) can also be arranged in joint icon 920 according to various priorities. For example, the priority criterion for arranging the order of bitmojis 640 in the joint icon 920 can include a number of other attributes. In one example embodiment, cluster order may be determined based on recency of accessing or looking into the map GUI, so that a player who accesses the social media platform more recently than another player would be displayed above that other player in the bitmoji cluster icon 920. In yet further example embodiments, bitmoji cluster order may be determined based on recency of location update, so that the user with the most recently updated location will be displayed on top, with the display order descending by a recency of location update. It will be appreciated that, in such an example embodiment, timestamps on the corresponding user cards are last seen timestamps, indicating time expired since last location update by the corresponding user.
The system may provide for certain exceptions to the arrangement of the bitmojis 640 in the cluster icon 920 according to the relevant applied priority criterion. In this example, a bitmojis 640 upon which the user focuses is automatically displayed on top of the cluster icon 920. Such focusing on a particular bitmojis 640 can be by way of selecting a particular one of the bitmojis 640 in the cluster icon 920. Thus, for example, a user may wish to access content or view information about a certain user represented in the cluster icon 920, and in order to do so may click on the partially obscured bitmoji 640 of that user. Responsive to such specific selection, the selected bitmoji 640 is brought to the top of the cluster icon 920. Note that such selection of a specific bitmoji 640 in the cluster icon 920 is in this example embodiment possible only subsequent to selection of the cluster globally, as described below.
Another instance in which the default bitmoji priority in the cluster icon 920 is overridden is when the cluster icon 920 is displayed responsive to a user-initiated search for a target user within the duster icon 920. Thus, when the user interacting with the map GUI 612 searches for a user that is currently in a cluster icon 920, and thereafter clicks on a result cell to navigate to the target user, the map focus switches to the relevant cluster icon 920 and the searched-for user is brought to the top of the cluster icon 920.
The description herein includes systems, methods, devices, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the provided description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the disclosed subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.
These systems, system components, methods, applications, and so forth described in conjunction with the above embodiments can be implemented in the context of a machine and an associated software architecture. The sections below describe representative software architecture(s) and machine (e.g., hardware) architecture(s) that are suitable for use with the disclosed embodiments.
Software architectures are used in conjunction with hardware architectures to create devices and machines configured for particular purposes. For example, a particular hardware architecture coupled with a particular software architecture will create a mobile device, such as a mobile phone, tablet device, or so forth. A slightly different hardware and software architecture may yield a smart device for use in the “internet of things,” while yet another combination produces a server computer for use within a cloud computing architecture. The software and hardware architectures presented here are example architectures for implementing the disclosure, and are not exhaustive as to possible architectures that can be employed for implementing the disclosure.
In the example architecture of
The operating system 2002 may manage hardware resources and provide common services. The operating system 2002 may include, for example, a kernel 2022, services 2024, and drivers 2026. The kernel 2022 may act as an abstraction layer between the hardware and the other software layers. For example, the kernel 2022 may be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and so on. The services 2024 may provide other common services for the other software layers. The drivers 2026 are responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 2026 include display drivers, camera drivers, Bluetooth® drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), Wi-Fi® drivers, audio drivers, power management drivers, and so forth depending on the hardware configuration.
The libraries 2020 provide a common infrastructure that is used by the applications 2016 and/or other components and/or layers. The libraries 2020 provide functionality that allows other software components to perform tasks in an easier fashion than by interfacing directly with the underlying operating system 2002 functionality (e.g., kernel 2022, services 2024, and/or drivers 2026). The libraries 2020 may include system libraries 2044 (e.g., C standard library) that may provide functions such as memory allocation functions, string manipulation functions, mathematical functions, and the like. In addition, the libraries 2020 may include API libraries 2046 such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as MPEG4, H.264, MP3, AAC, AMR, SPG, PNG), graphics libraries (e.g., an OpenGL framework that may be used to render 2D and 3D graphic content on a display), database libraries (e.g., SQLite that may provide various relational database functions), web libraries (e.g., WebKit that may provide web browsing functionality), and the like. The libraries 2020 may also include a wide variety of other libraries 2048 to provide many other APIs to the applications 2016 and other software components/modules.
The frameworks/middleware 2018 provides a higher-level common infrastructure that may be used by the applications 2016 and/or other software components/modules. For example, the frameworks/middleware 2018 may provide various graphic user interface (GUI) functions, high-level resource management, high-level location services, and so forth. The frameworks/middleware 2018 may provide a broad spectrum of other APIs that may be utilized by the applications 2016 and/or other software components/modules, some of which may be specific to a particular operating system 2002 or platform.
The applications 2016 include built-in applications 2038 and/or third-party applications 2040. Examples of representative built-in applications 2038 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, and/or a game application. The third-party applications 2040 may include an application developed using the ANDROID™ or IOS™ software development kit (SDK) by an entity other than the vendor of the particular platform, and may be mobile software running on a mobile operating system such as IOS™, ANDROID™, WINDOWS® Phone, or other mobile operating systems. The third-party applications 2040 may invoke the API calls 2008 provided by the mobile operating system (such as the operating system 2002) to facilitate functionality described herein,
The applications 2016 may use built-in operating system 2002 functions (e.g., kernel 2022, services 2024, and/or drivers 2026), libraries 2020, and frameworks/middleware 2018 to create user interfaces to interact with users of the system. Alternatively, or additionally, in some systems interactions with a user may occur through a presentation layer, such as the presentation layer 2014. In these systems, the application/component “logic” can be separated from the aspects of the application/component that interact with a user.
The machine 2100 may include processors 2104, memory/storage 2106, and I/O components 2118, which may be configured to communicate with each other such as via a bus 2102. The memory/storage 2106 may include a memory 2114, such as a main memory, or other memory storage, and a storage unit 2116, both accessible to the processors 2104 such as via the bus 2102. The storage unit 2116 and memory 2114 store the instructions 2110 embodying any one or more of the methodologies or functions described herein. The instructions 2110 may also reside, completely or partially, within the memory 2114, within the storage unit 2116, within at least one of the processors 2104 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 2100. Accordingly, the memory 2114, the storage unit 2116, and the memory of the processors 2104 are examples of machine-readable media. In some embodiments, the processors 2104 comprise a number of distributed processors 2108-2112, each of which have access to associated memories storing instructions 2110.
The I/O components 2118 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 2118 that are included in a particular machine 2100 will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 2118 may include many other components that are not shown in
In further example embodiments, the I/O components 2118 may include biometric components 2130, motion components 2134, environment components 2136, or position components 2138 among a wide array of other components. For example, the biometric components 2130 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram-based identification), and the like. The motion components 2134 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environment components 2136 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas sensors to detect concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 2138 may include location sensor components (e.g., a Global Positioning System (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.
Communication may be implemented using a wide variety of technologies. The I/O components 2118 may include communication components 2140 operable to couple the machine 2100 to a network 2132 or devices 2120 via a coupling 2124 and a coupling 2122 respectively, For example, the communication components 2140 may include a network interface component or other suitable device to interface with the network 2132. In further examples, the communication components 2140 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 2120 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a Universal Serial Bus (USB)).
Moreover, the communication components 2140 may detect identifiers or include components operable to detect identifiers. For example, the communication components 2140 may include Radio Frequency Identification (REID) tag reader components, NEC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 2140, such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.
“CARRIER SIGNAL” in this context refers to any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible media to facilitate communication of such instructions. Instructions may be transmitted or received over the network using a transmission medium via a network interface device and using any one of a number of well-known transfer protocols.
“CLIENT DEVICE” in this context refers to any machine that interfaces to a communications network to obtain resources from one or more server systems or other client devices. A client device may be, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistant (PDA), smart phone, tablet, ultra-book, netbook, laptop, multi-processor system, microprocessor-based or programmable consumer electronic system, game console, set-top box, or any other communication device that a user may use to access a network.
“COMMUNICATIONS NETWORK” in this context refers to one or more portions of a network that may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, a network or a portion of a network may include a wireless or cellular network, and the coupling may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or another type of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High-Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long-Term Evolution (LTE) standard, others defined by various standard-setting organizations, other long-range protocols, or other data-transfer technology.
“EMPHEMERAL MESSAGE” in this context refers to a message that is accessible for a time-limited duration. An ephemeral message may be a text, an image, a video and the like. The access time for the ephemeral message may be set by the message sender. Alternatively, the access time may be a default setting or a setting specified by the recipient. Regardless of the setting technique, the message is transitory. Ephemeral messages are not limited to communications having specified individual recipients, but include social media items uploaded to a gallery or a collection for viewing by multiple users. Thus, the term ephemeral message includes a photo or video clip (which may be augmented or unaugmented) made available for a time-limited duration for viewing public or by a
“MACHINE-READABLE MEDIUM” in this context refers to a component, a device, or other tangible media able to store instructions and data temporarily or permanently and may include, but is not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EPROM)), and/or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store instructions. The term “machine-readable medium” shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., code) for execution by a machine, such that the instructions, when executed by one or more processors of the machine, cause the machine to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” refers to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes signals per se.
“COMPONENT” in this context refers to a device, a physical entity, or logic having boundaries defined by function or subroutine calls, branch points, application programming interfaces (APIs), or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hardware unit designed for use with other components and a part of a program that usually performs a particular function of related functions. Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components. A “hardware component” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware components of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform certain operations as described herein. A hardware component may also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware component may include dedicated circuitry or logic that is permanently configured to perform certain operations, A hardware component may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application-Specific Integrated Circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware component may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations. Accordingly, the phrase “hardware component” (or “hardware-implemented component”) should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein, Considering embodiments in which hardware components are temporarily configured (e.g., programmed), each of the hardware components need not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware components') at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time. Hardware components can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. in embodiments in which multiple hardware components are configured or instantiated at different times, communications between such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access. For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information). The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented component” refers to a hardware component implemented using one or more processors. Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented components. Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an application programming interface (API)). The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processors or processor-implemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented components may be distributed across a number of geographic locations.
“PROCESSOR” in this context refers to any circuit or virtual circuit (a physical circuit emulated by logic executing on an actual processor) that manipulates data values according to control signals (e.g., “commands,” “op codes,” “machine code,” etc.) and which produces corresponding output signals that are applied to operate a machine. A processor may, for example, be a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application-Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC), or any combination thereof. A processor may further be a multi-core processor having two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously.
“TIMESTAMP” in this context refers to a sequence of characters or encoded information identifying when a certain event occurred, for example giving date and time of day, sometimes accurate to a small fraction of a second.
Language
Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated, unless that the context and/or logic clearly indicates otherwise. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
Although an overview of the disclosed subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure.
The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application claims the benefit of priority to U.S. Patent Application Ser. No. 62/928,874, filed on Oct. 31, 2019, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
666223 | Shedlock | Jan 1901 | A |
4581634 | Williams | Apr 1986 | A |
4975690 | Torres | Dec 1990 | A |
5072412 | Henderson, Jr. et al. | Dec 1991 | A |
5493692 | Theimer et al. | Feb 1996 | A |
5713073 | Warsta | Jan 1998 | A |
5754939 | Herz et al. | May 1998 | A |
5855008 | Goldhaber et al. | Dec 1998 | A |
5880731 | Liles et al. | Mar 1999 | A |
5883639 | Walton et al. | Mar 1999 | A |
5999932 | Paul | Dec 1999 | A |
6012098 | Bayeh et al. | Jan 2000 | A |
6014090 | Rosen et al. | Jan 2000 | A |
6023270 | Brush, II et al. | Feb 2000 | A |
6029141 | Bezos et al. | Feb 2000 | A |
6038295 | Mattes | Mar 2000 | A |
6049711 | Yehezkel et al. | Apr 2000 | A |
6154764 | Nitta et al. | Nov 2000 | A |
6167435 | Druckenmiller et al. | Dec 2000 | A |
6204840 | Petelycky et al. | Mar 2001 | B1 |
6205432 | Gabbard et al. | Mar 2001 | B1 |
6216141 | Straub et al. | Apr 2001 | B1 |
6223165 | Lauffer | Apr 2001 | B1 |
6285381 | Sawano et al. | Sep 2001 | B1 |
6285987 | Roth et al. | Sep 2001 | B1 |
6310694 | Okimoto et al. | Oct 2001 | B1 |
6317789 | Rakavy et al. | Nov 2001 | B1 |
6334149 | Davis, Jr. et al. | Dec 2001 | B1 |
6349203 | Asaoka et al. | Feb 2002 | B1 |
6353170 | Eyzaguirre et al. | Mar 2002 | B1 |
6446004 | Cao et al. | Sep 2002 | B1 |
6449657 | Stanbach et al. | Sep 2002 | B2 |
6456852 | Bar et al. | Sep 2002 | B2 |
6484196 | Maurille | Nov 2002 | B1 |
6487601 | Hubacher et al. | Nov 2002 | B1 |
6523008 | Avrunin | Feb 2003 | B1 |
6542749 | Tanaka et al. | Apr 2003 | B2 |
6549768 | Fraccaroli | Apr 2003 | B1 |
6618593 | Drutman et al. | Sep 2003 | B1 |
6622174 | Ukita et al. | Sep 2003 | B1 |
6631463 | Floyd et al. | Oct 2003 | B1 |
6636247 | Hamzy et al. | Oct 2003 | B1 |
6636855 | Holloway et al. | Oct 2003 | B2 |
6643684 | Malkin et al. | Nov 2003 | B1 |
6658095 | Yoakum et al. | Dec 2003 | B1 |
6665531 | Soderbacka et al. | Dec 2003 | B1 |
6668173 | Greene | Dec 2003 | B2 |
6684238 | Dutta | Jan 2004 | B1 |
6684257 | Camut et al. | Jan 2004 | B1 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6700506 | Winkler | Mar 2004 | B1 |
6720860 | Narayanaswami | Apr 2004 | B1 |
6724403 | Santoro et al. | Apr 2004 | B1 |
6757713 | Ogilvie et al. | Jun 2004 | B1 |
6772195 | Hatlelid et al. | Aug 2004 | B1 |
6832222 | Zimowski | Dec 2004 | B1 |
6834195 | Brandenberg et al. | Dec 2004 | B2 |
6836792 | Chen | Dec 2004 | B1 |
6842779 | Nishizawa | Jan 2005 | B1 |
6898626 | Ohashi | May 2005 | B2 |
6959324 | Kubik et al. | Oct 2005 | B1 |
6970088 | Kovach | Nov 2005 | B2 |
6970907 | Ullmann et al. | Nov 2005 | B1 |
6980909 | Root et al. | Dec 2005 | B2 |
6981040 | Konig et al. | Dec 2005 | B1 |
7020494 | Spriestersbach et al. | Mar 2006 | B2 |
7027124 | Foote et al. | Apr 2006 | B2 |
7072963 | Anderson et al. | Jul 2006 | B2 |
7085571 | Kalhan et al. | Aug 2006 | B2 |
7110744 | Freeny, Jr. | Sep 2006 | B2 |
7124164 | Chemtob | Oct 2006 | B1 |
7149893 | Leonard et al. | Dec 2006 | B1 |
7173651 | Knowles | Feb 2007 | B1 |
7188143 | Szeto | Mar 2007 | B2 |
7203380 | Chiu et al. | Apr 2007 | B2 |
7206568 | Sudit | Apr 2007 | B2 |
7227937 | Yoakum et al. | Jun 2007 | B1 |
7237002 | Estrada et al. | Jun 2007 | B1 |
7240089 | Boudreau | Jul 2007 | B2 |
7269426 | Kokkonen et al. | Sep 2007 | B2 |
7280658 | Amini et al. | Oct 2007 | B2 |
7315823 | Brondrup | Jan 2008 | B2 |
7342587 | Danzig et al. | Mar 2008 | B2 |
7349768 | Bruce et al. | Mar 2008 | B2 |
7356564 | Hartselle et al. | Apr 2008 | B2 |
7394345 | Ehlinger et al. | Jul 2008 | B1 |
7411493 | Smith | Aug 2008 | B2 |
7423580 | Markhovsky et al. | Sep 2008 | B2 |
7454442 | Cobleigh et al. | Nov 2008 | B2 |
7468729 | Levinson | Dec 2008 | B1 |
7508419 | Toyama et al. | Mar 2009 | B2 |
7519670 | Hagale et al. | Apr 2009 | B2 |
7535890 | Rojas | May 2009 | B2 |
7546554 | Chiu et al. | Jun 2009 | B2 |
7607096 | Oreizy et al. | Oct 2009 | B2 |
7636755 | Blattner et al. | Dec 2009 | B2 |
7639251 | Gu et al. | Dec 2009 | B2 |
7639943 | Kalajan | Dec 2009 | B1 |
7650231 | Gadler | Jan 2010 | B2 |
7668537 | DeVries | Feb 2010 | B2 |
7770137 | Forbes et al. | Aug 2010 | B2 |
7775885 | Van et al. | Aug 2010 | B2 |
7778973 | Choi | Aug 2010 | B2 |
7779444 | Glad | Aug 2010 | B2 |
7787886 | Markhovsky et al. | Aug 2010 | B2 |
7796946 | Eisenbach | Sep 2010 | B2 |
7801954 | Cadiz et al. | Sep 2010 | B2 |
7856360 | Kramer et al. | Dec 2010 | B2 |
7859551 | Bulman et al. | Dec 2010 | B2 |
7885931 | Seo et al. | Feb 2011 | B2 |
7925703 | Dinan et al. | Apr 2011 | B2 |
8001204 | Burtner et al. | Aug 2011 | B2 |
8032586 | Challenger et al. | Oct 2011 | B2 |
8082255 | Carlson, Jr. et al. | Dec 2011 | B1 |
8088044 | Tchao et al. | Jan 2012 | B2 |
8090351 | Klein | Jan 2012 | B2 |
8095878 | Bates et al. | Jan 2012 | B2 |
8098904 | Ioffe et al. | Jan 2012 | B2 |
8099109 | Altman et al. | Jan 2012 | B2 |
8108774 | Finn et al. | Jan 2012 | B2 |
8112716 | Kobayashi | Feb 2012 | B2 |
8117281 | Robinson et al. | Feb 2012 | B2 |
8130219 | Fleury et al. | Mar 2012 | B2 |
8131597 | Hudetz | Mar 2012 | B2 |
8135166 | Rhoads et al. | Mar 2012 | B2 |
8136028 | Loeb et al. | Mar 2012 | B1 |
8146001 | Reese | Mar 2012 | B1 |
8146005 | Jones et al. | Mar 2012 | B2 |
8151191 | Nicol | Apr 2012 | B2 |
8161115 | Yamamoto | Apr 2012 | B2 |
8161417 | Lee | Apr 2012 | B1 |
8195203 | Tseng | Jun 2012 | B1 |
8199747 | Rojas et al. | Jun 2012 | B2 |
8208943 | Petersen | Jun 2012 | B2 |
8214443 | Hamburg | Jul 2012 | B2 |
8234350 | Gu et al. | Jul 2012 | B1 |
8276092 | Narayanan et al. | Sep 2012 | B1 |
8279319 | Date | Oct 2012 | B2 |
8280406 | Ziskind et al. | Oct 2012 | B2 |
8285199 | Hsu et al. | Oct 2012 | B2 |
8287380 | Nguyen et al. | Oct 2012 | B2 |
8301159 | Hamynen et al. | Oct 2012 | B2 |
8306922 | Kunal et al. | Nov 2012 | B1 |
8312086 | Velusamy et al. | Nov 2012 | B2 |
8312097 | Siegel et al. | Nov 2012 | B1 |
8326315 | Phillips et al. | Dec 2012 | B2 |
8326327 | Hymel et al. | Dec 2012 | B2 |
8332475 | Rosen et al. | Dec 2012 | B2 |
8352546 | Dollard | Jan 2013 | B1 |
8379130 | Forutanpour et al. | Feb 2013 | B2 |
8384719 | Reville et al. | Feb 2013 | B2 |
8385950 | Wagner et al. | Feb 2013 | B1 |
RE44054 | Kim | Mar 2013 | E |
8396708 | Park et al. | Mar 2013 | B2 |
8402097 | Szeto | Mar 2013 | B2 |
8405773 | Hayashi et al. | Mar 2013 | B2 |
8418067 | Cheng et al. | Apr 2013 | B2 |
8423409 | Rao | Apr 2013 | B2 |
8425322 | Gillo et al. | Apr 2013 | B2 |
8458601 | Castelli et al. | Jun 2013 | B2 |
8462198 | Lin et al. | Jun 2013 | B2 |
8471914 | Sakiyama et al. | Jun 2013 | B2 |
8472935 | Fujisaki | Jun 2013 | B1 |
8484158 | Deluca et al. | Jul 2013 | B2 |
8495503 | Brown et al. | Jul 2013 | B2 |
8495505 | Smith et al. | Jul 2013 | B2 |
8504926 | Wolf | Aug 2013 | B2 |
8510383 | Hurley et al. | Aug 2013 | B2 |
8527345 | Rothschild et al. | Sep 2013 | B2 |
8554627 | Svendsen et al. | Oct 2013 | B2 |
8559980 | Pujol | Oct 2013 | B2 |
8560612 | Kilmer et al. | Oct 2013 | B2 |
8564621 | Branson et al. | Oct 2013 | B2 |
8564710 | Nonaka et al. | Oct 2013 | B2 |
8581911 | Becker et al. | Nov 2013 | B2 |
8594680 | Ledlie et al. | Nov 2013 | B2 |
8597121 | del Valle | Dec 2013 | B2 |
8601051 | Wang | Dec 2013 | B2 |
8601379 | Marks et al. | Dec 2013 | B2 |
8613089 | Holloway | Dec 2013 | B1 |
8632408 | Gillo et al. | Jan 2014 | B2 |
8648865 | Dawson et al. | Feb 2014 | B2 |
8659548 | Hildreth | Feb 2014 | B2 |
8660358 | Bergboer et al. | Feb 2014 | B1 |
8660369 | Llano et al. | Feb 2014 | B2 |
8660793 | Ngo et al. | Feb 2014 | B2 |
8682350 | Altman et al. | Mar 2014 | B2 |
8683354 | Khandelwai et al. | Mar 2014 | B2 |
8692830 | Nelson et al. | Apr 2014 | B2 |
8718333 | Wolf et al. | May 2014 | B2 |
8724622 | Rojas | May 2014 | B2 |
8732168 | Johnson | May 2014 | B2 |
8744523 | Fan et al. | Jun 2014 | B2 |
8745132 | Obradovich | Jun 2014 | B2 |
8761800 | Kuwahara | Jun 2014 | B2 |
8768876 | Shim et al. | Jul 2014 | B2 |
8775972 | Spiegel | Jul 2014 | B2 |
8788680 | Naik | Jul 2014 | B1 |
8790187 | Walker et al. | Jul 2014 | B2 |
8797415 | Arnold | Aug 2014 | B2 |
8798646 | Wang et al. | Aug 2014 | B1 |
8810513 | Ptucha et al. | Aug 2014 | B2 |
8812171 | Filev et al. | Aug 2014 | B2 |
8832201 | Wall | Sep 2014 | B2 |
8832552 | Arrasvuori et al. | Sep 2014 | B2 |
8839327 | Amento et al. | Sep 2014 | B2 |
8856349 | Jain et al. | Oct 2014 | B2 |
8874677 | Rosen et al. | Oct 2014 | B2 |
8886227 | Schmidt et al. | Nov 2014 | B2 |
8890926 | Tandon et al. | Nov 2014 | B2 |
8892999 | Nims et al. | Nov 2014 | B2 |
8909679 | Root et al. | Dec 2014 | B2 |
8909725 | Sehn | Dec 2014 | B1 |
8924250 | Bates et al. | Dec 2014 | B2 |
8963926 | Brown et al. | Feb 2015 | B2 |
8972357 | Shim et al. | Mar 2015 | B2 |
8989786 | Feghali | Mar 2015 | B2 |
8995433 | Rojas | Mar 2015 | B2 |
9015285 | Ebsen et al. | Apr 2015 | B1 |
9020745 | Johnston et al. | Apr 2015 | B2 |
9040574 | Wang et al. | May 2015 | B2 |
9055416 | Rosen et al. | Jun 2015 | B2 |
9086776 | Ye et al. | Jul 2015 | B2 |
9094137 | Sehn et al. | Jul 2015 | B1 |
9100806 | Rosen et al. | Aug 2015 | B2 |
9100807 | Rosen et al. | Aug 2015 | B2 |
9105014 | Collet et al. | Aug 2015 | B2 |
9113301 | Spiegel et al. | Aug 2015 | B1 |
9119027 | Sharon et al. | Aug 2015 | B2 |
9123074 | Jacobs et al. | Sep 2015 | B2 |
9143382 | Bhogal et al. | Sep 2015 | B2 |
9143681 | Ebsen et al. | Sep 2015 | B1 |
9152477 | Campbell et al. | Oct 2015 | B1 |
9191776 | Root et al. | Nov 2015 | B2 |
9204252 | Root | Dec 2015 | B2 |
9225897 | Sehn et al. | Dec 2015 | B1 |
9241184 | Weerasinghe | Jan 2016 | B2 |
9256860 | Herger et al. | Feb 2016 | B2 |
9258459 | Hartley | Feb 2016 | B2 |
9298257 | Hwang et al. | Mar 2016 | B2 |
9314692 | Konoplev et al. | Apr 2016 | B2 |
9330483 | Du et al. | May 2016 | B2 |
9344606 | Hartley et al. | May 2016 | B2 |
9357174 | Li et al. | May 2016 | B2 |
9361510 | Yao et al. | Jun 2016 | B2 |
9378576 | Bouaziz et al. | Jun 2016 | B2 |
9385983 | Sehn | Jul 2016 | B1 |
9396354 | Murphy et al. | Jul 2016 | B1 |
9402057 | Kaytaz et al. | Jul 2016 | B2 |
9407712 | Sehn | Aug 2016 | B1 |
9407816 | Sehn | Aug 2016 | B1 |
9412192 | Mandel et al. | Aug 2016 | B2 |
9430783 | Sehn | Aug 2016 | B1 |
9439041 | Parvizi et al. | Sep 2016 | B2 |
9443227 | Evans et al. | Sep 2016 | B2 |
9450907 | Pridmore et al. | Sep 2016 | B2 |
9459778 | Hogeg et al. | Oct 2016 | B2 |
9460541 | Li et al. | Oct 2016 | B2 |
9489661 | Evans et al. | Nov 2016 | B2 |
9489760 | Li et al. | Nov 2016 | B2 |
9491134 | Rosen et al. | Nov 2016 | B2 |
9503845 | Vincent | Nov 2016 | B2 |
9508197 | Quinn et al. | Nov 2016 | B2 |
9532171 | Allen et al. | Dec 2016 | B2 |
9537811 | Allen et al. | Jan 2017 | B2 |
9544257 | Ogundokun et al. | Jan 2017 | B2 |
9576400 | Van Os et al. | Feb 2017 | B2 |
9589357 | Li et al. | Mar 2017 | B2 |
9592449 | Barbalet et al. | Mar 2017 | B2 |
9628950 | Noeth et al. | Apr 2017 | B1 |
9648376 | Chang et al. | May 2017 | B2 |
9697635 | Quinn et al. | Jul 2017 | B2 |
9706040 | Kadirvel et al. | Jul 2017 | B2 |
9710821 | Heath | Jul 2017 | B2 |
9744466 | Fujioka | Aug 2017 | B2 |
9746990 | Anderson et al. | Aug 2017 | B2 |
9749270 | Collet et al. | Aug 2017 | B2 |
9792714 | Li et al. | Oct 2017 | B2 |
9839844 | Dunstan et al. | Dec 2017 | B2 |
9854219 | Sehn | Dec 2017 | B2 |
9883838 | Kaleal, III et al. | Feb 2018 | B2 |
9898849 | Du et al. | Feb 2018 | B2 |
9911073 | Spiegel et al. | Mar 2018 | B1 |
9936165 | Li et al. | Apr 2018 | B2 |
9959037 | Chaudhri et al. | May 2018 | B2 |
9980100 | Charlton et al. | May 2018 | B1 |
9990373 | Fortkort | Jun 2018 | B2 |
10039988 | Lobb et al. | Aug 2018 | B2 |
10097492 | Tsuda et al. | Oct 2018 | B2 |
10116598 | Tucker et al. | Oct 2018 | B2 |
10155168 | Blackstock et al. | Dec 2018 | B2 |
10242477 | Charlton et al. | Mar 2019 | B1 |
10242503 | McPhee et al. | Mar 2019 | B2 |
10262250 | Spiegel et al. | Apr 2019 | B1 |
10362219 | Wilson et al. | Jul 2019 | B2 |
10375519 | Pai | Aug 2019 | B2 |
10475225 | Park et al. | Nov 2019 | B2 |
10504266 | Blattner et al. | Dec 2019 | B2 |
10573048 | Ni et al. | Feb 2020 | B2 |
10657701 | Osman et al. | May 2020 | B2 |
20020047868 | Miyazawa | Apr 2002 | A1 |
20020067362 | Agostino Nocera et al. | Jun 2002 | A1 |
20020078456 | Hudson et al. | Jun 2002 | A1 |
20020087631 | Sharma et al. | Jul 2002 | A1 |
20020097257 | Miller et al. | Jul 2002 | A1 |
20020122659 | Megrath et al. | Sep 2002 | A1 |
20020128047 | Gates | Sep 2002 | A1 |
20020144154 | Tomkow | Oct 2002 | A1 |
20020169644 | Greene | Nov 2002 | A1 |
20030001846 | Davis et al. | Jan 2003 | A1 |
20030016247 | Lai et al. | Jan 2003 | A1 |
20030017823 | Mager et al. | Jan 2003 | A1 |
20030020623 | Cao et al. | Jan 2003 | A1 |
20030023874 | Prokupets et al. | Jan 2003 | A1 |
20030037124 | Yamaura et al. | Feb 2003 | A1 |
20030052925 | Daimon et al. | Mar 2003 | A1 |
20030101230 | Benschoter et al. | May 2003 | A1 |
20030110503 | Perkes | Jun 2003 | A1 |
20030126215 | Udell | Jul 2003 | A1 |
20030148773 | Spriestersbach et al. | Aug 2003 | A1 |
20030164856 | Prager et al. | Sep 2003 | A1 |
20030229607 | Zellweger et al. | Dec 2003 | A1 |
20040027371 | Jaeger | Feb 2004 | A1 |
20040064429 | Hirstius et al. | Apr 2004 | A1 |
20040078367 | Anderson et al. | Apr 2004 | A1 |
20040111467 | Willis | Jun 2004 | A1 |
20040158739 | Wakai et al. | Aug 2004 | A1 |
20040189465 | Capobianco et al. | Sep 2004 | A1 |
20040203959 | Coombes | Oct 2004 | A1 |
20040215625 | Svendsen et al. | Oct 2004 | A1 |
20040243531 | Dean | Dec 2004 | A1 |
20040243688 | Wugofski et al. | Dec 2004 | A1 |
20050021444 | Bauer et al. | Jan 2005 | A1 |
20050022211 | Veselov et al. | Jan 2005 | A1 |
20050048989 | Jung | Mar 2005 | A1 |
20050078804 | Yomoda | Apr 2005 | A1 |
20050097176 | Schatz et al. | May 2005 | A1 |
20050102381 | Jiang et al. | May 2005 | A1 |
20050104976 | Currans | May 2005 | A1 |
20050114783 | Szeto | May 2005 | A1 |
20050119936 | Buchanan et al. | Jun 2005 | A1 |
20050122405 | Voss et al. | Jun 2005 | A1 |
20050162419 | Kim et al. | Jul 2005 | A1 |
20050020661 | Cordelli | Sep 2005 | A1 |
20050193340 | Amburgey et al. | Sep 2005 | A1 |
20050193345 | Klassen et al. | Sep 2005 | A1 |
20050198128 | Anderson | Sep 2005 | A1 |
20050223066 | Buchheit et al. | Oct 2005 | A1 |
20050288954 | McCarthy et al. | Dec 2005 | A1 |
20060026067 | Nicholas et al. | Feb 2006 | A1 |
20060107297 | Toyama et al. | May 2006 | A1 |
20060114338 | Rothschild | Jun 2006 | A1 |
20060119882 | Harris et al. | Jun 2006 | A1 |
20060242239 | Morishima et al. | Oct 2006 | A1 |
20060252438 | Ansamaa et al. | Nov 2006 | A1 |
20060265417 | Amato et al. | Nov 2006 | A1 |
20060270419 | Crowley et al. | Nov 2006 | A1 |
20060287878 | Wadhwa et al. | Dec 2006 | A1 |
20060294465 | Ronen et al. | Dec 2006 | A1 |
20070004426 | Pfleging et al. | Jan 2007 | A1 |
20070038715 | Collins et al. | Feb 2007 | A1 |
20070040931 | Nishizawa | Feb 2007 | A1 |
20070073517 | Panje | Mar 2007 | A1 |
20070073823 | Cohen et al. | Mar 2007 | A1 |
20070075898 | Markhovsky et al. | Apr 2007 | A1 |
20070082707 | Flynt et al. | Apr 2007 | A1 |
20070113181 | Blattner et al. | May 2007 | A1 |
20070136228 | Petersen | Jun 2007 | A1 |
20070168863 | Blattner et al. | Jul 2007 | A1 |
20070176921 | Iwasaki et al. | Aug 2007 | A1 |
20070192128 | Celestini | Aug 2007 | A1 |
20070198340 | Lucovsky et al. | Aug 2007 | A1 |
20070198495 | Buron et al. | Aug 2007 | A1 |
20070208751 | Cowan et al. | Sep 2007 | A1 |
20070210936 | Nicholson | Sep 2007 | A1 |
20070214180 | Crawford | Sep 2007 | A1 |
20070214216 | Carrer et al. | Sep 2007 | A1 |
20070233556 | Koningstein | Oct 2007 | A1 |
20070233801 | Eren et al. | Oct 2007 | A1 |
20070233859 | Zhao et al. | Oct 2007 | A1 |
20070243887 | Bandhole et al. | Oct 2007 | A1 |
20070244750 | Grannan et al. | Oct 2007 | A1 |
20070255456 | Funayama | Nov 2007 | A1 |
20070281690 | Altman et al. | Dec 2007 | A1 |
20080022329 | Glad | Jan 2008 | A1 |
20080025701 | Ikeda | Jan 2008 | A1 |
20080032703 | Krumm et al. | Feb 2008 | A1 |
20080033930 | Warren | Feb 2008 | A1 |
20080043041 | Hedenstroem et al. | Feb 2008 | A2 |
20080049704 | Witteman et al. | Feb 2008 | A1 |
20080062141 | Chandhri | Mar 2008 | A1 |
20080076505 | Ngyen et al. | Mar 2008 | A1 |
20080092233 | Tian et al. | Apr 2008 | A1 |
20080094387 | Chen et al. | Apr 2008 | A1 |
20080104503 | Beall et al. | May 2008 | A1 |
20080109844 | Baldeschweiler et al. | May 2008 | A1 |
20080120409 | Sun et al. | May 2008 | A1 |
20080147730 | Lee et al. | Jun 2008 | A1 |
20080148150 | Mall | Jun 2008 | A1 |
20080158222 | Li et al. | Jul 2008 | A1 |
20080158230 | Sharma et al. | Jul 2008 | A1 |
20080168033 | Ott et al. | Jul 2008 | A1 |
20080168489 | Schraga | Jul 2008 | A1 |
20080189177 | Anderton et al. | Aug 2008 | A1 |
20080207176 | Brackbill et al. | Aug 2008 | A1 |
20080208692 | Garaventl et al. | Aug 2008 | A1 |
20080021421 | Rasanen et al. | Sep 2008 | A1 |
20080222545 | Lemay | Sep 2008 | A1 |
20080026642 | Takahata et al. | Oct 2008 | A1 |
20080255976 | Altberg et al. | Oct 2008 | A1 |
20080256446 | Yamamoto et al. | Oct 2008 | A1 |
20080256577 | Funaki et al. | Oct 2008 | A1 |
20080270938 | Carlson | Oct 2008 | A1 |
20080288338 | Wiseman et al. | Nov 2008 | A1 |
20080306826 | Kramer et al. | Dec 2008 | A1 |
20080313329 | Wang et al. | Dec 2008 | A1 |
20080313346 | Kujawa et al. | Dec 2008 | A1 |
20080318616 | Chipalkatti et al. | Dec 2008 | A1 |
20090006191 | Arankalle et al. | Jan 2009 | A1 |
20090006565 | Velusamy et al. | Jan 2009 | A1 |
20090015703 | Kim et al. | Jan 2009 | A1 |
20090016617 | Bregman-amitai et al. | Jan 2009 | A1 |
20090024956 | Kobayashi | Jan 2009 | A1 |
20090030774 | Rothschild et al. | Jan 2009 | A1 |
20090030999 | Gatzke et al. | Jan 2009 | A1 |
20090040324 | Nonaka | Feb 2009 | A1 |
20090042588 | Lottin et al. | Feb 2009 | A1 |
20090055484 | Vuong et al. | Feb 2009 | A1 |
20090058822 | Chaudhri | Mar 2009 | A1 |
20090070688 | Gyorfi et al. | Mar 2009 | A1 |
20090079846 | Chou | Mar 2009 | A1 |
20090008971 | Wood et al. | Apr 2009 | A1 |
20090089678 | Sacco et al. | Apr 2009 | A1 |
20090093261 | Ziskind | Apr 2009 | A1 |
20090099925 | Mehta et al. | Apr 2009 | A1 |
20090106672 | Burstrom | Apr 2009 | A1 |
20090132341 | Klinger | May 2009 | A1 |
20090132453 | Hangartner et al. | May 2009 | A1 |
20090132665 | Thomsen et al. | May 2009 | A1 |
20090148045 | Lee et al. | Jun 2009 | A1 |
20090153492 | Popp | Jun 2009 | A1 |
20090157450 | Athsani et al. | Jun 2009 | A1 |
20090157752 | Gonzalez | Jun 2009 | A1 |
20090158170 | Narayanan et al. | Jun 2009 | A1 |
20090160970 | Fredlund et al. | Jun 2009 | A1 |
20090163182 | Gatti et al. | Jun 2009 | A1 |
20090177299 | Bartel Marinus | Jul 2009 | A1 |
20090177976 | Bokor et al. | Jul 2009 | A1 |
20090192900 | Collision | Jul 2009 | A1 |
20090199242 | Johnson et al. | Aug 2009 | A1 |
20090202114 | Morin et al. | Aug 2009 | A1 |
20090215469 | Fisher et al. | Aug 2009 | A1 |
20090232354 | Camp, Jr. et al. | Sep 2009 | A1 |
20090234815 | Boerries et al. | Sep 2009 | A1 |
20090239552 | Churchill et al. | Sep 2009 | A1 |
20090249222 | Schmidt et al. | Oct 2009 | A1 |
20090249244 | Robinson et al. | Oct 2009 | A1 |
20090265604 | Howard et al. | Oct 2009 | A1 |
20090265647 | Martin et al. | Oct 2009 | A1 |
20090288022 | Almstrand et al. | Nov 2009 | A1 |
20090291672 | Treves et al. | Nov 2009 | A1 |
20090292608 | Polachek | Nov 2009 | A1 |
20090300525 | Jolliff et al. | Dec 2009 | A1 |
20090303984 | Clark et al. | Dec 2009 | A1 |
20090319607 | Belz et al. | Dec 2009 | A1 |
20090327073 | Li | Dec 2009 | A1 |
20100011422 | Mason et al. | Jan 2010 | A1 |
20100023885 | Revilie et al. | Jan 2010 | A1 |
20100062794 | Han | Mar 2010 | A1 |
20100082427 | Burgener et al. | Apr 2010 | A1 |
20100082693 | Hugg et al. | Apr 2010 | A1 |
20100100568 | Papin et al. | Apr 2010 | A1 |
20100113065 | Narayan et al. | May 2010 | A1 |
20100115426 | Liu et al. | May 2010 | A1 |
20100130233 | Lansing | May 2010 | A1 |
20100131880 | Lee et al. | May 2010 | A1 |
20100131895 | Wohlert | May 2010 | A1 |
20100153144 | Miller et al. | Jun 2010 | A1 |
20100159944 | Pascal et al. | Jun 2010 | A1 |
20100161658 | Hamynen et al. | Jun 2010 | A1 |
20100161831 | Haas et al. | Jun 2010 | A1 |
20100162149 | Sheleheda et al. | Jun 2010 | A1 |
20100183280 | Beauregard et al. | Jul 2010 | A1 |
20100185552 | Deluca et al. | Jul 2010 | A1 |
20100185665 | Horn et al. | Jul 2010 | A1 |
20100191631 | Weidmann | Jul 2010 | A1 |
20100197318 | Petersen et al. | Aug 2010 | A1 |
20100197319 | Petersen et al. | Aug 2010 | A1 |
20100198683 | Aarabi | Aug 2010 | A1 |
20100198694 | Muthukrishnan | Aug 2010 | A1 |
20100198826 | Petersen | Aug 2010 | A1 |
20100198828 | Petersen | Aug 2010 | A1 |
20100198862 | Jennings et al. | Aug 2010 | A1 |
20100198870 | Petersen et al. | Aug 2010 | A1 |
20100198917 | Petersen et al. | Aug 2010 | A1 |
20100201482 | Robertson et al. | Aug 2010 | A1 |
20100201536 | Robertson et al. | Aug 2010 | A1 |
20100203968 | Gill et al. | Aug 2010 | A1 |
20100214436 | Kim et al. | Aug 2010 | A1 |
20100223128 | Dukellis et al. | Sep 2010 | A1 |
20100223343 | Bosan et al. | Sep 2010 | A1 |
20100227682 | Revilie et al. | Sep 2010 | A1 |
20100250109 | Johnston et al. | Sep 2010 | A1 |
20100257196 | Waters et al. | Oct 2010 | A1 |
20100259386 | Holley et al. | Oct 2010 | A1 |
20100273509 | Sweeney et al. | Oct 2010 | A1 |
20100281045 | Dean | Nov 2010 | A1 |
20100306669 | Della Pasqua | Dec 2010 | A1 |
20110004071 | Faiola et al. | Jan 2011 | A1 |
20110010205 | Richards | Jan 2011 | A1 |
20110029512 | Folgner et al. | Feb 2011 | A1 |
20110040783 | Uemichi et al. | Feb 2011 | A1 |
20110040804 | Peirce et al. | Feb 2011 | A1 |
20110050909 | Ellenby et al. | Mar 2011 | A1 |
20110050915 | Wang et al. | Mar 2011 | A1 |
20110064388 | Brown et al. | Mar 2011 | A1 |
20110066743 | Hurley et al. | Mar 2011 | A1 |
20110000831 | Sharon | Apr 2011 | A1 |
20110093780 | Dunn | Apr 2011 | A1 |
20110102630 | Rukes | May 2011 | A1 |
20110115798 | Nayar et al. | May 2011 | A1 |
20110119133 | Igelman et al. | May 2011 | A1 |
20110137881 | Cheng et al. | Jun 2011 | A1 |
20110145564 | Moshir et al. | Jun 2011 | A1 |
20110148864 | Lee et al. | Jun 2011 | A1 |
20110159890 | Fortescue et al. | Jun 2011 | A1 |
20110164163 | Bilbrey et al. | Jul 2011 | A1 |
20110197194 | D'Angelo et al. | Aug 2011 | A1 |
20110202598 | Evans et al. | Aug 2011 | A1 |
20110202968 | Nurmi | Aug 2011 | A1 |
20110211534 | Schmidt et al. | Sep 2011 | A1 |
20110213845 | Logan et al. | Sep 2011 | A1 |
20110215966 | Kim et al. | Sep 2011 | A1 |
20110225048 | Nair | Sep 2011 | A1 |
20110238763 | Shin et al. | Sep 2011 | A1 |
20110239136 | Goldman et al. | Sep 2011 | A1 |
20110255736 | Thompson et al. | Oct 2011 | A1 |
20110273575 | Lee | Nov 2011 | A1 |
20110282799 | Huston | Nov 2011 | A1 |
20110283188 | Farrenkopf | Nov 2011 | A1 |
20110314419 | Dunn et al. | Dec 2011 | A1 |
20110320373 | Lee et al. | Dec 2011 | A1 |
20120015673 | Klassen | Jan 2012 | A1 |
20120028659 | Whitney et al. | Feb 2012 | A1 |
20120033718 | Kauffman et al. | Feb 2012 | A1 |
20120036015 | Sheikh | Feb 2012 | A1 |
20120036443 | Ohmori et al. | Feb 2012 | A1 |
20120054797 | Skog et al. | Mar 2012 | A1 |
20120059722 | Rao | Mar 2012 | A1 |
20120062805 | Candelore | Mar 2012 | A1 |
20120084731 | Filman et al. | Apr 2012 | A1 |
20120084835 | Thomas et al. | Apr 2012 | A1 |
20120099800 | Llano et al. | Apr 2012 | A1 |
20120108293 | Law et al. | May 2012 | A1 |
20120110096 | Smarr et al. | May 2012 | A1 |
20120113106 | Choi et al. | May 2012 | A1 |
20120113143 | Adhikari et al. | May 2012 | A1 |
20120113272 | Hata | May 2012 | A1 |
20120123830 | Svendsen et al. | May 2012 | A1 |
20120123871 | Svendsen et al. | May 2012 | A1 |
20120123875 | Svendsen et al. | May 2012 | A1 |
20120124126 | Alcazar et al. | May 2012 | A1 |
20120124176 | Curtis et al. | May 2012 | A1 |
20120124458 | Cruzada | May 2012 | A1 |
20120130717 | Xu et al. | May 2012 | A1 |
20120131507 | Sparandara et al. | May 2012 | A1 |
20120131512 | Takeuchi et al. | May 2012 | A1 |
20120001651 | Lalancette et al. | Jun 2012 | A1 |
20120143760 | Abulafia et al. | Jun 2012 | A1 |
20120150978 | Monaco | Jun 2012 | A1 |
20120166971 | Sachson et al. | Jun 2012 | A1 |
20120169855 | Oh | Jul 2012 | A1 |
20120172062 | Altman et al. | Jul 2012 | A1 |
20120173991 | Roberts et al. | Jul 2012 | A1 |
20120176401 | Hayward et al. | Jul 2012 | A1 |
20120184248 | Speede | Jul 2012 | A1 |
20120197724 | Kendall | Aug 2012 | A1 |
20120200743 | Blanchflower et al. | Aug 2012 | A1 |
20120209924 | Evans et al. | Aug 2012 | A1 |
20120210244 | De Francisco et al. | Aug 2012 | A1 |
20120212632 | Mate et al. | Aug 2012 | A1 |
20120220264 | Kawabata | Aug 2012 | A1 |
20120226748 | Bosworth et al. | Sep 2012 | A1 |
20120233000 | Fisher et al. | Sep 2012 | A1 |
20120236162 | Imamura | Sep 2012 | A1 |
20120239761 | Linner et al. | Sep 2012 | A1 |
20120250951 | Chen | Oct 2012 | A1 |
20120252418 | Kandekar et al. | Oct 2012 | A1 |
20120254325 | Majeti et al. | Oct 2012 | A1 |
20120278387 | Garcia et al. | Nov 2012 | A1 |
20120278692 | Shi | Nov 2012 | A1 |
20120290637 | Perantatos et al. | Nov 2012 | A1 |
20120299954 | Wada et al. | Nov 2012 | A1 |
20120304052 | Tanaka et al. | Nov 2012 | A1 |
20120304080 | Wormald et al. | Nov 2012 | A1 |
20120307096 | Ford et al. | Dec 2012 | A1 |
20120307112 | Kunishige et al. | Dec 2012 | A1 |
20120319904 | Lee et al. | Dec 2012 | A1 |
20120323933 | He et al. | Dec 2012 | A1 |
20120324018 | Metcalf | Dec 2012 | A1 |
20130006759 | Srivastava et al. | Jan 2013 | A1 |
20130024757 | Doll et al. | Jan 2013 | A1 |
20130036364 | Johnson | Feb 2013 | A1 |
20130045753 | Obermeyer et al. | Feb 2013 | A1 |
20130050260 | Reitan | Feb 2013 | A1 |
20130055083 | Fino | Feb 2013 | A1 |
20130057587 | Leonard et al. | Mar 2013 | A1 |
20130059607 | Herz et al. | Mar 2013 | A1 |
20130060690 | Oskolkov et al. | Mar 2013 | A1 |
20130063369 | Malhotra et al. | Mar 2013 | A1 |
20130067027 | Song et al. | Mar 2013 | A1 |
20130071093 | Hanks et al. | Mar 2013 | A1 |
20130080254 | Thramann | Mar 2013 | A1 |
20130085790 | Palmer et al. | Apr 2013 | A1 |
20130086072 | Peng et al. | Apr 2013 | A1 |
20130090171 | Holton et al. | Apr 2013 | A1 |
20130095857 | Garcia et al. | Apr 2013 | A1 |
20130103760 | Golding et al. | Apr 2013 | A1 |
20130104053 | Thornton | Apr 2013 | A1 |
20130110885 | Brundrett, III | May 2013 | A1 |
20130111514 | Slavin et al. | May 2013 | A1 |
20130128059 | Kristensson | May 2013 | A1 |
20130129252 | Lauper | May 2013 | A1 |
20130132477 | Bosworth et al. | May 2013 | A1 |
20130145286 | Feng et al. | Jun 2013 | A1 |
20130159110 | Rajaram et al. | Jun 2013 | A1 |
20130159919 | Leydon | Jun 2013 | A1 |
20130169822 | Zhu et al. | Jul 2013 | A1 |
20130173729 | Starenky et al. | Jul 2013 | A1 |
20130182133 | Tanabe | Jul 2013 | A1 |
20130185131 | Sinha et al. | Jul 2013 | A1 |
20130191198 | Carlson et al. | Jul 2013 | A1 |
20130194301 | Robbins et al. | Aug 2013 | A1 |
20130198176 | Kim | Aug 2013 | A1 |
20130201187 | Tong et al. | Aug 2013 | A1 |
20130218965 | Abrol et al. | Aug 2013 | A1 |
20130218968 | Mcevilly et al. | Aug 2013 | A1 |
20130222323 | Makenzie | Aug 2013 | A1 |
20130227476 | Frey | Aug 2013 | A1 |
20130232194 | Knapp et al. | Sep 2013 | A1 |
20130249948 | Reitan | Sep 2013 | A1 |
20130257877 | Davis | Oct 2013 | A1 |
20130263031 | Oshiro et al. | Oct 2013 | A1 |
20130265450 | Barnes, Jr. | Oct 2013 | A1 |
20130267253 | Case et al. | Oct 2013 | A1 |
20130275505 | Gauglitz et al. | Oct 2013 | A1 |
20130290443 | Collins et al. | Oct 2013 | A1 |
20130304646 | De Geer | Nov 2013 | A1 |
20130311255 | Cummins et al. | Nov 2013 | A1 |
20130325964 | Berberat | Dec 2013 | A1 |
20130344896 | Kirmse et al. | Dec 2013 | A1 |
20130346869 | Asver et al. | Dec 2013 | A1 |
20130346877 | Borovoy et al. | Dec 2013 | A1 |
20140006129 | Heath | Jan 2014 | A1 |
20140011538 | Mulcahy et al. | Jan 2014 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140032682 | Prado et al. | Jan 2014 | A1 |
20140043204 | Basnayake et al. | Feb 2014 | A1 |
20140043329 | Wang et al. | Feb 2014 | A1 |
20140045530 | Gordon et al. | Feb 2014 | A1 |
20140047016 | Rao | Feb 2014 | A1 |
20140047045 | Baldwin et al. | Feb 2014 | A1 |
20140047335 | Lewis et al. | Feb 2014 | A1 |
20140049652 | Moon et al. | Feb 2014 | A1 |
20140052485 | Shidfar | Feb 2014 | A1 |
20140052633 | Gandhi | Feb 2014 | A1 |
20140055554 | Du et al. | Feb 2014 | A1 |
20140057660 | Wager | Feb 2014 | A1 |
20140082651 | Sharifi | Mar 2014 | A1 |
20140092130 | Anderson et al. | Apr 2014 | A1 |
20140096029 | Schultz | Apr 2014 | A1 |
20140114565 | Aziz et al. | Apr 2014 | A1 |
20140122658 | Haeger et al. | May 2014 | A1 |
20140122787 | Shalvi et al. | May 2014 | A1 |
20140125678 | Wang et al. | May 2014 | A1 |
20140129343 | Finster et al. | May 2014 | A1 |
20140129953 | Spiegel | May 2014 | A1 |
20140143143 | Fasoli et al. | May 2014 | A1 |
20140149519 | Redfern et al. | May 2014 | A1 |
20140155102 | Cooper et al. | Jun 2014 | A1 |
20140173424 | Hogeg et al. | Jun 2014 | A1 |
20140173457 | Wang et al. | Jun 2014 | A1 |
20140189592 | Benchenaa et al. | Jul 2014 | A1 |
20140207679 | Cho | Jul 2014 | A1 |
20140214471 | Schreiner, III | Jul 2014 | A1 |
20140222564 | Kranendonk et al. | Aug 2014 | A1 |
20140258405 | Perkin | Sep 2014 | A1 |
20140265359 | Cheng et al. | Sep 2014 | A1 |
20140266703 | Dalley, Jr. et al. | Sep 2014 | A1 |
20140279061 | Elimeliah et al. | Sep 2014 | A1 |
20140279436 | Dorsey et al. | Sep 2014 | A1 |
20140279540 | Jackson | Sep 2014 | A1 |
20140280537 | Pridmore et al. | Sep 2014 | A1 |
20140282096 | Rubinstein et al. | Sep 2014 | A1 |
20140287779 | O'keefe et al. | Sep 2014 | A1 |
20140289833 | Briceno | Sep 2014 | A1 |
20140306986 | Gottesman et al. | Oct 2014 | A1 |
20140317302 | Naik | Oct 2014 | A1 |
20140324627 | Haver et al. | Oct 2014 | A1 |
20140324629 | Jacobs | Oct 2014 | A1 |
20140325383 | Brown et al. | Oct 2014 | A1 |
20150020086 | Chen et al. | Jan 2015 | A1 |
20150046278 | Pei et al. | Feb 2015 | A1 |
20150071619 | Brough | Mar 2015 | A1 |
20150087263 | Branscomb et al. | Mar 2015 | A1 |
20150088622 | Ganschow et al. | Mar 2015 | A1 |
20150095020 | Leydon | Apr 2015 | A1 |
20150096042 | Mizrachi | Apr 2015 | A1 |
20150116529 | Wu et al. | Apr 2015 | A1 |
20150169827 | Laborde | Jun 2015 | A1 |
20150172534 | Miyakawaa et al. | Jun 2015 | A1 |
20150178260 | Brunson | Jun 2015 | A1 |
20150206349 | Rosenthal et al. | Jul 2015 | A1 |
20150222814 | Li et al. | Aug 2015 | A1 |
20150261917 | Smith | Sep 2015 | A1 |
20150312184 | Langholz et al. | Oct 2015 | A1 |
20150350136 | Flynn, III et al. | Dec 2015 | A1 |
20150365795 | Allen et al. | Dec 2015 | A1 |
20150378502 | Hu et al. | Dec 2015 | A1 |
20160006927 | Sehn | Jan 2016 | A1 |
20160014063 | Hogeg et al. | Jan 2016 | A1 |
20160065669 | Van Dijkman | Mar 2016 | A1 |
20160085773 | Chang et al. | Mar 2016 | A1 |
20160085863 | Allen et al. | Mar 2016 | A1 |
20160099901 | Allen et al. | Apr 2016 | A1 |
20160127486 | Chen | May 2016 | A1 |
20160134840 | Mcculloch | May 2016 | A1 |
20160180887 | Sehn | Jun 2016 | A1 |
20160182422 | Sehn et al. | Jun 2016 | A1 |
20160182875 | Sehn | Jun 2016 | A1 |
20160234149 | Tsuda et al. | Aug 2016 | A1 |
20160239248 | Sehn | Aug 2016 | A1 |
20160277419 | Allen et al. | Sep 2016 | A1 |
20160321708 | Sehn | Nov 2016 | A1 |
20170006094 | Abou Mahmoud et al. | Jan 2017 | A1 |
20170061308 | Chen et al. | Mar 2017 | A1 |
20170080346 | Abbas | Mar 2017 | A1 |
20170087473 | Siegel et al. | Mar 2017 | A1 |
20170113140 | Blackstock et al. | Apr 2017 | A1 |
20170118145 | Aittoniemi et al. | Apr 2017 | A1 |
20170199855 | Fishbeck | Jul 2017 | A1 |
20170235848 | Van Dusen et al. | Aug 2017 | A1 |
20170287006 | Azmoodeh et al. | Oct 2017 | A1 |
20170310934 | Du et al. | Oct 2017 | A1 |
20170312634 | Ledoux et al. | Nov 2017 | A1 |
20180047200 | O'hara et al. | Feb 2018 | A1 |
20180113587 | Allen et al. | Apr 2018 | A1 |
20180115503 | Baldwin et al. | Apr 2018 | A1 |
20180315076 | Andreou | Nov 2018 | A1 |
20180315133 | Brody et al. | Nov 2018 | A1 |
20180315134 | Amitay et al. | Nov 2018 | A1 |
20190001223 | Blackstock et al. | Jan 2019 | A1 |
20190057616 | Cohen et al. | Feb 2019 | A1 |
20190082301 | Rusu | Mar 2019 | A1 |
20190188920 | Mcphee et al. | Jun 2019 | A1 |
20190325733 | Wright | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2887596 | Jul 2015 | CA |
109863532 | Jun 2019 | CN |
110168478 | Aug 2019 | CN |
2051480 | Apr 2009 | EP |
2151797 | Feb 2010 | EP |
2184092 | May 2010 | EP |
2399928 | Sep 2004 | GB |
2001230801 | Aug 2001 | JP |
5497931 | Mar 2014 | JP |
19990073076 | Oct 1999 | KR |
20010078417 | Aug 2001 | KR |
101445263 | Sep 2014 | KR |
WO-1996024213 | Aug 1996 | WO |
WO-1999063453 | Dec 1999 | WO |
WO-2000058882 | Oct 2000 | WO |
WO-2001029642 | Apr 2001 | WO |
WO-2001050703 | Jul 2001 | WO |
WO-2003094072 | Nov 2003 | WO |
WO-2004095308 | Nov 2004 | WO |
WO-2006107182 | Oct 2006 | WO |
WO-2006118755 | Nov 2006 | WO |
WO-2007092668 | Aug 2007 | WO |
WO-2007134402 | Nov 2007 | WO |
WO-2009043020 | Apr 2009 | WO |
WO-2011040821 | Apr 2011 | WO |
WO-2011119407 | Sep 2011 | WO |
WO-2012139276 | Oct 2012 | WO |
WO-2013008238 | Jan 2013 | WO |
WO-2013027893 | Feb 2013 | WO |
WO-2013045753 | Apr 2013 | WO |
WO-2013152454 | Oct 2013 | WO |
WO-2013166588 | Nov 2013 | WO |
WO-2014006129 | Jan 2014 | WO |
WO-2014031899 | Feb 2014 | WO |
WO-2014068573 | May 2014 | WO |
WO-2014115136 | Jul 2014 | WO |
WO-2014194262 | Dec 2014 | WO |
WO-2014194439 | Dec 2014 | WO |
WO-2015192026 | Dec 2015 | WO |
WO-2016044424 | Mar 2016 | WO |
WO-2016054562 | Apr 2016 | WO |
WO-2016065131 | Apr 2016 | WO |
WO-2016090605 | Jun 2016 | WO |
WO-2016100318 | Jun 2016 | WO |
WO-2016100318 | Jun 2016 | WO |
WO-2016100342 | Jun 2016 | WO |
WO-2016149594 | Sep 2016 | WO |
WO-2016179166 | Nov 2016 | WO |
WO-2018081013 | May 2018 | WO |
WO-2018102562 | Jun 2018 | WO |
WO-2018129531 | Jul 2018 | WO |
WO-2019089613 | May 2019 | WO |
Entry |
---|
“A Whoie New Story”, Snap, Inc., [Online] Retrieved from the Internet: <URL: https://www.snap.com/en-US/news/>, (2017), 13 pgs. |
“Adding photos to your listing”, eBay, [Online] Retrieved from the Internet: <URL: http://pages.ebay.com/help/sell/pictures.html>, (accessed May 24, 2017), 4 pgs. |
“BlogStomp”, StompSoftware, [Online] Retrieved from the Internet: <URL: http://stompsoftware.com/blogstomp>, (accessed May 24, 2017), 12 pgs. |
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, Blast Radius, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20160711202454/http://www.blastradius.com/work/cup-magic>, (2016), 7 pgs. |
“Daily App: InstaPlace (iOS/Android): Give Pictures a Sense of Place”, TechPP, [Online] Retrieved from the Internet: <URL: http://techpp.com/2013/02/15/instaplace-app-review>, (2013), 13 pgs. |
“InstaPlace Photo App Tell The Whole Story”, [Online] Retrieved from the Internet: <URL: youtu.be/uF_gFkg1hBM>, (Nov. 8, 2013), 113 pgs., 1:02 min. |
“International Application Serial No. PCT/US2015/037251, International Search Report dated Sep. 29, 2015”, 2 pgs. |
“Introducing Snapchat Stories”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20131026084921/https://www.youtube.com/watch?v=88Cu3yN-LIM>, (Oct. 3, 2013), 92 pgs.; 00:47 min. |
“Macy's Believe-o-Magic”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190422101854/https://www.youtube.com/watch?v=xvzRXy3J0Z0&feature=youtu.be>, (Nov. 7, 2011), 102 pgs.; 00:51 min. |
“Macy's Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 Believe Campaign”, Business Wire, [Online] Retrieved from the Internet: <URL: https://www.businesswire.com/news/home/20111102006759/en/Macys-Introduces-Augmented-Reality-Experience-Stores-Country>, (Nov. 2, 2011), 6 pgs. |
“Starbucks Cup Magic”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=RWwQXi9RG0w>, (Nov. 8, 2011), 87 pgs.; 00:47 min. |
“Starbucks Cup Magic for Valentine's Day”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=8nvqOzjq10w>, (Feb. 6, 2012), 88 pgs.; 00:45 min. |
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, Business Wire, [Online] Retrieved from the Internet: <URL: http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return>, (Nov. 15, 2011), 5 pgs. |
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, TechCrunch, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2011/09/08/mobli-filters>, (Sep. 8, 2011), 10 pgs. |
Janthong, Isaranu, “Instaplace ready on Android Google Play store”, Android App Review Thailand, [Online] Retrieved from the Internet: <URL: http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html>, (Jan. 23, 2013), 9 pgs. |
MacLeod, Duncan, “Macys Believe-o-Magic App”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/dally/2011/macys-believe-o-magic-app>, (Nov. 14, 2011), 10 pgs. |
MacLeod, Duncan, “Starbucks Cup Magic Lets Merry”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/starbucks-cup-magic>, (Nov. 12, 2011), 8 pgs. |
Notopoulos, Katie, “A Guide To The New Snapchat Filters And Big Fonts”, [Online] Retrieved from the Internet: <URL: https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm_term=.bkQ9qVZWe#.nv58YXpkV>, (Dec. 22, 2013), 13 pgs. |
Panzarino, Matthew, “Snapchat Adds Filters, A Replay Function And For Whatever Reason, Time, Temperature And Speed Overlays”, TechCrunch, [Online] Retrieved form the Internet: <URL: https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays/>, (Dec. 20, 2013), 12 pgs. |
Tripathi, Rohit, “Watermark Images in PHP And Save File on Server”, [Online] Retrieved from the Internet: <URL: http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server>, (Dec. 28, 2012), 4 pgs. |
Number | Date | Country | |
---|---|---|---|
20210136521 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62928874 | Oct 2019 | US |