The present invention generally related to foldable canoes. More particularly, the present invention relates to a foldable canoe that is configured such that it is constructed by folding a single sheet of material along one or more folding lines to facilitate transportation and storage of the canoe.
Recently, there has been an increase in the number of people who enjoy using high performance personal light boats, for example, personal non-powered boats that are manually propelled by paddling. In particular, kayaks, which are designed to be used in strong currents or on white water rapids, are a traditional type of boat used in extreme water sports that are popular with young adventure and thrill seekers. Furthermore, even if not used in strong currents or on white water rapids, kayaks or canoes can be used as personal water leisure means that enable a user to move far into a calm river or lake or across bodies of water and enjoy fishing or hunting.
Typically, conventional personal small non-poweredboats such as kayaks or canoes are made of thermoformed plastics or glass fiber reinforced plastics (FRP) to form hard hulls or are manufactured by integrally fitting panels made of a hard material such as wood or plywood. Therefore, conventional boats are advantageous in that their safety (durability, water resistance, impact resistance) in water, the strength, and use convenience (control performance, directivity, speed, etc.) resulting from the high stability are excellent. However, such a conventional boat is problematic in that the boat is heavy and production cost thereof is high. In addition, even though the boat is satisfactorily designed such that it can be effectively operated on water, it is difficult to transport the boat to water and store it when not used because of a large size.
Technical efforts to overcome the above problems are classified into the following three categories.
First, as a representative effort that has been widely used before, a boat having a separable structure was proposed. In detail, a frame of a kayak or canoe body includes a plurality of elements (boards, wires, etc. made of wood, metal or synthetic resin or the like) that can be separably assembled with each other by fasteners or connectors. Furthermore, a separate flexible waterproof hull covers the assembled frame. Such a structure for boats is called a skin on frame structure.
Conventional techniques pertaining to this category were in U.S. Pat. Nos. 4,274,170, 4,702,193, 4,841,899, 5,680,828, 5,964,964, and 6,367,405.
Such conventional personal boats pertaining to the first category include a hull that is made of flexible waterproof material and is removably coupled to a separably assembled frame to cover the frame. Thus, compared to traditional integrated boats, these conventional personal boats are advantageous in that transportation and storage thereof are facilitated. However, in the case of most of these conventional personal boats, the number and kind of elements constituting a frame are excessively increased, and the assembly structure of the frame is complex. In addition, configurations of connectors or the like for connecting the elements of the frame to each other are complex. It takes a comparatively long time to assemble or disassemble the frame, and there is a need for separate tools. Furthermore, since the hard frame and the flexible hull are made of different materials, the coupling (integration) therebetween is incomplete. Moreover, portions of the hull to which water pressure is applied are curved toward the interior of the boat because the strength of the hull is lower than that of the frame. The curved portions increase frictional resistance to water, thus reducing the performance of the boat in water. Furthermore, the curved portions reduce the strength of the hull, so that the hull may be easily torn when it collides with a sharp rock or the like.
Techniques pertaining to a second category refer to inflatable boats, which are shaped by injection of air. A representative example pertaining to this category was proposed in U.S. Pat. No. 6,065,421 (title: INFLATABLE KAYAK, 2000) invented in common by Clayton Forbes Haller and Charles Prior Hall.
In this technique, the kayak can be markedly reduced in volume and length when it is stored. The basic weight of the kayak can be also reduced. Furthermore, the kayak is designed such that it is easy to inject or discharge air into or from the kayak body. However, since the external shape of the boat is formed by injecting air thereinto, it is difficult to make not only a bow part of the boat but also a stem part be sharp and streamlined. Thus, water resistance applied to the boat is increased, whereby the basic performance of the boat is reduced. Given this, studies on this technique are not actively being conducted.
Techniques pertaining to a second category refer to techniques of: assembling body panels with each other using fasteners to form a boat without using a separate frame for the boat; forming a boat body by means of folding one piece of panel with a film-shaped retainer used to retain the shape of the boat formed by folding the panel; or forming a boat by means of folding a single thin hard panel having a predetermined flexibility, i.e., a light and high-strength synthetic resin corrugated sheet, which will be described in detail later herein, in a similar manner to that of paper folding.
Techniques pertaining to this third category were proposed in U.S. Pat. No. 4,574,725 (title: COLLASIBLE BOAT, 1986) invented by Dennis Dowd, U.S. Pat. No. 4,706,597 (title: SEAMLESS FOLDABLE BOAT, 1987) invented by Frank M. Fl gone, U.S. Pat. No. 4,911,095 (title: COLLAPSIBLE BOAT WITH REMOVABLE TRANSOM PANEL, 1990) invented by Alex R. Kaye, U.S. Pat. No. 6,006,691 (title: KNOCK-DOWN BOAT ASSEMBLY, 1999) invented by Stephen E. Wilce, U.S. Pat. No. 6,615,762 (title: FOLDABLE BOAT WITH LIGHT WEIGHT HULL CONSTRUCTION SYSTEM, 2003) invented by Stephen E. Wilce, and U.S. Pat. No. 8,316,788 (title: COLLAPSIBLE KAYAK, 2012) invented by Anton Michael Willis.
Among the techniques pertaining to the third category, there is a need for US patent techniques of the last two cases to be described in more detail with regard to the foldable canoe according to the present invention.
First, the technique proposed in the technique of U.S. Pat. No. 6,615,762 has several significant technical characteristics different form the other conventional techniques in the foldable boat field. It is that the body of the boat is made of a thin corrugated sheet with a thickness ranging from 5 mm to 6 mm, i.e., marketed as brand name HI.about.CORE®COROPLAST™, COREX, PLASTICCORE®, BIPLEX, etc., formed by extruding ultralight thin hard material, that is, high-strength polyethylene, high-density plastic or the like without a reduction in formability, foldability, and strength. In detail, as shown in
As shown in
With regard to use of a high-strength ultralight synthetic resin corrugated sheet as the material for foldable boats, the technique of U.S. Pat. No. 6,615,762 is known as being the first in the world. Furthermore, this technique provides secondary effects of facilitating printing on the outer surface of a hull of the boat.
Meanwhile, in the same manner as the technique of U.S. Pat. No. 6,615,762, the technique of U.S. Pat. No. 8,316,788 uses a synthetic resin corrugated sheet as the material for boat bodies and thus has the same technical effects resulting from use of the synthetic resin corrugated sheet. However, unlike the technique of U.S. Pat. No. 6,615,762 in which the boat body is formed by joining the several separated corrugated sheets with each other, a single synthetic resin corrugated sheet is used, and folding lines are formed on the sheet designed such that the sheet can be formed in a boat shape by folding the sheet along the folding lines. That is, the single synthetic resin corrugated sheet has only to be folded or unfolded in a similar manner to that of paper folding to form a boat or make it become a package form for storage.
Formed in the synthetic resin corrugated sheet, the folding lines of the technique of U.S. Pat. No. 8,316,788 also function as living hinges, which are not broken even after they are repeatedly bent along the folding lines. Because the single corrugated sheet is used to form a boat body, this technique has not only the effects of the technique of U.S. Pat. No. 6,615,762 but also effects of a reduction in the number of elements and facilitation of assembly and disassembly processes.
However, the crucial point to note is that both the techniques of U.S. Pat. Nos. 6,615,762 and 8,316,788 pertain to kayaks rather than canoes. Although kayaks and canoes are similar in that both are personal non-powered small boats, it should be noted that there is a great difference in mechanical structure therebetween.
In more detail, kayaks are configured such that a side bottom panel that is immersed in water and brought into contact with water is integrally connected to an upper deck that substantially horizontally covers the upper ends of left and right side panels and does not come into contact with water. A tubular closed space defined by the side bottom panel and the upper deck becomes a cockpit in which a user sits. Generally, a coaming or the like is provided for preventing water from entering the cockpit through an opening of the cockpit, which is formed in an approximately central portion of the upper deck.
Unlike such kayaks, canoes typically have an open top boat structure, and have a non-tubular shape, including only a side bottom panel without a separate upper deck.
To make a boat manufactured by shaping a thin planar sheet using a given amount of material (to form a predetermined cross-sectional area and surface area) have a mechanically stable structure strong enough to resist to external force, the boat must be shaped such that the section performance thereof (particularly, geometrical moment of inertia) are increased. With regard to manufacture of a boat using a thin synthetic resin corrugated sheet, in the case of kayaks having a closed tubular body structure, the geometrical moment of inertia is comparatively large so that the resistance to external force can be easily increased. However, in the case of canoes generally having an open top structure, the geometrical moment of inertia thereof is smaller than that of the kayaks. Thus, it is not easy to manufacture an open top canoe by means of folding a thin sheet. As the result of tests, for example, if an open top canoe having a length ranging from 3 m to 4 m and a central width of about 1 m is formed by folding a thin synthetic resin corrugated sheet, the shape of a boat is not satisfactorily formed or it is difficult to retain the shape of a side panel moving limply because the section performance as a canoe boat is very low although the physical (mechanical) properties, such as strength, durability, etc., of the synthetic resin corrugated sheet are excellent.
Due to these reasons, both the inventor of U.S. Pat. No. 6,615,762 and the inventor of U.S. Pat. No. 8,316,788 would have thought that kayaks having a longitudinal tubular body structure are easier to manufacture using a light and thin synthetic resin corrugated sheet having a high strength. This aspect can be easily verified in that: in U.S. Pat. No. 6,615,762, a tubular structure is formed by enclosing the circumferences of the annular ribs with panels forming the boat body; in U.S. Pat. No. 8,316,788, claim 1 includes, as an essential configuration, forming a tubular shape by folding left and right panels along a longitudinal axis and joining opposite edges of left and right panels to each other; and another independent claim 22 includes, as an essential configurations integrally forming the keel of the kayak (keel: a long and large member provided parallel to a center axis on the bottom of a boat so as to support the hull of the boat), the hull (the side bottom panel), and the deck (the upper cover panel).
Therefore, there is a need for a technique that can construct a body of a boat by folding a single high-strength thin synthetic resin sheet in a similar manner to that of paper folding, and that can construct an open top (deckless) boat, i.e., a canoe, having a mechanically stable structure without the side bottom panel moving limply. The present invention is provided to satisfy this need.
The above and other needs are met by a foldable canoe. In a first aspect a foldable canoe includes: a hull having a bow portion, a stern portion, a port side, a starboard side, and a gunwale formed around the hull, the hull formed of an elongate sheet of synthetic material having a plurality of folds including at least one longitudinal fold along a length of the sheet and one or more horizontal folds formed across a width of the sheet, wherein the hull is configured to be folded into a stored configuration along the at least one longitudinal fold and one or more horizontal folds of the elongate sheet; one or more ribs installed across a width of the hull, the one or more ribs removably installed inside the hull for maintaining the elongate sheet in a shape of the hull; a gunwale cap including a channel shaped to removably fit over the gunwale of the hull, the gunwale cap formed of a plurality of adjoining gunwale sections, wherein each of the plurality of adjoining gunwale sections is removably secured to adjacent gunwale sections. In a deployed configuration the plurality of adjoining gunwale sections are joined such that the gunwale cap maintains a shape of the gunwale of the hull, and wherein in a stored configuration the plurality of adjoining gunwale sections are separated such that the gunwale cap is folded into a stowed configuration.
In one embodiment, one or more of the plurality of gunwale sections of the gunwale cap further include: a hollow pin extending from a first end of the gunwale section toward an adjacent gunwale section and a bore formed in a second end of the gunwale section shaped to receive the hollow pin extending from an adjacent gunwale section. In another embodiment, the foldable canoe further includes a wire extending through hollow pin and the bore of the plurality of gunwale sections for connecting the plurality of gunwale sections when the plurality of gunwale sections are separated. In yet another embodiment, the foldable canoe further includes stoppers located at opposing ends of the wire and a wire adjuster adjustably located on the wire between one of the stoppers and one of the gunwale sections, wherein the wire adjuster is adjustable along a length of the wire for tightening the wire to maintain the plurality of gunwale sections in a joined configuration.
In one embodiment, one or more of the plurality of gunwale sections of the gunwale cap further include: a connecting rod extending from a first end of the gunwale section toward an adjacent gunwale section and a connecting rod bore formed in a second end of the gunwale section and shaped to receive the connecting rod of an adjacent gunwale section. The connecting rod and connecting rod bore form a keyed connection such that adjoining gunwale sections may be rotatively secured to one another.
In another embodiment, the connecting rod further includes a connecting rod head having a flattened portion formed thereon, the connecting rod bore further comprising a pin extending across a width of the connecting rod bore, wherein the connecting rod head and pin formed a keyed connection between adjacent gunwale sections.
In yet another embodiment, the foldable canoe further includes: a pair of opposing keyholes mounted on an inner surface of the hull, each of the keyholes comprising a spring formed adjacent the keyholes; a pair of bolt heads extending from ends of the one or more ribs, the bolt heads shaped to be inserted through at least a portion of the keyhole such that the spring contacts the bolt head to resist releasing the bolt head from the keyhole.
In one embodiment, the foldable canoe further includes an expander located within the hull at one of the bow portion and stern portion of the hull for maintaining a shape of the hull, the expander including a pair of opposing upright plates mounted on an interior of the hull and a spreader plate extending between the pair of opposing upright plates. In another embodiment, the spreader plate is hingedly attached to one of the pair of opposing upright plates. In yet another embodiment, the foldable canoe further includes a pair of reinforcement plates located between each of the pair of opposing upright plates and the hull.
In one embodiment, the foldable canoe further includes a pair of oar locks, each of the oar locks including: an oar lock plate mounted to the hull adjacent the gunwale, the oar lock plate each at least one keyhole formed through oar lock plate; an oar lock body including at least one oar lock post extending from the oar lock body and shaped to engage the at least one key hole formed through the oar lock plate; an oar pin pivotally associated with the oar lock body for receiving an oar; an oar pin cap removably associated with the oar pin for securing an oar on the oar pin.
In another embodiment, the foldable canoe further includes one or more straps attached along the gunwale for securing the gunwale cap to the gunwale.
In yet another embodiment, the foldable canoe further includes a foldable seat removably installed on the hull, the foldable seat including: a seat cushion; a foldable seat base attached to a bottom of the seat cushion, the foldable seat base configurable in an open position wherein the seat base supports the seat cushion on a floor of the canoe and a stowed position wherein the seat base is folded against the seat cushion; at least one clip located adjacent the bottom of the seat cushion for engaging an upper portion of the rib; and a seat hook located on the seat base for engaging a lower portion of the rib.
In one embodiment, the foldable seat further includes a seat wire extending through the seat base for pulling the seat base into the open position, wherein the seat hook is slidably attached to the seat wire. In another embodiment, the foldable seat further includes at least one spring positioned between the seat cushion and the foldable seat base such that the foldable seat base is biased towards the open position.
In a second aspect, a foldable canoe includes: a hull having a bow portion, a stern portion, a port side, a starboard side, and a gunwale formed around the hull, the hull formed of an elongate sheet of synthetic material having a plurality of folds including at least one longitudinal fold along a length of the sheet and one or more horizontal folds formed across a width of the sheet, wherein the hull is configured to be folded into a stored configuration along the at least one longitudinal fold and one or more horizontal folds of the elongate sheet; one or more ribs installed across a width of the hull, the one or more ribs removably installed inside the hull for maintaining the elongate sheet in a shape of the hull; a gunwale cap including a channel shaped to removably fit over the gunwale of the hull, the gunwale cap formed of a plurality of adjoining gunwale sections having a hollow pin extending from a first end of the gunwale section toward an adjacent gunwale section and a bore formed in a second end of the gunwale section shaped to receive the hollow pin extending from an adjacent gunwale section. Each of the plurality of adjoining gunwale sections is removably secured to adjacent gunwale sections. In a deployed configuration the plurality of adjoining gunwale sections are joined such that the gunwale cap maintains a shape of the gunwale of the hull, and wherein in a stored configuration the plurality of adjoining gunwale sections are separated such that the gunwale cap is folded into a stowed configuration.
In a third aspect, a foldable canoe includes: a hull having a bow portion, a stern portion, a port side, a starboard side, and a gunwale formed around the hull, the hull formed of an elongate sheet of synthetic material having a plurality of folds including at least one longitudinal fold along a length of the sheet and one or more horizontal folds formed across a width of the sheet, wherein the hull is configured to be folded into a stored configuration along the at least one longitudinal fold and one or more horizontal folds of the elongate sheet; one or more ribs installed across a width of the hull, the one or more ribs removably installed inside the hull for maintaining the elongate sheet in a shape of the hull; a gunwale cap including a channel shaped to removably fit over the gunwale of the hull, the gunwale cap formed of a plurality of adjoining gunwale sections having a connecting rod extending from a first end of the gunwale section toward an adjacent gunwale section and a connecting rod bore formed in a second end of the gunwale section and shaped to receive the connecting rod of an adjacent gunwale section. The connecting rod and connecting rod bore form a keyed connection such that adjoining gunwale sections may be rotatively secured to one another. In a deployed configuration the plurality of adjoining gunwale sections are joined such that the gunwale cap maintains a shape of the gunwale of the hull, and wherein in a stored configuration the plurality of adjoining gunwale sections are separated such that the gunwale cap is folded into a stowed configuration.
Further features, aspects, and advantages of the present disclosure will become better understood by reference to the following detailed description, appended claims, and accompanying figures, wherein elements are not to scale so as to more clearly show the details, wherein like reference numbers indicate like elements throughout the several views, and wherein:
Various terms used herein are intended to have particular meanings. Some of these terms are defined below for the purpose of clarity. The definitions given below are meant to cover all forms of the words being defined (e.g., singular, plural, present tense, past tense). If the definition of any term below diverges from the commonly understood and/or dictionary definition of such term, the definitions below control.
As shown in
For instance, the synthetic resin sheet used in the present invention may be a thin corrugated sheet, with a thickness ranging from 5 mm to 6 mm, i.e., marketed as brand name HI.about.CORE®COROPLAST™, COREX, PLASTICCORE®, BIPLEX, etc., formed by extruding high-strength polyethylene, high-density plastic or the like, in the same manner as that of a corrugated sheet introduced in U.S. Pat. No. 6,615,762. The canoe according to the present invention made of such synthetic resin corrugated sheet is mere 18 kg to 22 kg in weight when the length thereof ranges from 4 m to 5 m and the width thereof ranges from 1 m to 1.5 m.
Meanwhile, any synthetic resin sheet, as well as the above-mentioned corrugated sheet, can be used in the present invention so long as a hinge line functioning as a living hinge, which is not broken even if it is repeatedly bent, can be formed in the surface of the sheet. Alternatively, the foldable sheet for the canoe may include a plurality of pieces that are joined with each other by waterproof tape.
In
In
In
Reference numeral 24 denotes a zipper that closes curved edges of cut panels of the stem or bow part such that the curved edges engage with each other. In the present invention, the zipper may be replaced with Velcro tape, a buckle, a snap button or the like.
Reference numeral 25 denotes an outermost elastic rubber cover that covers the zipper of the stem or bow part so as to prevent the zipper from being exposed to the outside, strengthens the coupling force of the zipper and thus prevents the zipper from undesirably opening, and protects the corresponding stem or bow part from shock when the curved part of the stem or bow part having a tapered shape collides with an external object. In addition, the rubber cover 25 functions to enhance waterproof performance. As shown in the drawing, a first end of the rubber cover 25 is fixed to a lower surface of an outer central portion of the stem (or bow) part of the panel, and a second end thereof is a free end. After the stem (or bow) part of the canoe has been completely assembled to form a tapered edge shape, the second end (the free end) of the rubber cover 25 is elastically extended upward such that the rubber cover 25 covers the tapered curved edge of the stem (or bow) part, and then is operatively hooked to a protruding ring (not shown) or the like of the stem (or bow) part so that the rubber cover 25 can be elastically maintained tight. Furthermore, the rubber cover 25 may be appropriately selected in a color to be an aesthetic point of the appearance of the canoe.
Hereinafter, the configuration of the stem or bow part for operatively and watertightly opening or closing the curved edges of the left and right cut panels using the waterproof cloth sheet 23 and the zipper 24 will be described in more detail with reference to
One of the objects of the present invention provides a means for: making the bow and stem parts of the canoe as sharp as possible (such that the canoe is tapered the front and rear parts thereof) so that in the same manner as a conventional usual canoe produced by the typical manufacturing method, a beautiful bow or stem line of the canoe can be maintained, and resistance between the canoe and water can be hydrodynamically reduced as much as possible to enhance the moving performance (with regard to straightness, a driving speed, etc.) of the canoe; and enhancing the waterproofing performance of the bow and stem parts of the canoe that are most prone to water penetration and each of which is divided into two parts to be joined with each other when the single corrugated sheet is folded to form the canoe. This object of the present invention can be effectively achieved by the configuration of the curved edges of the cut panels, the operative opening and closing configuration of the zipper, and the configuration in which multi-layers of essential elements 23, 24, and 28 are firmly and integrally coupled to the edges of the curved parts of the cut panels.
Referring again to
The present invention is to provide a three-dimensional canoe that can be formed by folding a single planar panel. Particularly, to appropriately form a continuous curved gunwale line that forms a smooth streamlined shape when the canoe is assembled, approximately triangular notches or depressions are formed in each side panel part. Reference numeral 27 denotes a buckle provided around each notch or depression for use in adjusting the longitudinal length of an upper gunwale line of a side surface of the canoe. The triangular notch or depression is closed by tightening the buckle 27 so that the gunwale line can be reduced in length while forming a smooth streamlined shape. A zipper, Velcro tape, etc. may be substituted for the buckle 27.
In the present invention, the ribs are removably fixed on inner surfaces of left and right panels of the canoe. Such ribs conduct a pivotal role in retaining the streamlined shape (in which the degree with which the canoe is bulged is gently varied in the longitudinal direction of the canoe) of the canoe boat with respect to the lateral direction. Preferably, the size and shape of each U-shaped rib corresponds to the lateral size and shape of a corresponding portion of the canoe. However, the shapes, the installation positions, and the number of ribs may be changed depending on a design of the canoe without being limited to those of the above-mentioned exemplary embodiment.
Reference numeral 44 denotes a gunwale cap that is coupled to an upper end of the gunwale along the gunwale line. In the present invention, the gunwale cap conducts an important role along with the above-mentioned ribs in an aspect of retaining the smooth streamlined shape of the canoe for producing, by a means of bending a single sheet, an open top canoe, the geometrical moment of inertia of which is comparatively small, rather than producing a tubular kayak.
In detail, the gunwale cap 44 is a longitudinal member having comparatively high stiffness with a U-shaped cross-section. In this embodiment, a plurality of gunwale caps 44 is successively fitted over the gunwale along the gunwale line and also fitted over front edges of the above-mentioned left and right deck parts, thus reinforcing the gunwale, and making the gunwale line smoother (refer to
Reference numeral 45 denotes an H-cap. Referring to
Reference numeral 46 denotes a floor board. In the present invention, two floor boards made of the same material as that of the corrugated sheet forming the canoe body are preferably provided. Furthermore, it is preferable that each floor board have folding lines for providing an appropriate curvature such that it comes into close contact with the bottom and portions of the side panels of the canoe. In the present invention, the floor boards are provided to mechanically reinforce the bottom of the canoe that is not only a portion of the canoe body to which the largest uplift water pressure from the outside is applied when the canoe is used but also is a portion of the canoe body to which the weight of a user who sits in the canoe is applied. Crossed over the bottom of the canoe in the lateral direction of the canoe, the floor boards 46 assist retaining the mechanical shape of the canoe body. In addition, the floor boards 46 function to increase the thickness of the bottom of the canoe that forms a loading space of the canoe, thus reinforcing mechanical stress (i.e., compressive stress or shear stress) of the bottom of the canoe. As shown in
Reference numeral 47 denotes a seat on which the user sits. As shown in
Reference numeral 48 denotes a belt. When the floor board 46 wraps the canoe body in a package fashion to store the canoe, the belt 48 is connected to rings provided on the floor board 46 and thus can be used as a shoulder strap (refer to
Reference numeral 49 denotes a bag for storage of elements. That is, the bag 49 is used to store the ribs 41 through 43 and the gunwale caps 44.
Next, a process of packing the foldable canoe according to the present invention to make it compact and facilitate transportation and storage of the canoe after used will be described with reference to
In the above-mentioned embodiment, each of the bow and stem parts has been illustrated as having the curved cut parts forming a bilateral symmetrical structure when the sheet is deployed and as being operatively contracted by the waterproof rubber band, the waterproof cloth sheet and the zipper to provide a boat shape, which is tapered in the bow and stem parts, when the sheet is assembled to construct the canoe. However, in another embodiment, as shown in
The general configuration of the embodiment of
Additional features are of a foldable canoe 110 are shown in
Referring now to
In one embodiment, as shown in
The plurality of sections 128 of the gunwale cap 126 are held together with the wire 136 inserted through each of the plurality of sections 128. When not installed on the canoe 110, the plurality of sections 128 are foldable relative to one another such that the gunwale cap 126 may be stored. The plurality of sections 128 of the gunwale cap 126 are preferably installed along a length of the gunwale 130 of the foldable canoe 110. Each of the plurality of sections 128 is joined with an adjoining section by inserting the pin 132 into the bore 134 of an adjoining section 128, as shown in
After connecting adjacent sections 128, the user may tighten the wire adjuster 140 to maintain the plurality of sections 128 in compression adjacent one another. Referring now to
The plurality of sections 128 forming the gunwale cap 126 may be coupled by various other additional means. Referring now to
The connecting rod 154 and connecting rod bore 156 formed a keyed fit such that the connecting rod 154 couples one of the gunwale sections 128 to an adjacent gunwale section 128. To couple adjacent sections 128, adjoining sections are oriented substantially opposite or 180 degrees relative to one another. The connecting rod 154 is inserted into the connecting rod bore such that the connecting rod head 158 is inserted past the connecting rod pin 162. When the sections are oriented 180 degrees relative to one another, the flattened portion 160 is allowed to pass over the connecting rod pin 162, as shown in
Referring now to
The oar lock 170 includes an oar pin 184 pivotally associated with the oar lock body 178. The oar pin 184 is shaped to fit through the oar 172 to pivotally retain the oar 172 on the oar lock body 178. An oar lock cap 186 is threadably engaged with an end of the oar pin 184 to substantially retain the oar 172 on the oar pin 184 and oar lock 170.
In one embodiment, the foldable canoe 110 includes a foldable seat 190. The foldable seat 190 is configured to be folded between a stowed position (
To attach the foldable seat 190 to the foldable canoe 110, a pair of seat clips 202 are attached a top portion of one of the plurality of ribs 112 installed in the foldable canoe 110. The seat wire 192 is inserted through a first side of the seat base 196 and through a second opposite side of the seat base 196. A seat hook 204 is slidably associated with the seat wire 192 and is preferably located opposite from the stopper 194. The seat hook 204 is shaped to engage a lower portion of the rib 112. After securing the seat hook 204 and pair of seat clips 202 to the rib 112, the seat wire 192 is pulled tight such that the seat base 196 is fully unfolded and a portion of the seat base 196 contacts a floor of the foldable canoe 110. The stopper 194 is then re-engaged with the seat wire 192 to maintain the foldable seat 190 in the deployed position.
Referring to
The foregoing description of preferred embodiments of the present disclosure has been presented for purposes of illustration and description. The described preferred embodiments are not intended to be exhaustive or to limit the scope of the disclosure to the precise form(s) disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments are chosen and described in an effort to provide the best illustrations of the principles of the disclosure and its practical application, and to thereby enable one of ordinary skill in the art to utilize the concepts revealed in the disclosure in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the disclosure as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0145980 | Nov 2013 | KR | national |
This application claims priority to and is a continuation-in-part of U.S. application Ser. No. 14/787,015 for a “Foldable Canoe” filed on Oct. 26, 2015, which is a national stage application of PCT Patent Application No. PCT/KR2014/011115 for a “Foldable Canoe” filed on Nov. 19, 2014, which claims priority to Korean Patent Application No. 10-2013-0145980 filed on Nov. 28, 2013, the contents of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
6006691 | Wilce | Dec 1999 | A |
20110017121 | Willis | Jan 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20180127062 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14787015 | US | |
Child | 15806967 | US |