1. Field
Aspects of the invention relate to devices and methods of use thereof for harvesting, isolating, and/or manipulating agents, including but not limited to genomic DNA.
2. Discussion
Preparation and concomitant preservation of genomic DNA, according to many conventional techniques, is often time consuming, laborious and may require operators to have skills in handling DNA samples. Moreover such techniques are limited in the size of DNA that can be effectively handled. There exists a need to reduce the time, labor, and/or skills required to prepare essentially intact genomic DNA and other agents of similar length.
The invention in its broadest sense provides devices and methods of use thereof for positioning or manipulating or concentrating agents within a fluid, including but not limited to polymers such as genomic DNA. Aspects of the invention allow the agents to be concentrated into relatively small portions of the fluid. This may provide a higher concentration of the agent within a portion of the fluid, which in turn may result in higher recovery of the agent from the fluid as the agent undergoes processing.
Certain aspects of the invention relate to using a chamber for positioning or manipulating an agent, such as genomic DNA. In some aspects, the chamber is minimally comprised of an inlet port, a porous substrate that allows fluid but not the agent of interest to pass through, and at least one side port. The chamber may be operated in a first mode where a fluid containing agents is introduced into the chamber through a first fluid port and flowed through a substrate in the chamber. A second flow of fluid may be introduced through one or more second fluid ports positioned about the substrate in the chamber. The second fluid flow at least partially surrounds the first fluid flow to direct the first fluid flow and any agents contained therein toward a portion of the substrate. The agents may then be positioned on the central portion of the substrate. Flow may be reversed through the first fluid port to move any agents positioned on the substrate out of the chamber in central streamlines that exit the chamber through the first fluid port. Flow may also be removed from about the central streamlines to separate fluid flow that lacks agents from the central streamlines that exit the chamber.
According to one aspect, a method is disclosed positioning agents in a fluid flow. The method includes providing a chamber having a substrate. A first fluid containing agents is flowed through a first fluid port and through the substrate in the chamber. A second fluid flow is flowed through one or more second fluid ports positioned about the substrate in the chamber. The second fluid flow at least partially surrounding the first fluid flow to direct the first fluid flow and any agents contained therein toward a central portion of the substrate. The agents are positioned on the central portion of the substrate. Flow through the first fluid port is reversed to move any agents positioned on the substrate out of the chamber in central streamlines that exit the chamber through the first fluid port. Flow from about the central streamlines is removed to separate fluid flow that lacks agents from the central streamlines that exit the chamber.
According to another aspect, a composition comprises isolated nucleic acids varying in length from 0.1 megabases to about 1 megabase in a fluid having a volume between about 30 uL to about 40 uL.
According to yet another aspect, a method is disclosed for positioning agents in a fluid flow. The method comprises providing a substrate; flowing a first fluid containing agents through the substrate, and flowing a second fluid flow through the substrate. The second fluid flow at least partially surrounds the first fluid flow to direct the first fluid flow and any agents contained therein toward a central portion of the substrate. The agents are positioned on the central portion of the substrate. Flow through substrate is reversed to move any agents positioned on the substrate away from the substrate in central streamlines of fluid moving away from the substrate.
The accompanying figures are not intended to be drawn to scale. In the figures, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the figures:
a and 1b are views of a chamber, according to one embodiment of the invention;
a-5f show, schematically, an embodiment of the chamber in various modes of operation;
a-6h show, schematically, various stages of an operating protocol for DNA isolation and digestion in a chamber;
The invention in based in part to methods and chambers (referred to herein interchangeably as a “focusing chamber” or a “reaction chamber” or a “fluidic chamber”) that may be used to concentrate a sample to a smaller volume of fluid. Concentrating samples may prove useful when relatively small volumes are available for analysis. Additionally or alternatively, concentrating a sample may prove useful in introducing a sample from a macro-scale environment, such as from where a sample may have been collected, to a micro-scale or nano-scale environment, such as where analysis may be performed on the sample.
Long DNA fragments (0.1-1 Mb) may used in some polymer physics studies, such as those that implement single-molecule approaches. Some methods and embodiments of chambers with membranes may be used to help reduce the labor and time associated with processing such DNA fragments. By way of example, some methods and chambers may be capable of extracting and purifying high quality genomic DNA and additionally perform various reactions such as restriction enzyme digestion, intercalation with fluorescent dyes, and labeling with sequence-specific tags. According to one embodiment, a 125 μl volume reactor performs preparations substantially faster than routine procedures. Additionally, the chamber may be completely automated.
Embodiments of chambers may also be capable of working with smaller bacterial loads (such as 106 cells vs. 108 cells). Such embodiments may use an axisymmetric flow focusing mode where flow fields are created within the chamber to focus the bacterial cells to a small area at the center of the membrane. This arrangement may help to limit the interaction of deformable DNA coils with membrane nanopores, which may lead to decreased sample losses. Such embodiments may also enable elution of the sample to a smaller volume, even up to 5 times higher concentrations, 10 times higher concentrations, and even greater than 10 times higher concentrations. As discussed herein, flow may be split during the elution process to further increase sample concentrations by removing, from the flow, fluid that does not contain sample. Such techniques may help increase concentrations by up to an order of magnitude or even greater.
According to some aspects, experimental and numerical characterization of the flow fields may be used to optimize performance of methods and/or chamber design. By way of example, experimental study have been performed with 160 kb DNA and 240 kDa proteins. Numerically, a semidilute DNA solution on the membrane has been modeled with deGennes' reptation model. Such models may be used to estimate flow fields capable of carrying out reactions and purification of genomic DNA on a membrane without shear degradation.
According to one embodiment of a chamber, DNA may be successfully extracted from E. coli cells, purified, specifically digested with NotI restriction enzyme, and intercalated with POPO-1. According to some embodiments DNA fragment up to or greater than 1 Mb-long may be eluted from the chamber.
Different types of chamber may be used to carry out methods of the invention. One embodiment of the chamber 10, as shown in
Embodiments of the chamber may be constructed with different configurations and dimensions, some examples of which are discussed herein. By way of example, the diffuser may provide a diffusive flow pathway between the central port and the flow region, which, in many embodiments, may laterally spread the flow of fluid introduced through the central port to promote even distribution of agents about the substrate. By way of another example, the chamber shown in
The diffuser may be shaped differently according to various embodiments. The diffuser is typically designed to smoothly widen or diffuse flow that enters the flow region from the central port without subjecting agents to excessive shear forces. As shown in
Various fluidic modeling techniques, such as flow testing with dyes and/or computational fluidic modeling may be used to optimize the diffuser shape for various operating conditions and/or to promote the even distribution of agents about the substrate that have been introduced through the central port. Similar techniques may be used to optimize the diffuser for the minimization of shear forces that occur in the flow region or to accomplish other effects.
The central port is typically positioned in the central portion of the diffuser and, as shown in
The diffuser and/or central port, when described as being substantially opposed to the substrate, are understood to be positioned to direct fluid to impinge on a surface of the substrate. That is, at least a portion of the fluid flow is directed to intersect with the substrate.
The porous substrate (also referred to herein as a membrane or a filter) is typically positioned to receive flow that is introduced to the chamber from the central port, as shown in the embodiment of
The substrate may comprise circular shaped, removable filter material that is supported on a porous frit 28 in the chamber, as shown in
Embodiments of the chamber may include a body section that defines a wall of the chamber that lies between the substrate and the diffuser. As shown in
One or more side ports are positioned about the flow region, generally adjacent to the substrate, as shown in
Embodiments of the chamber may have multiple side ports, and in some embodiments have 2 side or 4 side ports positioned at even intervals about the chamber, such as on the body section. It is to be appreciated that embodiments of the chamber may have any number of side ports, such as 8 side ports, 11 side ports, or 16 side ports positioned evenly about the chamber, as illustrated in
Construction and placement of the side ports may be guided by flow testing and/or computational analysis to minimize any low flow or dead zones in the flow region, reduce shear that might be imparted to agents, and/or to promote favorable velocity gradients through the flow region, such as during separation modes.
Embodiments of the chamber, and particularly those portions that are in contact with the flow region, like the central port, the diffuser, the side ports, the body section, and the substrate, may be designed to promote particular flow conditions. For instance, according to some embodiments, the chamber may be constructed to promote laminar flow so that shear forces acting on agents therein may be minimized. Additionally or alternately, the chamber may be constructed to promote flow through the side ports with a velocity profile, as shown in
As shown in
Embodiments of the chamber may have features to promote mixing, such as microscale jets 34 that create a stirring motion to agitate reactants that are spread on or about the substrate. Microscale jets may be issued from small holes, such as micron sized holes, in the diffuser, according to one embodiment illustrated in
Embodiments of the chamber may also be equipped with features to regulate temperature in the flow region. According to one embodiment, a frit that lies below and supports the substrate is made of a thermally conductive material, like stainless steel, and may be heated or cooled by an external source, like a thermoelectric module, to regulate temperature. Additionally or alternately, fluid may pass through the reservoir to cool or heat the reservoir side of the substrate/frit to rapidly cool or heat the chamber. The chamber may also be equipped with other devices, like a radiant heater that heats fluid in the chamber through non-contact methods, or like an inline heater that heats fluids entering the chamber which, in turn, may help maintain uniform temperature conditions throughout the chamber volume.
As described herein, a reservoir may be positioned on a side of the substrate opposite to the flow region, as shown in
The chamber may be operated in several different modes, including a press-down mode, a separation mode, an elution mode, a reacting mode, and a focusing mode, among others. Each of these modes is illustrated schematically in
The chamber may be operated in a press down mode (also referred to herein as an injection mode) to position agents or other constituents near the substrate or simply to introduce agents to the flow region where they may be acted upon. The agents or other constituents introduced during a press down mode may have been present in the flow region at the beginning of the mode, or may be introduced to the chamber through the central port during the press down mode. In a press down mode, as shown in
A separation mode may be used to separate agents and other constituents that reside within the flow-region. As shown in
Embodiments of the chamber allow separation of agents from other constituents primarily as a result of two factors. First, flow through the substrate may create a concentration of agents and other constituents at the substrate. For larger components, typically the agents, the concentration gradient may decrease more rapidly at points further from the substrate. Second, diffusion of components (agents or other constituents) away from the substrate occurs and may be driven by the concentration gradient within the chamber. Smaller components (often the other constituents) typically have concentration gradients that decrease less rapidly, meaning essentially that portions further from the substrate will be more greatly populated by other constituents than agents (taken as percentages of the total amounts of other constituents and agents, respectively), since the other constituents typically have greater diffusion rates than the agents. These factors, as illustrated in
The flow of fluid toward the side ports may have greater velocity at points that are further from the substrate, as shown in
Embodiments of the chamber utilize other devices to urge agents and/or constituents about a chamber. By way of example, electric fields, and/or magnetic fields may be used in combination with or in place of the flow fields and diffusion mechanisms discussed herein.
During an elution mode, the contents of the flow region, including any agents therein, exit the chamber through one or more of the central port and/or side ports. According to one embodiment, as shown in
Reactions are allowed to occur in the flow region of the chamber during a reaction mode. According to some embodiments, reaction modes may occur while fluid is flowing into the flow region from the central port and out of the flow region through the substrate, as shown in
Reaction modes may also involve controlling the environment of the flow region to promote reactions, such as by controlling the temperature, light conditions, and the like.
The chamber may be operated in a focusing mode to position agents on a select portion of the substrate, such as a central portion. As shown in
The ratio of fluid that passes through the central port versus the side ports may be altered to change the degree of focusing. Increasing the proportion of flow that enters the chamber through the side ports, relative to the proportion entering through the central port may reduce the size of the central portion of the membrane onto which agents are focused. All else constant, however, it may take longer to pass a similar volume of fluid containing agents from the central port and through the membrane when flow though the central port occurs at a lower flow rate.
The chamber may also be used, in a focusing mode, to position agents in particular streamlines of fluid that exit the chamber, such as central streamlines. This mode may also be referred to as reverse elution. Fluid may be moved from the reservoir and through the substrate to lift agents off of the substrate and out of the chamber through the central port, as shown in
Operating the chamber in a focusing mode may also help concentrate sample within a fluid in the direction of flow. That is, agents introduced to the chamber in a fluid may be spread apart from one another such that they contact the membrane at different points in time. Operating the chamber in focusing mode, however, causes them to be grouped or concentrated closer to one another, such that when eluted the agents are closer to one another in the direction of flow as well as being grouped in central streamlines of flow exiting the chamber. This may help the chamber achieve higher peak concentrations of agents.
A reverse elution mode performed on agents located in a central portion 15 of the membrane may result in the agents being grouped close to one another, in the direction of flow, as the agents exit the chamber.
Focusing agents toward a central portion 15 of the membrane prior to performing reverse elution may also help position agents in streamlines that have a velocities that are more consistent with one another. Internal flow through tubes and the like may often be characterized with a parabolic velocity profile 17, as shown in
Concentrating agents closer together in the direction of flow and/or in central streamlines may provide several benefits. Sample eluted from the chamber may include higher peak agent concentration, including higher peak DNA concentration (when the agent includes DNA). Additionally or alternatively, improved agent recovery may be achieved from sample provided to the chamber. Other benefits may also be realized. For instance, agents may be kept closer together in streamlines of more consistent velocities, as described above, as aspects of the invention are not limited in this respect.
Positioning agents in the central streamlines may prevent dispersion of sample that is conveyed from the chamber in a tube. As mentioned above and shown in
Reverse elution modes may also occur with fluid removed from the side ports of the chamber, as shown in
According to some embodiments, the chamber may include a second set of side ports from which fluid that surround, or that at least partially surrounds the central streamlines is removed during reverse elution.
According to other embodiments, fluid that surrounds central streamlines that pass through the central port may be removed at points further away from the chamber. As discussed herein, positioning the sample in central streamlines may prevent dispersion of the sample. In this respect, it may be beneficial, according to some embodiments, to remove fluid, other than the central streamlines just prior to another apparatus, such as a detector that may analysis the sample, or before sample is collected for storage or delivery to another apparatus.
It is to be appreciated that the above described modes of operation, and others, may be performed in chambers other than that shown in
The chamber of
The chamber of
The chamber of
Fluid flow may be controlled through the chamber during the various modes of operation with different configurations of pumps and valves. According to some embodiments, flow is controlled by a first variable flow rate pump in fluid communication with the central port and by a second variable flow rate pump that is in fluid communication with the side ports, and with a valve that is configured to control flow through the waste ports. It is to be appreciated, however, that other arrangements of pumps (either pressure or vacuum) and valves may be used to control flow through the chamber in various modes of operation, as aspects of the invention are not limited in this respect. Additionally, aspects of the invention are not limited to any one type of pump or valve.
Embodiments of the chamber may be operated by a controller that receives information for a particular operating protocol and, in turn, controls pumps and/or valves to run the system automatically to complete the protocol. The term ‘automatically’, as used herein, refers to a system that is capable of switching between modes of operation without the intervention of an operator, such as between a press down mode, a separation mode, a reaction mode, and/or an elution mode, among others, or to a system that is otherwise capable of altering operating condition, such as flow rates or temperatures without manual operator intervention, such as by following an predefined operating protocol or by controlling the system to predetermined set points. The controller and operating protocol combination may be implemented in any of numerous ways. For example, in one embodiment the controller and operating protocol combination may be implemented using hardware, software or a combination thereof. When implemented in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers. It should be appreciated that any component or collection of components that perform the functions described herein can be generically considered as one or more controllers that control the functions discussed herein. The one or more controllers can be implemented in numerous ways, such as with dedicated hardware, or with general purpose hardware (e.g., one or more processors) that is programmed using microcode or software to perform the functions recited above. The one or more controllers may be included in one or more host computers, one or more storage systems, or any other type of computer that may include one or more storage devices coupled to the one or more controllers.
In this respect, it should be appreciated that one implementation of the embodiments of the present invention comprises at least one computer-readable medium (e.g., a computer memory, a floppy disk, a compact disk, a tape, etc.) encoded with an operating protocol in the form of a computer program (i.e., a plurality of instructions), which, when executed by the controller, performs the herein-discussed functions of the embodiments of the present invention. The computer-readable medium can be transportable such that the treatment protocol stored thereon can be loaded onto any computer system resource to implement the aspects of the present invention discussed herein. In addition, it should be appreciated that the reference to an operating protocol or controller which, when executed, performs the herein-discussed functions, is not limited to an application program running on a host computer. Rather, the term operating protocol is used herein in a generic sense to reference any type of computer code (e.g., software or microcode) that can be employed to program a processor to implement the herein-discussed aspects of the present invention.
The system may also comprise one or more sensors that receive information from the chamber or fluidic conduits used to connect the chamber to other portions of the system. Such sensors may receive information regarding pressure, temperature, flow rates, and the like, in any portion of the chamber or system. The system may also receive information for detectors that are used to analyze or detect the presence of an agent in a portion of the system.
The processing steps of the invention generally comprise the use of one or more reagents (i.e., at least one reagent) that acts on or reacts with and thereby modifies an agent. At least one reagent however is less than an infinite number of reagents as used herein and more commonly represents less than 1000, less than 100, less than 50, less than 20, less than 10, or less than 5 reagents. The nature of the reagents will vary depending on the processing step being performed with such reagent. The reagent may be a lysing agent (e.g., a detergent such as but not limited to deoxycholate), a labeling agent or probe (e.g., an intercalator or a sequence-specific probe), an enzyme (e.g., a lytic enzyme, an exonuclease, or an endonuclease such as a restriction endonuclease), an enzyme co-factor (e.g., cations such as Mg2+, a stabilizer (e.g., an anti-oxidant), and the like. One of ordinary skill in the art can envision other reagents to be used in the invention. Although the agent can be modified through those techniques mentioned above, it is to be appreciated that other techniques can also be used to modify the agent.
Additionally, the fluids used in the invention may contain other components (or constituents) such as buffering compounds (e.g., TRIS), chelating compounds (e.g., EDTA), ions (e.g., monovalent, divalent or trivalent cations or anions), salts, preservatives, and the like.
By way of example, a fluid may contain a lysing agent that lyses agents (e.g., eukaryotic cells or pathogens such as bacteria, viruses and the like) in the chamber, thereby releasing cellular contents, such as nucleic acids, into the chamber.
The invention in based in part on the discovery of a chamber (referred to herein interchangeably as a “focusing chamber” or a “reaction chamber”) that is able to isolate and/or manipulate and/or concentrate large agents without loss of structural integrity. In the case of high molecular weight agents such as genomic DNA, the chamber is able to isolate and/or manipulate genomic DNA without shearing, thereby yielding genomic fragments that are at least tens or hundreds of kilobases in length, and in some instances are megabases in length. These manipulations can be carried out on the order of hours rather than days (as is commonplace in the prior art). Moreover, the invention contemplates automated handling of the chamber and the device comprising it. These features alone and in combination define and apparatus and method of use thereof that greatly enhances and facilitates analysis of large agents such but not limited to genomic DNA. The ability to manipulate long stretches of DNA facilitates various analyses including but not limited to identification of the source of the genomic material (e.g., in pathogen analysis and screening).
The invention provides a fluidic chamber that is minimally comprised of an inlet port, a porous substrate that allows fluid but not the agents of interest to pass through, and at least one side port. Fluid flow is used to introduce, manipulate, separate, remove and/or harvest agents and/or other constituents from the chamber. The invention further provides devices and systems that comprise the fluidic chamber. The invention further provides methods for using the fluidic chamber, device and/or system to handle, isolate, purify, and/or manipulate large molecular weight agents such as but not limited to naturally and non-naturally occurring agents such as naturally or non-naturally occurring polymers including but not limited to nucleic acids, proteins, polysaccharides, and the like. Possible uses of the chamber include but are not limited to agent (e.g., polymer) harvest, isolation, purification, manipulation, and concentration such as nucleic acid hybridization, restriction endonuclease digestion of nucleic acids, amplification of nucleic acids (including whole genome amplification), labeling of nucleic acids using intercalators and/or sequence specific and/or sequence non specific probes, covalent or non-covalent modification of nucleic acids including but not limited to biotinylation of nucleic acids and optionally subsequent conjugation to streptavidin coated beads, and the like. One or more or all of these manipulations may be carried out in the chamber according to the invention. Those of ordinary skill in the art will readily envision a variety of other uses of the fluidic chamber (and devices) provided herein.
The chamber may also be used for concentration of agents, mixing of reactants, buffer exchange, and/or removal of waste products and excess reagents. In the process of carrying out any of the manipulations described herein, therefore, the chamber may function by concentrating an agent (e.g., genomic DNA) in a particular region, by distributing agents evenly across the substrate or other porous surface of the chamber, by promoting a reaction between the agent(s) and one or more other substrates or reagents, by separating agent(s) from other components present in the chamber including for example reaction catalysts, substrates and/or by products. The device is able to perform these various functions primarily by modulating the fluid flow and path into and out of the chamber as described in greater detail herein.
Fluid flow that is introduced through a central port and diffuser of the chamber may be substantially opposed to the substrate, according to some embodiments, such that the fluid flow is directed toward or perpendicular to the substrate, unlike in field flow fractionation devices, where the flow is directed along or parallel to a membrane. Any agents or other constituents in the fluid flow may be retained, at least temporarily, for manipulation on the substrate.
As used herein, the term ‘agent’ is used to refer to the entity, molecule or compound being harvested, isolated, purified and/or manipulated within the chamber. As stated above, the agent may be naturally occurring or non-naturally occurring. It may be a cell that is lysed in the chamber in order to release cellular components such as but not limited genomic DNA. It may be another vehicle that carries genetic material such as but not limited to a phage or virus. It may be a polymer such as but not limited to nucleic acids (including DNA, RNA, and the like), proteins (including peptides and polypeptides), polysaccharides, and the like. These agents may be introduced into the chamber directly or they may be provided to the chamber following manipulation of another agent such as but not limited to the cells that are lysed within the chamber to release nucleic acids.
In some embodiments, the chamber functions to separate agents from ‘other constituents’ (or other components) within the chamber. As used herein, the term ‘other constituents’ is used to refer to any component being physically separated from agents in the chamber. Other constituents may include reagents, waste material, and/or any material introduced to the chamber to act upon an agent and/or to alter the environment of the chamber. By way of example, other constituents may comprise lytic enzymes that are introduced into the chamber to lyse cells, cellular debris that is created following cell lysis, excess unbound probes, excess unbound intercalator, excess unincorporated nucleotides, restriction endonucleases, and the like.
Use of the chamber of the invention allows the structural integrity of agents to be maintained. This is particularly useful if the agent is otherwise fragile and subject to shearing or cleavage using conventional manipulation techniques, or where it is important to keep the agent intact, such as in analysis of nucleic acids that requires kilobase or megabase lengths of nucleic acids. In one example, the reaction chamber may obviate the need to manually handle strands of DNA, and this too can reduce probability and extent of fragmentation of the DNA. In another manner, shear forces associated with velocity gradients in moving fluids of the reaction chamber may be controlled, such that longer strands of polymers, like genomic DNA, may remain intact within the reaction chamber. According to some embodiments, nucleic acids that are at least 30 kilobases, at least 40 kilobases, at least 50 kilobases, at least 100 kilobases, at least 150 kilobases, at least 500 kilobases, at least 1 megabase, or at least 5 megabases may be retained in the chamber intact for subsequent analysis.
The chamber may allow the processes described herein, and others, to be performed without or with minimal manual intervention by an operator, such as is typically required in other processes, like in those that involve agarose plugs. An automated process is one that requires initial input from an operator but thereafter occurs independent of operator intervention. Examples of automated processes or methods include the harvest of agents upon manual loading of a sample into the chamber or an apparatus comprising the chamber. It would preferably not require manual loading of fluid and/or reagents. It would also not preferably require manual elution of the agent from the chamber. The degree of automation desired and implemented will depend on the particular application and can be modified accordingly by one of ordinary skill in the art.
Accordingly, embodiments of the chamber may also be used with automated operating protocols, such that systems using the chamber may be operated with minimal or no operator involvement and/or oversight. One or more reaction chambers may be incorporated into a system that receives a sample, either manually or automatically, and then initiates an automated operating protocol for processing the sample that is carried out by a controller of the system. By way of example, one automated operating protocol may involve nucleic acid harvest, isolation and restriction digestion, as discussed herein. It will be understood by those of ordinary skill in the art that other protocols may also be automated and the invention is not to be limited in this regard.
The chamber is able to prepare samples for analysis in less time than is required by conventional techniques. Most if not all manipulations may be performed on the order of hours including less than 12 hours, preferably less than 9 hours, more preferably less than 6 hours and even more preferably less than 3 hours, depending on the embodiment. In still other embodiments, the manipulations may be carried out in less than 1 hour. As non-limited examples of the speed of manipulation and analysis according to the invention, cell lysis and labeling of released nucleic acids (e.g., by sequence specific probes and/or intercalators) may be performed in 6 hours or less (including 5.5 hours or less, 5 hours or less, 4.5 hours or less, 4 hours or less, 3.5 hours or less, 3 hours or less, 2.5 hours or less, 2 hours or less, or 1.5 hours or less), cell lysis and digestion of released nucleic acids may be performed in 4 hours or less (including 3.5 hours or less, 3 hours or less, 2.5 hours or less, 2 hours or less, 1.5 hours or less, or 1 hour or less).
As used herein, “harvesting” refers to the process of extracting an agent from a sample or from a component within a sample such as but not limited to a cell or phage. Harvesting may also refer to the extraction of a smaller nucleic acid from a larger nucleic acid, including for example extracting a nucleic acid from a chromosome whether the chromosome is naturally or non-naturally occurring.
As used herein, “isolating” refers to the process of separating the agent from other components or constituents in the sample and/or chamber. An example of an isolated agent is a nucleic acid that has been separated from the cell from which it was originally presented. As used herein, “purification” refers to the degree to which the agent is separated from other components or constituents in the sample and/or chamber. The more purified the agent, the fewer components or constituents it is still present with. As used herein, “manipulating” or “modifying” an agent are used interchangeably to refer to making a change to the agent including but not limited binding a probe to the agent, deliberating cleaving the agent, and the like.
In some aspects of the invention, a number of processes are performed in the chamber. In the case of agents that are nucleic acids (including but not limited to genomic DNA), these processes may be harvest, isolation and/or purification of the nucleic acid (e.g., from a cell or from a sample including for example release of nucleic acids after chemical or enzymatic lysis (e.g., lysozyme and/or proteinase K digestion) of cells), digestion of the nucleic acid (e.g., using exonucleases or endonucleases), hybridization of sequence specific probes to the nucleic acids, and optionally binding of an intercalator to the nucleic acids.
The chamber and system of the invention allow these processes to occur rapidly, particularly as compared to prior art methods. For example, lysis of cells through to the digestion of nucleic acid can occur in about 2.5 hours or less, lysis of cells through to hybridization with probes can occur in about 3.5 hours or less, and lysis of cells through to intercalation can occur in about 4 hours or less.
The rapid harvest and/or manipulation of agents such as nucleic acids is due at least in part to the ability of the chamber and the system to sufficiently expose agents (including cells and nucleic acids) to the various reagents (including enzymes, co-factors, buffers, probes, intercalators, quenchers, the like) introduced into the chamber. The fluid flow through the chamber facilitates in some embodiment relatively uniform distribution of agents and reagents onto the substrate (e.g., the membrane). This ensures better mixing of reaction components within the chamber and less shearing forces than are provided by prior art methods.
The following is an exemplary and non-limiting example of the use and operation of the chamber. A test sample (e.g., a sample suspected of containing a biowarfare agent such as an anthrax spore) is introduced into the chamber through the introduction port. The reservoir port is open while the side port(s) is closed. Temperature of the chamber may be room temperature (e.g., about 25 degrees C. Leaving the configuration of the chamber as is, a solution of lysozyme and proteinase K is introduced into the chamber followed by an incubation at about 60 degrees C. This is followed by removal of cell debris by flowing (wash) fluid into the introduction port and out through the side port(s). The side port(s) is again closed and a solution comprising restriction enzyme is introduced into the chamber through the introduction port followed by incubation at about 40 degrees C. Restriction enzyme is then removed, along with other small molecular weight debris and reagents through the side port(s), and then the digested DNA fragments are eluted from the chamber through the side port(s). The fragments may then be analyzed in any number of ways including but not limited to gel electrophoresis to determine the distribution of fragments resulting from digestion with that particular enzyme. Unique and thus identifying fragment distributions may be used to identify the presence of particular agents such as anthrax spores. These patterns in most instances will be known a priori and the analysis will require a comparison with that known pattern and distribution.
Using the methods of the invention, it has been possible to extract restriction fragments corresponding to 340 microns in length, as well as fragments corresponding to more than 291 kilobases, about 210 kilobases, about 194 kilobases, about 145 kilobases, and about 60 kilobases from Bacillus spores using the chamber of the invention. These were prepared by the chamber in about 4 hours, using an automated process. This is to be compared to the prior art methodology that takes about 6 days and results in less clearly discernable restriction fragments. In this way, the chamber and system can be used to rapidly identify pathogens, leading to more rapid response times by emergency personnel.
The chamber and method of the invention has also been used to successfully harvest nucleic acids on the order of 1700 microns in length. It is to be understood that the quality of the nucleic acids prepared using the chamber and methods of the invention is similar if not superior to the quality achieved using gel plug methods of the prior art. Moreover, the methods of the invention are far faster than those prior art methods. Another advantage of the methods of the invention are that the nucleic acids prepared according to the methods provided herein are not random fragments. This is so at least because of the ability of the invention to maintain the nucleic acid in an intact form (i.e., without substantial shearing or unintentional fragmentation or cleavage). Nucleic acid recoveries range from at least 50% of input to greater than 75% of input. In some embodiments, greater than 80%, greater than 85%, greater than 90%, and in some embodiments about 100% of input is recovered.
Still other applications contemplated by the invention are hybridization of genomic DNA with fluorescently labeled probes (e.g., to characterize sequence specificity and site occupancy of DNA binding ligands), fluorescently labeled restriction enzyme labeling of genomic DNA (e.g., for rapid mapping of large DNA), detection and optionally quantification of nucleic acids and/or proteins utilizing DNA as a capture unit carrier, plasmid preparations from bacterial cells and/or cultures, combined DNA isolation and amplification, and the like.
It is to be understood that similar methods can be employed to identify and analyze nucleic acids from subjects (e.g., for genomic sequencing, for forensic analysis, for paternity testing, etc.). Many of these analyses can be accomplished using restriction enzymes akin to the analysis performed with respect to pathogen detection and identification (as described above). As an example, restriction fragment length polymorphism analysis (wherein differences in length of restriction fragments can be used to determine source of a nucleic acid) can be facilitated by harvesting and manipulating nucleic acids in the chamber.
Similarly, samples can be analyzed for the presence (or absence) of proteins as may be applicable to diagnostic, prognostic or therapeutic monitoring. In some embodiments, proteins may be detected and/or identified by binding to them to binding partners (or probes) such as antibodies or antibody fragments. Following labeling within the chamber, the proteins may be eluted (as described herein) and analyzed by any number of systems and instruments including but not limited to FACS or other single molecule detection systems. The chamber and system may also be used to simply harvest and separate proteins in a sample away from debris in the sample, thereby allowing the protein profile of a sample to be analyzed using for example standard techniques such as Western blots, HPLC, mass spectrometry, and the like.
The invention is not limited in the nature of the agent being harvested, manipulated, detected or analyzed (i.e., the target agent). These agents include but are not limited to cells and cell components (e.g., proteins and nucleic acids), chemicals and the like. These agents may be biohazardous agents as described in greater detail herein. Target agents may be naturally occurring or non-naturally occurring, including agents synthesized ex vivo but released into a natural environment. As described herein, the methods and systems of the invention can be used to modify one or more agents concurrently, simultaneously or consecutively. A plurality of agents is more than one and less than an infinite number. It includes less than 1010, less than 109, less than 108, less than 109, less than 107, less than 106, less than 105, less than 104, less than 5000, less than 1000, less than 500, less 100, less than 50, less than 25, less than 10, or less than 5 agents, or as little as one agent, as well as every integer therebetween as if explicitly recited herein.
The conditions, temperature, buffers and reagents of the chamber will vary depending on the particular type of modification being performed and will be known to those of ordinary skill in the art. See for example Sambrook et al, “Molecular Cloning: A Laboratory Manual” (2nd. Ed.), Vols. 1-3, Cold Spring Harbor Laboratory Press (1989); F. Ausubel et al, eds., “Current protocols in molecular biology”, Green Publishing and Wiley Interscience, New York (1987); Lewin, “Genes II”, John Wiley & Sons, New York, N.Y., (1985); Old et al., “Principles of Gene Manipulation: An Introduction to Genetic Engineering”, 2nd edition, University of California Press, Berkeley, Calif. (1981).
The invention can be applied to the detection and optionally identification and/or quantification of any agent, including rare agents or agents that would be costly to detect given the reagents necessary therefor. One example of such agents is biohazardous or biowarfare agents. These agents can be biological or chemical in nature. Biological biowarfare agents can be classified broadly as pathogens (including spores thereof) or toxins. As used herein, a pathogen (including a spore thereof) is an agent capable of entering a subject such as a human and infecting that subject. Examples of pathogens include infectious agents such as bacteria, viruses, fungi, parasites, mycobacteria and the like. Prions may also be considered pathogens to the extent they are thought to be the transmitting agent for CJD and like diseases. As used herein, a toxin is a pathogen-derived agent that causes disease and often death in a subject without also causing an infection. It derives from pathogens and so may be harvested therefrom. Alternatively, it may be synthesized separately from its naturally occurring source. Biological warfare agents may be weaponized (i.e., aerosolized) for maximum spread. Examples of pathogens are provided below.
CDC Category A agents include Bacillus anthracis (otherwise known as anthrax), Clostridium botulinum and its toxin (causative agent for botulism), Yersinia pestis (causative agent for the plague), variola major (causative agent for small pox), Francisella tularensis (causative agent for tularemia), and viral hemorrhagic fever causing agents such as filoviruses Ebola and Marburg and arenaviruses such as Lassa, Machupo and Junin.
CDC Category B agents include Brucellosis (Brucella species), epsilon toxin of Clostridium perfringens, food safety threats such as Salmonella species, E. coli and Shigella, Glanders (Burkholderia mallei), Melioidosis (Burkholderia pseudomallei), Psittacosis (Chlamydia psittaci), Q fever (Coxiella burnetii), ricin toxin (from Ricinus communis castor beans), Staphylococcal enterotoxin B, Typhus fever (Rickettsia prowazekii), viral encephalitis (alphaviruses, e.g., Venezuelan equine encephalitis, eastern equine encephalitis, western equine encephalitis), and water safety threats such as e.g., Vibrio cholerae, Cryptosporidium parvum.
CDC Category C agents include emerging infectious diseases such as Nipah virus and hantavirus.
Further examples of bacteria that can be harvested and/or manipulated according to the invention include Gonorrhea, Staphylococcus spp., Streptococcus spp. such as Streptococcus pneumoniae, Syphilis, Pseudomonas spp., Clostridium difficile, Legionella spp., Pneumococcus spp., Haemophilus spp. (e.g., Haemophilus influenzae), Klebsiella spp., Enterobacter spp., Citrobacter spp., Neisseria spp. (e.g., N. meningitidis, N. gonorrhoeae), Shigella spp., Salmonella spp., Listeria spp. (e.g., L. monocytogenes), Pasteurella spp. (e.g., Pasteurella multocida), Streptobacillus spp., Spirillum spp., Treponema spp. (e.g., Treponema pallidum), Actinomyces spp. (e.g., Actinomyces israelli), Borrelia spp., Corynebacterium spp., Nocardia spp., Gardnerella spp. (e.g., Gardnerella vaginalis), Campylobacter spp., Spirochaeta spp., Proteus spp., and Bacteriodes spp.
Further examples of viruses that can be harvested and/or manipulated according to the invention include Hepatitis virus A, B and C, West Nile virus, poliovirus, rhinovirus, HIV, Herpes simplex virus 1 and 2 (including encephalitis, neonatal and genital forms), human papilloma virus, cytomegalovirus, Epstein Barr virus, Hepatitis virus A, B and C, rotavirus, norovirus, adenovirus, influenza virus including influenza A virus, respiratory syncytial virus, varicella-zoster virus, small pox, monkey pox and SARS virus.
Further examples of fungi that can be harvested and/or manipulated according to the invention include candidiasis, ringworm, histoplasmosis, blastomycosis, paracoccidioidomycosis, crytococcosis, aspergillosis, chromomycosis, mycetoma, pseudallescheriasis, and tinea versicolor.
Further examples of parasites that can be harvested and/or manipulated according to the invention include both protozoa and nematodes such as amebiasis, Trypanosoma cruzi, Fascioliasis (e.g., Facioloa hepatica), Leishmaniasis, Plasmodium (e.g., P. falciparum, P. knowlesi, P. malariae,) Onchocerciasis, Paragonimiasis, Trypanosoma brucei, Pneumocystis (e.g., Pneumocystis carinii), Trichomonas vaginalis, Taenia, Hymenolepsis (e.g., Hymenolepsis nana), Echinococcus, Schistosomiasis (e.g., Schistosoma mansoni), neurocysticercosis, Necator americanus, and Trichuris trichuria, Giardia.
Further examples of mycobacteria that can be harvested and/or manipulated according to the invention include M. tuberculosis or M. leprae.
Examples of toxins include abrin, ricin and strychnine. Further examples of toxins include toxins produced by Corynebacterium diphtheriae (diphtheria), Bordetella pertussis (whooping cough), Vibrio cholerae (cholera), Bacillus anthracis (anthrax), Clostridium botulinum (botulism), Clostridium tetani (tetanus), and enterohemorrhagic Escherichia coli (bloody diarrhea and hemolytic uremic syndrome), Staphylococcus aureus alpha toxin, Shiga toxin (ST), cytotoxic necrotizing factor type 1 (CNF1), E. coli heat-stable toxin (ST), botulinum, tetanus neurotoxins, S. aureus toxic shock syndrome toxin (TSST), Aeromonas hydrophila aerolysin, Clostridium perfringens perfringolysin O, E. coli hemolysin, Listeria monocytogenes listeriolysin O, Streptococcus pneumoniae pneumolysin, Streptococcus pyogenes streptolysine O, Pseudomonas aeruginosa exotoxin A, E. coli DNF, E. coli LT, E. coli CLDT, E. coli EAST, Bacillus anthracis edema factor, Bordetella pertussis dermonecrotic toxin, Clostridium botulinum C2 toxin, C. botulinum C3 toxin, Clostridium difficile toxin A, and C. difficile toxin B.
The foregoing lists of infections are not intended to be exhaustive but rather exemplary.
It may be necessary, in some embodiments, to disrupt pathogen cell walls, cell membranes or viral envelopes. The invention contemplates performing such lysis within the chamber optionally followed by isolation and/or manipulation of cellular contents released after lysis. Disruption can be accomplished by any number of means including chemical, enzymatic, or osmotic lysis.
In other embodiments, the agent being harvested and/or manipulated is a naturally occurring or non-naturally occurring polymer. A polymer as used herein is a compound comprised of monomers linked together by linkages. An monomer as used herein is the smallest building block that can be linked directly or indirectly to other building blocks (or monomers) to form the particular polymer. At a minimum, the polymer contains at least two linked monomers. The particular type of monomer will depend upon the type of polymer being analyzed. The polymer may be a nucleic acid, a protein, a peptide, a carbohydrate, an oligo- or polysaccharide, a lipid, etc. The polymer may be branched or unbranched. In some embodiments, the polymer is unbranched as is the case with naturally occurring nucleic acids such as genomic DNA.
In some embodiments, the polymer is capable of being bound to or by sequence- or structure-specific probes. Where the polymer and the probes are both nucleic acids and the binding is sequence specific, the probes are hybridized to the nucleic acid polymer. The probes may bind to the polymer at a sequence or structure that is unique to that polymer or to a region of that and other polymers. Polymers may also be labeled with non-sequence specific probes or labels including intercalators or non-specific dyes.
In some instances the polymers may be manipulated without prior isolation and/or purification, while in other instances the polymers may be manipulated following isolation and/or purification.
In some embodiments, the method can be used to harvest and/or manipulate a plurality of identical polymers in a sample or a plurality of different polymers in a sample.
In some important embodiments, the agents are naturally occurring or non-naturally occurring nucleic acids. Non-naturally occurring nucleic acids include but are not limited to bacterial artificial chromosomes (BACs) and yeast artificial chromosomes (YACs). The term “nucleic acid” refers to multiple linked nucleotides (i.e., molecules comprising a sugar (e.g., ribose or deoxyribose) linked to an exchangeable organic base, which is either a pyrimidine (e.g., cytosine (C), thymidine (T) or uracil (U)) or a purine (e.g., adenine (A) or guanine (G)). “Nucleic acid” and “nucleic acid molecule” are used interchangeably and refer to oligoribonucleotides as well as oligodeoxyribonucleotides. The terms shall also include polynucleosides (i.e., a polynucleotide minus a phosphate) and any other organic base containing nucleic acid. The organic bases include adenine, uracil, guanine, thymine, cytosine and inosine.
In important embodiments, the nucleic acid is DNA or RNA. DNA includes genomic DNA (such as nuclear DNA and mitochondrial DNA), as well as in some instances complementary DNA (cDNA). RNA includes messenger RNA (mRNA), ribosomal RNA (rRNA), microRNA (miRNA), and the like. Harvest and isolation of nucleic acids are routinely performed in the art and suitable methods can be found in standard molecular biology textbooks. (See, for example, Sambrook et al, “Molecular Cloning: A Laboratory Manual” (2nd. Ed.), Vols. 1-3, Cold Spring Harbor Laboratory Press (1989); F. Ausubel et al, eds., “Current protocols in molecular biology”, Green Publishing and Wiley Interscience, New York (1987); Lewin, “Genes II”, John Wiley & Sons, New York, N.Y., (1985); Old et al., “Principles of Gene Manipulation: An Introduction to Genetic Engineering”, 2nd edition, University of California Press, Berkeley, Calif. (1981)).
Preferably, prior amplification of nucleic acids using techniques such as polymerase chain reaction (PCR) are not necessary. Accordingly, the polymer may be a non in vitro amplified nucleic acid. As used herein, a “non in vitro amplified nucleic acid” refers to a nucleic acid that has not been amplified in vitro using techniques such as polymerase chain reaction or recombinant DNA methods prior to manipulation, detection and/or analysis by the methods contemplated by the invention. A non in vitro amplified nucleic acid may however be a nucleic acid that is amplified in vivo (in the biological sample from which it was harvested) as a natural consequence of the development of the cells in vivo. This means that the non in vitro nucleic acid may be one which is amplified in vivo as part of for example locus amplification, which is commonly observed in some cell types as a result of mutation or cancer development.
As used herein, “linked” or “linkage” means two entities bound to one another by any physicochemical means. Any linkage known to those of ordinary skill in the art, covalent or non-covalent, is embraced. Natural linkages are those ordinarily found in nature connecting for example naturally occurring entities. Natural linkages include, for instance, amide, ester and thioester linkages. Nucleic acid targets or probes of the invention may comprise synthetic or modified linkages.
Nucleic acids commonly have a phosphodiester backbone because this backbone is most common in vivo. However, they are not so limited. Backbone modifications are known in the art. One of ordinary skill in the art is capable of preparing such nucleic acids without undue experimentation. The probes, if nucleic acid in nature, can also have backbone modifications such as those described herein.
Thus the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of nucleic acid units linked together such as peptide nucleic acids (which have amino acid linkages with nucleic acid bases, and which are discussed in greater detail herein). In some embodiments, the nucleic acids are homogeneous in backbone composition.
The nucleic acids may be double-stranded, although in some embodiments the nucleic acid targets are denatured and presented in a single-stranded form. This can be accomplished by modulating the environment of a double-stranded nucleic acid including singly or in combination increasing temperature, decreasing salt concentration, and the like. Methods of denaturing nucleic acids are known in the art.
The methods of the invention in part may be used to analyze agents using probes that recognize and specifically bind to an agent. Binding of a probe to an agent may indicate the presence and location of a target site in the target agent, or it may simply indicate the presence of the agent, depending on user requirements. As used herein, a target agent that is bound by a probe is “labeled” with the probe and/or its detectable label.
As used herein, a probe is a molecule or compound that binds preferentially to the agent of interest (i.e., it has a greater affinity for the agent of interest than for other compounds). Its affinity for the agent of interest may be at least 2-fold, at least 5-fold, at least 10-fold, or more than its affinity for another compound. Probes with the greatest differential affinity are preferred in most embodiments.
The probes can be of any nature including but not limited to nucleic acid (e.g., aptamers), peptide, carbohydrate, lipid, and the like. A nucleic acid based probe such as an oligonucleotide can be used to recognize and bind DNA or RNA. The nucleic acid based probe can be DNA, RNA, LNA or PNA, although it is not so limited. It can also be a combination of one or more of these elements and/or can comprise other nucleic acid mimics. With the advent of aptamer technology, it is possible to use nucleic acid based probes in order to recognize and bind a variety of non-nucleic acid agents, including peptides and carbohydrates, in a structurally specific manner. Other probes for nucleic acid agents include but are not limited to sequence-specific major and minor groove binders and intercalators, nucleic acid binding peptides or proteins, etc.
As used herein a “peptide” is a polymer of amino acids connected preferably but not solely with peptide bonds. The probe may be an antibody or an antigen-binding antibody fragment. Antibodies include IgG, IgA, IgM, IgE, IgD as well as antibody variants such as single chain antibodies. Antigen-binding antibody fragments include but are not limited to Fab, F(ab)2, and Fv fragments.
The methods provided herein involve the use of probes that bind to the target polymer in a sequence-specific manner. “Sequence-specific” when used in the context of a nucleic acid means that the probe recognizes a particular linear (or in some instances quasi-linear) arrangement of nucleotides or derivatives thereof. In some embodiments, the probes are “polymer-specific” meaning that they bind specifically to a particular polymer, possibly by virtue of a particular sequence or structure unique to that polymer. The degree of specificity with which the probes bind to target agents will depend on the conditions in which the binding (or hybridization) occurs. For example, salt concentration and temperature can be modulated in order to vary the range of sequences recognized by the nucleic acid probes. Generally speaking the more stringent the conditions, the more specific the binding and the less likely will be the occurrence of non-specific binding events. Those of ordinary skill in the art will be able to determine optimum conditions for a desired specificity.
In some instances, nucleic acid probes will form at least a Watson-Crick bond with a target nucleic acid. In other instances, the nucleic acid probe can form a Hoogsteen bond with the target nucleic acid, thereby forming a triplex. A nucleic acid probe that binds by Hoogsteen binding enters the major groove of a nucleic acid polymer and hybridizes with the bases located there. Examples of these latter probes include molecules that recognize and bind to the minor and major grooves of nucleic acids (e.g., some forms of antibiotics). In some embodiments, the nucleic acid probes can form both Watson-Crick and Hoogsteen bonds with the nucleic acid polymer. BisPNA probes, for instance, are capable of both Watson-Crick and Hoogsteen binding to a nucleic acid.
The length of probe can also determine the specificity of binding. The energetic cost of a single mismatch between the probe and the nucleic acid polymer is relatively higher for shorter sequences than for longer ones. Therefore, hybridization of smaller nucleic acid probes is more specific than is hybridization of longer nucleic acid probes because the longer probes can embrace mismatches and still continue to bind to the polymer depending on the conditions. One potential limitation to the use of shorter probes however is their inherently lower stability at a given temperature and salt concentration. In order to avoid this latter limitation, bisPNA probes can be used to bind shorter sequences with sufficient hybrid stability. Longer probes are desirable when unique gene-specific sequences are being detected.
Notwithstanding these provisos, the nucleic acid probes of the invention can be any length ranging from at least 4 nucleotides to in excess of 1000 nucleotides. The length of the probe can be any length of nucleotides between and including the ranges listed herein, as if each and every length was explicitly recited herein. Thus, the length may be at least 5 nucleotides, at least 10 nucleotides, at least 15 nucleotides, at least 20 nucleotides, or at least 25 nucleotides, or more, in length. The length may range from at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 12, at least 15, at least 20, at least 25, at least 50, at least 75, at least 100, at least 150, at least 200, at least 250, at least 500, or more nucleotides (including every integer therebetween as if explicitly recited herein). In preferred embodiments, the probes are 5-100 nucleotides in length, more preferably between 5-25 nucleotides in length, and even more preferably 5-12 nucleotides in length.
The probes are preferably single-stranded, but they are not so limited. For example, when the probe is a bisPNA it can adopt a secondary structure with the nucleic acid polymer resulting in a triple helix conformation, with one region of the bisPNA clamp forming Hoogsteen bonds with the backbone of the polymer and another region of the bisPNA clamp forming Watson-Crick bonds with the nucleotide bases of the polymer.
In some embodiments, the probes may be molecular beacons. When not bound to their targets, the molecular beacon probes form a hairpin structure and do not emit fluorescence since one end of the molecular beacon is a quencher molecule. However, when bound to their targets, the fluorescent and quenching ends of the probe are sufficiently separated so that the fluorescent end can now emit.
In some embodiments, the probe is a nucleic acid that is a peptide nucleic acid (PNA), a bisPNA clamp, a pseudocomplementary PNA, a locked nucleic acid (LNA), DNA, RNA, or co-nucleic acids of the above such as DNA-LNA co-nucleic acids. siRNA or miRNA or RNAi molecules can be similarly used.
In some embodiments, the probe is a peptide nucleic acid (PNA), a bisPNA clamp, a locked nucleic acid (LNA), a ssPNA, a pseudocomplementary PNA (pcPNA), a two-armed PNA (as described in co-pending U.S. patent application having Ser. No. 10/421,644 and publication number US 2003-0215864 A1 and published Nov. 20, 2003, and PCT application having serial number PCT/US03/12480 and publication number WO 03/091455 A1 and published Nov. 6, 2003, filed on Apr. 23, 2003), or co-polymers thereof (e.g., a DNA-LNA co-polymer).
PNAs are DNA analogs having their phosphate backbone replaced with 2-aminoethyl glycine residues linked to nucleotide bases through glycine amino nitrogen and methylenecarbonyl linkers. PNAs can bind to both DNA and RNA targets by Watson-Crick base pairing, and in so doing form stronger hybrids than would be possible with DNA or RNA based probes. BisPNA includes two strands connected with a flexible linker. One strand is designed to hybridize with DNA by a classic Watson-Crick pairing, and the second is designed to hybridize with a Hoogsteen pairing. Pseudocomplementary PNA (pcPNA) (Izvolsky, K. I. et al., Biochemistry 10908-10913 (2000)) involves two single stranded PNAs added to dsDNA. Locked nucleic acid (LNA) molecules form hybrids with DNA, which are at least as stable as PNA/DNA hybrids (Braasch, D. A. et al., Chem & Biol. 8(1):1-7 (2001)).
As stated herein, the agent may be labeled. As an example, if the agent is a nucleic acid, it may be labeled through the use of sequence-specific probes that bind to the polymer in a sequence-specific manner. The sequence-specific probes are labeled with a detectable label (e.g., a fluorophore or a radioisotope). The nucleic acid however can also be synthesized in a manner that incorporates detectable labels such as fluorophores directly into the growing nucleic acid. Nucleic acids can be synthesized de novo (e.g., using automated nucleic acid synthesizers) using fluorescently labeled nucleotides. Such nucleotides are commercially available from suppliers such as Amersham Biosciences, Invitrogen, and New England Nuclear/Perkin Elmer.
Alternatively, nucleic acids may be synthesized or modified post synthesis to include active amino or thiol groups. (Proudnikov and Mirabekov, Nucleic Acid Research, 24:4535-4532, 1996.) An extensive description of modification procedures that can be performed on a nucleic acid polymer can be found in Hermanson, G. T., Bioconjugate Techniques, Academic Press, Inc., San Diego, 1996, which is incorporated by reference herein. There are several known methods of direct chemical labeling of DNA (Hermanson, 1996; Roget et al., 1989; Proudnikov and Mirabekov, 1996). One of the methods is based on the introduction of aldehyde groups by partial depurination of DNA. Fluorescent labels with an attached hydrazine group are efficiently coupled with the aldehyde groups and the hydrazine bonds are stabilized by reduction with sodium labeling efficiencies around 60%. The reaction of cytosine with bisulfite in the presence of an excess of an amine fluorophore leads to transamination at the N4 position (Hermanson, 1996). Reaction conditions such as pH, amine fluorophore concentration, incubation time, and temperature affect the yield of products formed.
Probes are generally labeled with a detectable label. A detectable label is a moiety, the presence of which can be ascertained directly or indirectly. Generally, detection of the label involves the creation of a detectable signal such as for example an emission of energy. The label may be of a chemical, peptide or nucleic acid nature although it is not so limited. The nature of the label used will depend on a variety of factors, including the nature of the analysis being conducted, the type of energy source and detector used, and the type of polymer and probe. The label should be sterically and chemically compatible with the entities to which it is bound.
The label can be detected directly for example by its ability to emit and/or absorb electromagnetic radiation of a particular wavelength. A label can be detected indirectly for example by its ability to bind, recruit and, in some cases, cleave another moiety which itself may emit or absorb light of a particular wavelength (e.g., an epitope tag such as the FLAG epitope, an enzyme tag such as horseradish peroxidase, etc.). Generally the detectable label can be selected from the group consisting of directly detectable labels such as a fluorescent molecule (e.g., fluorescein, rhodamine, tetramethylrhodamine, R-phycoerythrin, CY-3™, CY-5™, CY-7™, TEXAS RED®, PHAR-RED™, allophycocyanin (APC), fluorescein amine, eosin, dansyl, umbelliferone, 5-carboxyfluorescein (FAM), 2′7′-dimethoxy-4′5′-dichloro-6-carboxyfluorescein (JOE), 6 carboxyrhodamine (R6G), N,N,N′,N′-tetramethyl-6-carboxyrhodamine (TAMRA), 6-carboxy-X-rhodamine (ROX), 4-(4′-dimethylaminophenylazo) benzoic acid (DABCYL), 5-(2′-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS), 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid, acridine, acridine isothiocyanate, r-amino-N-(3-vinylsulfonyl)phenylnaphthalimide-3,5, disulfonate (Lucifer Yellow VS), N-(4-anilino-1-naphthyl)maleimide, anthranilamide, Brilliant Yellow, coumarin, 7-amino-4-methylcoumarin, 7-amino-4-trifluoromethylcouluarin (Coumarin 151), cyanosine, 4′,6-diaminidino-2-phenylindole (DAPI), 5′,5″-diaminidino-2-phenylindole (DAPI), 5′,5″-dibromopyrogallol-sulfonephthalein (Bromopyrogallol Red), 7-diethylamino-3-(4′-isothiocyanatophenyl)-4-methylcoumarin diethylenetriamine pentaacetate, 4,4′-diisothiocyanatodihydro-stilbene-2,2′-disulfonic acid, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, 4-dimethylaminophenylazophenyl-4′-isothiocyanate (DABITC), eosin isothiocyanate, erythrosin B, erythrosin isothiocyanate, ethidium, 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF), QFITC (XRITC), fluorescamine, IR144, IR1446, Malachite Green isothiocyanate, 4-methylumbelliferone, ortho cresolphthalein, nitrotyrosine, pararosaniline, Phenol Red, B-phycoerythrin, o-phthaldialdehyde, pyrene, pyrene butyrate, succinimidyl 1-pyrene butyrate, Reactive Red 4 (Cibacron® Brilliant Red 3B-A), lissamine rhodamine B sulfonyl chloride, rhodamine B, rhodamine 123, rhodamine X, sulforhodamine B, sulforhodamine 101, sulfonyl chloride derivative of sulforhodamine 101, tetramethyl rhodamine, riboflavin, rosolic acid, and terbium chelate derivatives), a chemiluminescent molecule, a bioluminescent molecule, a chromogenic molecule, a radioisotope (e.g., P.sup.32 or H.sup.3, .sup.14C, .sup.125I and .sup.131I), an electron spin resonance molecule (such as for example nitroxyl radicals), an optical or electron density molecule, an electrical charge transducing or transferring molecule, an electromagnetic molecule such as a magnetic or paramagnetic bead or particle, a semiconductor nanocrystal or nanoparticle (such as quantum dots described for example in U.S. Pat. No. 6,207,392 and commercially available from Quantum Dot Corporation and Evident Technologies), a colloidal metal, a colloid gold nanocrystal, a nuclear magnetic resonance molecule, and the like.
The detectable label can also be selected from the group consisting of indirectly detectable labels such as an enzyme (e.g., alkaline phosphatase, horseradish peroxidase, β-galactosidase, glucoamylase, lysozyme, luciferases such as firefly luciferase and bacterial luciferase (U.S. Pat. No. 4,737,456); saccharide oxidases such as glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase; heterocyclic oxidases such as uricase and xanthine oxidase coupled to an enzyme that uses hydrogen peroxide to oxidize a dye precursor such as HRP, lactoperoxidase, or microperoxidase), an enzyme substrate, an affinity molecule, a ligand, a receptor, a biotin molecule, an avidin molecule, a streptavidin molecule, an antigen (e.g., epitope tags such as the FLAG or HA epitope), a hapten (e.g., biotin, pyridoxal, digoxigenin fluorescein and dinitrophenol), an antibody, an antibody fragment, a microbead, and the like. Antibody fragments include Fab, F(ab)2, Fd and antibody fragments which include a CDR3 region.
In some embodiments, the detectable label is a member of a FRET fluorophore pair. FRET fluorophore pairs are two fluorophores that are capable of undergoing FRET to produce or eliminate a detectable signal when positioned in proximity to one another. Examples of donors include ALEXA® 488, ALEXA® 546, BODIPY® 493, OYSTER® 556, FLUOR® (FAM), CY3™ and TMR™ (Tamra). Examples of acceptors include CY5™, ALEXA® 594, ALEXA® 647 and OYSTER® 656. CY5™ can work as a donor with CY3™, TMR™ or ALEXA® 546, as an example. FRET should be possible with any fluorophore pair having fluorescence maxima spaced at 50-100 nm from each other.
The polymer may be labeled in a non-sequence-specific manner. For example, if the polymer is a nucleic acid such as DNA, then its backbone may be stained with a backbone label. Examples of backbone stains that label nucleic acids in a sequence non-specific manner include intercalating dyes (or intercalators) such as phenanthridines and acridines (e.g., ethidium bromide, propidium iodide, hexidium iodide, dihydroethidium, ethidium homodimer-1 and -2, ethidium monoazide, and ACMA); minor grove binders such as indoles and imidazoles (e.g., Hoechst 33258, Hoechst 33342, Hoechst 34580 and DAPI); and miscellaneous nucleic acid stains such as acridine orange (also capable of intercalating), 7-AAD, actinomycin D, LDS751, and hydroxystilbamidine. All of the aforementioned nucleic acid stains are commercially available from suppliers such as Invitrogen.
Still other examples of nucleic acid stains include the following dyes from INVITROGEN™: cyanine dyes such as SYTOX® Blue, SYTOX® Green, SYTOX® Orange, POPO™-1, POPO™-3, YOYO®-1, YOYO®-3, TOTO®-1, TOTO®-3, JOJO™-1, LOLO™-1, BOBO™-1, BOBO™-3, PO-PRO™-1, PO-PRO™-3, BO-PRO™-1, BO-PRO™-3, TO-PRO®-1, TO-PRO®-3, TO-PRO®-5, JO-PRO™-1, LO-PRO™-1, YO-PRO®-1, YO-PRO®-3, PICOGREEN®, OLIGREEN®, RIBOGREEN®, SYBR® Gold, SYBR® Green I, SYBR® Green II, SYBR® DX, SYTO®-40, -41, -42, -43, -44, -45 (blue), SYTO®-13, -16, -24, -21, -23, -12, -11, -20, -22, -15, -14, -25 (green), SYTO®-81, -80, -82, -83, -84, -85 (orange), SYTO®-64, -17, -59, -61, -62, -60, -63 (red).
The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by examples provided, since the examples are intended as a single illustration of one aspect of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the invention. The advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.
The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting.
One chamber embodiment includes a circular substrate that has an exposed surface area of about 95 mm2, and a flow region volume of 115 mL. The chamber is configured generally as shown in
1. Injection of cells. A sample of E. coli cells is introduced directly into the chamber in a press down mode, as shown in
2. Washing. The buffer of the sample can be exchanged with lysis buffer, in a separation mode, by introducing lysis buffer containing detergents such as laurylsarcosine and Triton. The buffer is injected through the central port. The excess liquid is removed through the waste ports and the side ports in a separation mode. An appropriate ratio of the waste and side port flow rates is maintained that allows the cells to be held at the substrate inside the chamber without disturbing their distribution. Flow through the central port is 0.8 mL/min, flow through the side ports is 0.75 mL/min, flow through the substrate is 0.05 mL/min, and the temperature is maintained at 37° C.
3. Injection of lytic enzymes. Lysis buffer containing lysozyme is introduced through the central port, in a press down mode, as shown in
4. Lysis. Lysis is allowed to proceed in a substantially quiescent chamber, in a reaction mode, as shown in
5. Injection of Proteinase K. Buffer containing proteinase K is introduced through the central port, in a press down mode, as shown in
6. Proteinase K Digestion. Proeteinase K digestion is allowed to proceed in a substantially quiescent chamber, in a reaction mode, as shown in
7. Washing. Buffer is introduced through the central port to remove unwanted materials from the flow region in a separation mode, as shown in
8. Introduction of restriction enzyme. Restriction enzyme is introduced the chamber through the central port in a press down mode, as shown in
9. Restriction. Digestion is allowed to proceed in an enclosed system, in a reaction mode, as shown in
10. Washing. Buffer is introduced through the central port to remove the restriction enzyme and exchange the restriction enzyme buffer with elution buffer, in a separation mode, as shown in
11. Elution. Buffer is added to the chamber through one of the side ports and genomic DNA is eluted from the chamber through the central port, in an elution mode, as shown in
12. The reaction chamber is now ready to isolate DNA from another sample.
Injection of cells. A sample of E. coli cells is introduced into the chamber in a press down mode. The chamber waste ports are open while the side ports are closed. The solvent can pass through the substrate while the E. coli cells are retained inside the chamber uniformly distributed on the substrate. The chamber is maintained at the appropriate temperature for lysis.
Washing. The buffer of the sample can be exchanged with lysis buffer by introducing lysis buffer containing detergents such as laurylsarcosine and Triton. The buffer is introduced through the central port. The excess liquid is removed through the waste ports and the side ports. An appropriate ratio of the waste and side port flow rates is maintained in a separation mode to allow the cells to be held at the substrate inside the chamber without disturbing their distribution.
Injection of lytic enzymes. Lysis buffer containing lysozyme is introduced through the central port, in a press down mode. The excess liquid passes through the substrate and is removed through the waste ports. The side ports remain closed. The E. coli cells remain immobilized on the substrate. The enzymes accumulate at the substrate with a concentration gradient extending within tens of microns into the flow region from the substrate. Flow through the central port is 0.05 mL/min and the temperature is maintained at 37° C.
Lysis. Lysis is allowed to proceed in a substantially quiescent chamber, in a reaction mode. The result is the release of genomic DNA and waste materials (e.g., cellular debris). The temperature is maintained at 37° C.
Injection of Proteinase K. Buffer containing proteinase K is introduced through the central port, in a press down mode. The excess liquid passes through the substrate and is removed through the waste ports. The side ports remain closed. The E. coli cells remain immobilized on the substrate. The enzymes accumulate at the substrate with a concentration gradient extending within tens of microns into the flow region from the substrate. Flow through the central port is 0.05 mL/min and the temperature is maintained at 37° C.
Proeteinase K Digestion. Proeteinase K digestion is allowed to proceed in a substantially quiescent chamber, in a reaction mode. The temperature is maintained at 55° C.
Washing. Buffer is introduced through the central port to remove all unwanted materials in a separation mode. The excess liquid carrying the waste is removed through the waste ports and the side ports maintaining an appropriate ratio of the two flows. The DNA is held by the substrate. Several buffers can be used consecutively in this step to achieve the desired purification level. The last buffer introduced is the buffer required for exonuclease digestion.
Injection of restriction enzyme and exonuclease. A DNA exonuclease and a DNA endonuclease are introduced into the chamber in a press down mode. The endonuclease is selected such that it will have recognition site(s) only on the genomic DNA.
Digestion of genomic DNA. Digestion is allowed to proceed in a substantially quiescent system in a reaction mode. At the end of this step, the temperature of the chamber is raised for the appropriate time to inactivate the exconuclease.
Washing. Buffer is introduced through the central port to remove all unwanted materials in a separation mode. Again, the excess liquid carrying the waste is removed through the waste ports and the side ports maintaining an appropriate ratio of the two flows. To keep the plasmid/BAC DNA inside the chamber. Several buffers can be used consecutively in this step to achieve the desired purification level. The last buffer introduced is the buffer required for elution.
Elution. Plasmid/BAC DNA is eluted from the chamber.
Injection of DNA. A sample of DNA is introduced directly into the chamber in a press down mode. The chamber waste ports are open while the side ports are closed. The solvent can pass through the substrate while the DNA molecules are retained inside the chamber uniformly distributed on the substrate.
Washing. The buffer of the sample can be exchanged with tagging buffer in a separation mode. The buffer is introduced through the central port. The excess liquid is removed through the waste ports and the side ports. An appropriate ratio of the waste and side port flow rates is maintained that allows the DNA to be held at the substrate inside the chamber without disturbing its distribution.
Injection of tags. Sequence specific DNA tags (e.g. fluorescently labeled bis-PNA or fluorescently modified restriction enzymes) are introduced through the central port in a press down mode. The excess liquid passes through the substrate and is removed through the waste ports. The side ports remain closed. The DNA molecules remain immobilized on the substrate.
Tagging. Tagging is allowed to proceed in a substantially quiescent system, in a reaction mode. Alternatively, tagging may be performed using slow injection flow through the central port and the waste ports only. The chamber temperature is maintained at the appropriate value for the tagging reaction.
Washing. Buffer is introduced through the central port to remove excess free tags in a separation mode. Again, the excess liquid carrying the waste is removed through the waste ports and the side ports maintaining an appropriate ratio of the two flows. Several buffers can be used consecutively in this step to achieve the desired purification level. In the case of bis-PNA tagging the buffer may contain high salt concentration to assist the removal of non-specifically bound tags. In the case of restriction enzyme tags the tagging buffer can be used in this step.
Removal of non-specifically bound tags. The removal of non-specifically bound tags can be carried out in a reaction mode in a substantially quiescent system. The chamber temperature is maintained at the appropriate value which will allow fast disassociation of non-specifically bound tags.
Washing. Buffer is introduced through the central port in a separation mode to remove any residual excess free tags and to introduce the desired elution buffer in an elution mode.
Elution. Tagged DNA eluted from the chamber.
Models and simulations were used to optimize the design and function of an embodiment of the chamber. The models focused on flow fields for manipulating genomic sized DNA with minimal or no shear degradation. Microbes and free flowing DNA were modeled as rigid particles whereas semi-dilute DNA solution immobilized on the substrate was modeled according to the reptation model of Doi and Edwards. The nomenclature used in reporting the modeling results of Example 7 is shown below in Table 1.
Modeling shows that there may be an upper limit on the size and density of particles that will follow the flow within the chamber to spread uniformly about the substrate in a press down mode.
Modeling confirmed that downward flow fields exert a downward force on particles in the chamber, which can be used to hold agents on or about the substrate, even against the upward diffusion of agents, which may also be occurring within the chamber.
Table 2 shows times associated with isolation of bacterial genomic DNA performed in a chamber, like that described herein with respect to Example 1, and compares processing times for portions of the operating protocol with a conventional test tube protocol.
Table 3 shows times associated with the tagging of DNA with bis-PNA performed in a chamber, like that described herein with respect to Example 1, and compares processing times for portions of the operating protocol with a conventional test tube protocol.
A chamber like that described with respect to Example 1 was provided with 100 ng of digital DNA introduced to the chamber through the central port with the chamber operating in a focusing mode, as discussed with respect to
A chamber like that described with respect to Example 1 was provided with 2×10^7 E. coli/Notl/YOTO-1. Lysis, digestion, and intercalation were performed on the cells at the different ratios of injection flow rates to side flow rates reflected in Table 5. DNA recovery and peak concentration were measured. An increase in the focusing flow was found to result in an improved recovery and DNA peak concentrations.
Lysis, digestion, tagging, and intercalation tests were run with 20 ng of sample and 100 ng of sample. Resulting elution profiles, peak concentrations and recovery percentages comet plots are shown below in Table 6.
Experiments were run to optimize parameters used during intercalation. DNA recovery and intercalation backbone intensity were measured for the different parameters listed in Table 6. All experiments were run with 2×107 cell injection (100 ng), 1:19 ratio of flow focusing to injection flow of cells and lytic enzymes. Standard reagent concentrations were used. Intercalator concentration was found to have minimal effect on DNA recovery. Injection volume and concentration were found to strongly effect backbone intensity. Decreased incubation time was found to cause in increase in recovery. Plug size and injection volume were found to show similar effects on recovery. Optimized parameters that were identified during the experiment are shown in Table 7.
Agents were introduced to the chamber, in a first experiment, in a press down mode without focusing. Reverse elution was performed without removing fluid through the chamber side ports. 60% of a 125 uL of a 100 uL DNA plug was recovered from the chamber (margin of error +/−25%) without removing fluid through the side ports.
The experiment was repeated, except that the sample was introduced to the chamber in a flow focusing mode (with a 1:30 ratio of injection flow to side flow), like that shown in
The experiment was repeated, again, except in a chamber with a second set of side ports like that shown in
Removal of fluid through side ports during reverse elution was found to reduce the plug or bolus size of fluid that contains agents removed from the chamber. A lower recovery percentage may result, however, from low ratios of fluid removed through the central ports versus fluid removed from the side ports
Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.
This application claims priority to provisional patent application Ser. No. 61/102,578, filed Oct. 3, 2008 and entitled “FOCUSING CHAMBER”, the entire contents of which are incorporated by reference herein.
This invention was made with Government support under the Homeland Security Advanced Research Projects Agency. The Government has certain rights to this invention.
Number | Name | Date | Kind |
---|---|---|---|
3954621 | Etani et al. | May 1976 | A |
3969218 | Scott | Jul 1976 | A |
4147621 | Giddings | Apr 1979 | A |
4545888 | Walsh | Oct 1985 | A |
4608147 | Clad et al. | Aug 1986 | A |
4617102 | Tomblin et al. | Oct 1986 | A |
4833332 | Robertson, Jr. et al. | May 1989 | A |
4964961 | Brautigam et al. | Oct 1990 | A |
5102518 | Doering et al. | Apr 1992 | A |
5126022 | Soane et al. | Jun 1992 | A |
5133844 | Stevens | Jul 1992 | A |
5141651 | Giddings | Aug 1992 | A |
5169511 | Allington et al. | Dec 1992 | A |
5284559 | Lim et al. | Feb 1994 | A |
5304487 | Wilding et al. | Apr 1994 | A |
5318680 | Fishman et al. | Jun 1994 | A |
5340449 | Shukla | Aug 1994 | A |
5427663 | Austin et al. | Jun 1995 | A |
5439573 | Luo | Aug 1995 | A |
5449917 | Clements | Sep 1995 | A |
5453382 | Novotny et al. | Sep 1995 | A |
5505831 | Liao et al. | Apr 1996 | A |
5601694 | Maley et al. | Feb 1997 | A |
5674743 | Ulmer | Oct 1997 | A |
5675155 | Pentoney, Jr. et al. | Oct 1997 | A |
5699157 | Parce | Dec 1997 | A |
5711861 | Ward et al. | Jan 1998 | A |
5711868 | Maley et al. | Jan 1998 | A |
5733442 | Shukla | Mar 1998 | A |
5766435 | Liao et al. | Jun 1998 | A |
5798215 | Cathey et al. | Aug 1998 | A |
5800690 | Chow et al. | Sep 1998 | A |
5837115 | Austin et al. | Nov 1998 | A |
5843767 | Beattie | Dec 1998 | A |
5846727 | Soper et al. | Dec 1998 | A |
5867266 | Craighead | Feb 1999 | A |
5879625 | Roslaniec et al. | Mar 1999 | A |
5880473 | Ginestet | Mar 1999 | A |
5888370 | Becker et al. | Mar 1999 | A |
5906723 | Mathies et al. | May 1999 | A |
5942093 | Rakestraw et al. | Aug 1999 | A |
5965001 | Chow et al. | Oct 1999 | A |
5971158 | Yager et al. | Oct 1999 | A |
6001229 | Ramsey | Dec 1999 | A |
6008892 | Kain et al. | Dec 1999 | A |
6013164 | Paul et al. | Jan 2000 | A |
6019882 | Paul et al. | Feb 2000 | A |
6071394 | Cheng et al. | Jun 2000 | A |
6071395 | Lange | Jun 2000 | A |
6090251 | Sundberg et al. | Jul 2000 | A |
6100541 | Nagle et al. | Aug 2000 | A |
6120666 | Jacobson et al. | Sep 2000 | A |
6139800 | Chandler | Oct 2000 | A |
6193647 | Beebe et al. | Feb 2001 | B1 |
6210896 | Chan | Apr 2001 | B1 |
6214246 | Craighead | Apr 2001 | B1 |
6218126 | Yasuda et al. | Apr 2001 | B1 |
6224728 | Oborny et al. | May 2001 | B1 |
6232464 | Lange | May 2001 | B1 |
6263286 | Gilmanshin et al. | Jul 2001 | B1 |
6277257 | Paul et al. | Aug 2001 | B1 |
6319469 | Mian et al. | Nov 2001 | B1 |
6319472 | Ackley et al. | Nov 2001 | B1 |
6355420 | Chan | Mar 2002 | B1 |
6403311 | Chan | Jun 2002 | B1 |
6413401 | Chow et al. | Jul 2002 | B1 |
6428666 | Singh et al. | Aug 2002 | B1 |
6432630 | Blankenstein | Aug 2002 | B1 |
6444992 | Kauvar et al. | Sep 2002 | B1 |
6489112 | Hadd et al. | Dec 2002 | B1 |
6495015 | Schoeniger et al. | Dec 2002 | B1 |
6506609 | Wada et al. | Jan 2003 | B1 |
6562307 | Schuch et al. | May 2003 | B1 |
6572749 | Paul et al. | Jun 2003 | B1 |
6605454 | Barenburg et al. | Aug 2003 | B2 |
6641708 | Becker et al. | Nov 2003 | B1 |
6645757 | Okandan et al. | Nov 2003 | B1 |
6660480 | Ramsey et al. | Dec 2003 | B2 |
6696022 | Chan et al. | Feb 2004 | B1 |
6762059 | Chan et al. | Jul 2004 | B2 |
6767731 | Hannah et al. | Jul 2004 | B2 |
6770182 | Griffiths et al. | Aug 2004 | B1 |
6770201 | Sheppod et al. | Aug 2004 | B2 |
6772070 | Gilmanshin et al. | Aug 2004 | B2 |
6790671 | Austin et al. | Sep 2004 | B1 |
6818113 | Williams et al. | Nov 2004 | B2 |
6866759 | Miles et al. | Mar 2005 | B2 |
6890411 | Hayes et al. | May 2005 | B1 |
6914137 | Baker | Jul 2005 | B2 |
6927065 | Chan et al. | Aug 2005 | B2 |
6960285 | Schoeniger et al. | Nov 2005 | B2 |
6998598 | Horn et al. | Feb 2006 | B2 |
7014747 | Cummings et al. | Mar 2006 | B2 |
7052608 | Shepodd et al. | May 2006 | B2 |
7262859 | Larson et al. | Aug 2007 | B2 |
7282330 | Zhao et al. | Oct 2007 | B2 |
7351538 | Fuchs et al. | Apr 2008 | B2 |
7371520 | Zhao et al. | May 2008 | B2 |
7402422 | Fuchs et al. | Jul 2008 | B2 |
7595160 | White et al. | Sep 2009 | B2 |
7828948 | Hatch et al. | Nov 2010 | B1 |
7888011 | Nilsen et al. | Feb 2011 | B2 |
7977048 | Gilmanshin | Jul 2011 | B2 |
20010030130 | Ricco et al. | Oct 2001 | A1 |
20010055817 | Malmqvist et al. | Dec 2001 | A1 |
20020008028 | Jacobson et al. | Jan 2002 | A1 |
20020029814 | Unger et al. | Mar 2002 | A1 |
20020034748 | Quake et al. | Mar 2002 | A1 |
20020055167 | Pourahmadi et al. | May 2002 | A1 |
20020058332 | Quake et al. | May 2002 | A1 |
20020072243 | Craighead et al. | Jun 2002 | A1 |
20020079008 | Chien et al. | Jun 2002 | A1 |
20020109844 | Christel et al. | Aug 2002 | A1 |
20020110495 | Hunt et al. | Aug 2002 | A1 |
20020110818 | Chan | Aug 2002 | A1 |
20020119455 | Chan | Aug 2002 | A1 |
20020187508 | Wong | Dec 2002 | A1 |
20020197639 | Shia et al. | Dec 2002 | A1 |
20030008320 | Baker | Jan 2003 | A1 |
20030010637 | Cummings | Jan 2003 | A1 |
20030054395 | Baker | Mar 2003 | A1 |
20030058440 | Scott et al. | Mar 2003 | A1 |
20030059822 | Chan et al. | Mar 2003 | A1 |
20030104466 | Knapp et al. | Jun 2003 | A1 |
20030124623 | Yager et al. | Jul 2003 | A1 |
20030130499 | Baker | Jul 2003 | A1 |
20030134416 | Yamanishi et al. | Jul 2003 | A1 |
20030162181 | Yang et al. | Aug 2003 | A1 |
20030215864 | Gilmanshin et al. | Nov 2003 | A1 |
20030235854 | Chan et al. | Dec 2003 | A1 |
20040000519 | Jiang et al. | Jan 2004 | A1 |
20040028580 | Futami et al. | Feb 2004 | A1 |
20040053399 | Gilmanshin | Mar 2004 | A1 |
20040084370 | Singh et al. | May 2004 | A1 |
20040126279 | Renzi et al. | Jul 2004 | A1 |
20040166025 | Chan et al. | Aug 2004 | A1 |
20040188254 | Spaid | Sep 2004 | A1 |
20040211669 | Cummings et al. | Oct 2004 | A1 |
20040214211 | Gilmanshin et al. | Oct 2004 | A1 |
20040235014 | Nadel et al. | Nov 2004 | A1 |
20050009066 | Connolly | Jan 2005 | A1 |
20050042665 | Gilmanshin et al. | Feb 2005 | A1 |
20050112606 | Fuchs et al. | May 2005 | A1 |
20050112620 | Chan | May 2005 | A1 |
20050112671 | Maletta et al. | May 2005 | A1 |
20050123944 | Neely et al. | Jun 2005 | A1 |
20050123974 | Gilmanshin et al. | Jun 2005 | A1 |
20050142595 | Maletta et al. | Jun 2005 | A1 |
20050148064 | Yamakawa et al. | Jul 2005 | A1 |
20050153354 | Gilmanshin | Jul 2005 | A1 |
20050191760 | Heath et al. | Sep 2005 | A1 |
20050196790 | Rooke | Sep 2005 | A1 |
20050221408 | Nalefski et al. | Oct 2005 | A1 |
20060134679 | Larson | Jun 2006 | A1 |
20060160231 | Nadel et al. | Jul 2006 | A1 |
20060191792 | Herr et al. | Aug 2006 | A1 |
20060194306 | Herr et al. | Aug 2006 | A1 |
20060204978 | Nilsen et al. | Sep 2006 | A1 |
20060211055 | Hafeman et al. | Sep 2006 | A1 |
20060292616 | Neely et al. | Dec 2006 | A1 |
20060292617 | Neely et al. | Dec 2006 | A1 |
20070031961 | Ho et al. | Feb 2007 | A1 |
20070042406 | Yantz et al. | Feb 2007 | A1 |
20070117092 | Sadarangani et al. | May 2007 | A1 |
20070128083 | Yantz et al. | Jun 2007 | A1 |
20070166743 | Gilmanshin | Jul 2007 | A1 |
20080003689 | Lee et al. | Jan 2008 | A1 |
20080085552 | Larson et al. | Apr 2008 | A1 |
20080103296 | Zhao et al. | May 2008 | A1 |
20080254549 | Fuchs et al. | Oct 2008 | A1 |
20100035247 | Burton et al. | Feb 2010 | A1 |
20100116025 | Gouveia et al. | May 2010 | A1 |
20100120101 | Patil et al. | May 2010 | A1 |
20100294665 | Allen et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
1 380 337 | Jan 2004 | EP |
2148325 | May 1985 | GB |
63-196845 | Aug 1988 | JP |
3075602 | Mar 1991 | JP |
5072178 | Mar 1993 | JP |
5223778 | Aug 1993 | JP |
8327595 | Dec 1996 | JP |
2005-181204 | Jul 2005 | JP |
WO 9416313 | Jul 1994 | WO |
WO 9830571 | Jul 1998 | WO |
WO 9835012 | Aug 1998 | WO |
WO 9909042 | Feb 1999 | WO |
WO 0050172 | Aug 2000 | WO |
WO 0056444 | Sep 2000 | WO |
WO 0070080 | Nov 2000 | WO |
WO 0128700 | Apr 2001 | WO |
WO 0229106 | Apr 2002 | WO |
WO 03000416 | Jan 2003 | WO |
WO 2004076692 | Sep 2004 | WO |
WO 2005078137 | Aug 2005 | WO |
WO 2005085849 | Sep 2005 | WO |
WO 2006017274 | Feb 2006 | WO |
WO 2008024483 | Feb 2008 | WO |
WO 2009009127 | Jan 2009 | WO |
Entry |
---|
D'Antoni et al., Single Molecule Detection of Proteins Using Microfluidic Fluorescence Detection. ORC Poster. Apr. 2006. |
Duke et al., Microfabricated sieve for the continuous sorting of macromolecules. Phys. Rev. Lett. 1998; 80:1552-1555. Abstract Only. |
[No Author Listed] Fraen FLP Series Lenses for Luxeon LEDs: Luxeon I, III, and V, Star and Emitter. Jan. 4, 2005. Available at http://www.fraensrl.com/images/FLP—Lens—Series—Datasheet.pdf. 8 pages. |
[No Author Listed] Figure 5. Physics Today Online. Available at http://www.physicstoday.org/pt/vol-54/iss-6/captions/p42cap5.html. Last accessed Jul. 15, 2002. 2 pages. |
Agronskaia et al. Two-color fluorescence in flow cytometry DNA sizing: Identification of single-molecule fluorescent probes. Anal. Chem. 1999;71:4684-4689. Abstract. |
Ashworth. et al., Transducer mechanisms for optical biosensors. Part 2: Transducer design. Comput Methods Programs Biomed. Sep. 1989;30(1):21-31. |
Boone et al., Plastic advances microfluidic devices. Anal Chem. Feb. 1, 2002;74(3):78A-86A. |
Burns et al., An integrated nanoliter DNA analysis device. Science. Oct. 16, 1998;282(5388):484-7. (Abstract Only). |
Cheek et al., Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal Chem. Dec. 15, 2001;73(24):5777-83. |
Chou et al., A microfabricated device for sizing and sorting DNA molecules. Proc Natl Acad Sci U S A. Jan. 5, 1999;96(1):11-13. |
Cova et al., Evolution and prospects for single-photon avalanche diodes and quenching circuits. J Mod Opt. Jun.-Jul. 2004;51(9-10):1267-88. |
Dittrich et al., Sorting of cells and single particles in microstructures. Biophys J. 2002;82:43a. 209-Pos. Board # B70. |
Foquet et al., DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. Anal Chem. Mar. 15, 2002;74(6):1415-22. (Abstract Only). |
Giddings et al., Chapter 1. The Field-Flow Fractionation Family: Underlying Principles. In: Field-Flow Fractionation Handbook. Wiley-Interscience. 2000: 3-30. |
Han et al., Separation of long DNA molecules in a microfabricated entropic trap array. Science. May 12, 2000;288(5468):1026-9. |
Harrison et al., Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip, Anal. Chem. 1992; 64:1926. |
Jacobson et al., Fused Quartz Substrates for Microchip Electrophoresis. Anal Chem. 1995; 67:2059. |
Krogmeier et al., A Microfluidic Device for Concentrating High Molecular Weight DNA. Mar. 2, 2009; 315a. 1608 Pos. Board B452. Abstract Only. |
Kwok et al., An Integrated Multifunction Lab-on-a-Chip Platform for Hugh Throughput Optical Mapping for DNA. Nanotechnology. 2009;48a. 244-Pos. Board B123. Abstract Only. |
Kwok et al., An Integrated Multifunction Lab-on-a-Chip Platform for Hugh Throughput Optical Mapping for DNA. Biophysical Society 53rd Annual Meeting. Feb. 28-Mar. 4, 2009. Boston. Poster. |
Lee et al., Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem. Feb. 15, 2001;73(4):837-43. |
Lee et al., Micro flow cytometers with buried SU-8/SOG optical waveguides. Sensors and Actuators. 2003;103:165-70. |
Lee et al., Mircomachined pre-focused M x N flow switches for continuous multi-sample injection, J Micromech Microeng. 2001;11:654-661. |
Li et al., Chapter 28. Protein Complexes and Lipoproteins. In: Field Flow Fractionation Handbook. Wiley-Interscience. 2000: 433-470. |
Lyon et al., 1997, “Confinement and detection of single molecules in submicrometer channels”, Anal. Chem. 69:3400-3405. Abstract. |
Meltzer et al., A lab-on-chip for biothreat detection using single-molecule DNA mapping. Lab Chip. Mar. 7, 2011;11(5):863-73. Epub Jan. 20, 2011. |
Nie et al., Probing individual molecules with confocal fluorescence microscopy. Science. Nov. 11, 1994;266(5187):1018-21. |
Papkov et al., A single-molecule system for detection and quantification of proteins with robust capture units and potential for high multiplexing. Biophysical Society 53rd Annual Meeting. Feb. 28-Mar. 4, 2009. Boston. Poster. |
Pasquinelli et al., Control of developmental timing by micrornas and their targets. Annu Rev Cell Dev Biol. 2002;18:495-513. Epub Apr. 2, 2002. Abstract. |
Protozanova et al., Binding Specificity of Multi-Labeled PNA Probes Studied by Single Molecule Mapping. Biophysical Society 53rd Annual Meeting. Feb. 28-Mar. 4, 2009. Boston. 25a. 124-Pos. Board B3. Abstact. |
Protozanova et al., Fast high-resolution mapping of long fragments of genomic DNA based on single-molecule detection. Anal Biochem. Jul. 1, 2010;402(1):83-90. Epub Mar. 20, 2010. |
Protozanova et al., Fast high-resolution mapping of long fragments of genomic DNA based on single-molecule detection. Anal Biochem. Jul. 1, 2010;402(1):83-90. Epub Mar. 20, 2010. Supplemental Data. |
Radcliff et al., Chapter 1. Basics of flow cytometry. In: Methods Mol Biol. 1998;91:1-24. |
Roulet et al., Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection. J Micro Systms. Dec. 2001;10(4):482-91. |
Roulet et al., Performance of an integrated microoptical system for fluorescence detection in microfluidic systems. Anal Chem. Jul. 15, 2002;74(14):3400-7. |
Schmalzing et al., 1997, “DNA typing in thirty seconds with a microfabricated device”, Proc. Natl. Acad. Sci. USA 94:10273-10278. |
Schmalzing et al., 1998, “DNA sequencing on microfabricated electrophoretic devices”, Anal. Chem. 70:2303-2310. Abstract Only. |
Soper et al., Nanoliter-scale sample preparation methods directly coupled to polymethylmethacrylate-based microchips and gel-filled capillaries for the analysis of oligonucleotides. J Chromatography A. 1999;853:107-20. |
Wabuyele et al., Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices. Electrophoresis. Oct. 2001;22(18):3939-48. (Abstract Only). |
Wahlund et al., Application of an asymmetrical flow field-flow fractionation channel to the separation and characterization of proteins, plasmids, plasmid fragments, polysaccharides and unicellular algae. J Chromatogr. Jan. 6, 1989;461:73-87. |
Washizu et al., 1990, “Electrostatic manipulation of DNA in microfabricated structures”, IEEE Trans Industry Applications 26:1165-1172. Abstract. |
Watson et al., The early fluidic and optical physics of cytometry. Cytometry. Feb. 15, 1999;38(1):2-14. |
White et al., Staphylococcus aureus strain typing by single-molecule DNA mapping in fluidic microchips with fluorescent tags. Clin Chem. Dec. 2009;55(12):2121-9. Epub Oct. 8, 2009. |
White et al., Staphylococcus aureus strain typing by single-molecule DNA mapping in fluidic microchips with fluorescent tags. Clin Chem. Dec. 2009;55(12):2121-9. Epub Oct. 8, 2009. Supplemental Data. |
Whitesides et al., Devices for handling nanoliter qualities of fluids are creating new fabrication challenges and finding new applications in biology, chemistry, and materials science. Physics Today Online. Jun. 2001, 8 pages. |
Whitesides et al., Generating Microgradients. Harvard MRSEC—Research Nuggets. Materials Research Science and Engineering Center. Feb. 2, 2001. Available at http://www.mrsec.harvard.edu/research/nugget—4.html. Last accessed Jul. 15, 2002. 1 page. |
Whitesides, Fabrication of Complex, 3D Microstructures. Harvard MRSEC—Research Nuggets. Materials Research Science and Engineering Center. Available at http://www.mrsec.harvard.edu/research/nugget—3.html. Last accessed Jul. 15, 2002. 1 page. |
Whitesides, Three-Dimensional Networks of Fluid Channels in PDMS. Harvard MRSEC—Research Nuggests. Materials Research Science and Engineering Center. Jun. 1, 2000. Available at http://www.mrsec.harvard.edu/research/nugget—11.html. Last accessed Jul. 15, 2002. 1 page. |
Wilding, et al Manipulation and flow of biological fluids in straight channels micromachined in silicon. Clin. Chem. 1994, vol. 40, No. 1, pp. 43-47. Abstract. |
Wong et al., 2002, “Direct Manipulations of DNA Molecules Using Hydrodynamic Force”, 2002 IEEE International Conference on Robotics and Automation, Washington D.C. |
Chan et al., DNA mapping technology based on microfluidic stretching and single-molecule detection of motif tags. Biophys J. 2003;84:302A. Poster 1470. Board #B725. |
Chan et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res. Jun. 2004;14(6):1137-46. |
Ertas Lateral separation of macromolecules and polyelectrolytes in microlithographic arrays. Phys. Rev. Lett. 1998; 80:1548-1551. Abstract Only. |
Larson et al., Single DNA molecule stretching in sudden mixed shear and elongational microflows. Lab Chip. 2006;6(9):1187-1199. |
Phillips et al., Application of single molecule technology to rapidly map long DNA and study the confirmation of stretched DNA. Nuc Acids Res. 2005;33(18):5829-5837. |
Shera et al., Detection of single fluorescent molecules. Chem Phys Letts. Nov. 23, 1990;174(6):553-7. |
Number | Date | Country | |
---|---|---|---|
20100112576 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
61102578 | Oct 2008 | US |