Embodiments of the present invention generally relate to mounting systems and methods. Some embodiments of the present invention employ a clamp that can be used for selective interconnection to and support of a device, such as a light, a mobile phone, a tablet computer, camera, etc.
It is often desirable to use an electronic device such as a light, a mobile phone, tablet computer, a camera, etc. in a “hands-free” mode. This is often accomplished by attaching the device to a table, a pole, etc. Examples might include: 1) attaching a global positioning systems (GPS) unit to a handle in a car; 2) attaching a tablet computer to a headboard of the bed so the tablet computer can be used in a hands-free manner; 3) attaching a lamp to a stage pole; and 4) attaching a tablet computer to a pole or table.
It is one aspect of embodiments of the present invention to provide a clamp for use with a device mounting and supporting system. The mounting and supporting system may be selectively adjustable to allow for the device to be positioned in several ways. In one embodiment, the clamp comprises a first jaw and a second jaw selectively interconnected to a rack of a ratcheting mechanism. Further, the first jaw may be hingedly interconnected to the rack. The second jaw is connected to the rack by way of a carrier that is slidingly associated with the rack. The lower jaw may be hingedly interconnected to the carrier. The carrier is also associated with a pawl that operatively engages rack teeth, i.e., gears, in a ratcheting fashion. The two jaws are configured to attach to flat objects such as table tops, round objects such as light poles, or objects of other geometric profiles and orientations
A connector for selective interconnection to the device mount or support system may be provided on either the first jaw or the second jaw. Although shown extending from an upper surface of the upper jaw, the connector may be recessed within the upper jaw without departing from the scope of the invention. More specifically, the connector is adapted to interconnect to the supporting and mounting system that selectively accomodates an electronic device. The connector can be placed on any portion of the clamp, and not limited to the upper jaw. In some embodiments of the present invention the connector is placed on the side of the jaws. In other embodiments, the connector is operatively interconnected to a track such that the connector can be selectively moved to accommodate the user's desires. One of skill in the art will also appreciate that the clamp may provide multiple connectors to further expand the connection possibilities the clamp provides.
It is a related aspect of some embodiments of the present invention that the clamp can support the weight of various items. For example, one embodiment of the present invention includes a lower jaw having an outward extent that is positioned outward from an outward extent of the upper jaw. The extended lower jaw increases the force supported by the lower jaw which facilitates securing heavier objects. One of skill in the art will also appreciate that the lower jaw may also be expandable such that its outer extent can be further separated from the rack to support heavier loads.
Some embodiments of the present invention include an upper jaw having fingers. The fingers engage a surface and create frictional loads that help secure the clamp to an object. When the clamp is interconnected to a vertical surface or a tubular member, the fingers also help to react to loads. Fingers of some embodiments are selectively adjustable wherein the angle between the fingers may be expanded to spread out reactive loads or enhance frictional interactions. In some other embodiments, the fingers telescope outwardly such that the outer extent of the upper jaw is greater than the lower jaw, which facilitates interconnection of the clamp in an upside down configuration wherein the upper jaw is placed under a table, for example.
Still further, some embodiments of the present invention employ upper jaws and lower jaws that are spring-loaded or that employ a leaf spring such that when the upper jaw or lower jaw are engaged tightly onto surface, the activated spring firmly secure the jaws to the surface or object to which they are connected. Spring-loaded jaws also help seat the pawl into the rack.
It is also contemplated that the upper jaw and lower jaw are configured to interconnect with curved, flat, or uneven surfaces. To this end, the upper jaw and lower jaw may include a curved or triangular profile to accommodate a round or cylindrical surface as provided by a bar or pole, for example. A soft or compliant pad associated with the upper jaw or the lower jaw may be provided that helps protect the surface to which the clamp is interconnected, to provide additional fictional interaction between the jaws and the surface, as well as allow compression in the system to aid in generating the clamping forces needed.
In operation of one embodiment, the upper jaw of the clamp is engaged onto the surface, such as a tabletop. The lower jaw is then moved to operatively engage the lower surface of the table. Movement of the lower jaw along the rack will also move the spring-biased pawl along the rack teeth. The shape of the teeth and the shape of the pawl allow the pawl to move upwardly along the rail with the teeth moving the pawl over successive teeth. The spring associated with the pawl forces the pawl to return to and indent provided between each tooth. The lower jaw is prevented from moving away from the upper jaw by the pawl's interaction with the rack teeth. The carrier is also associated with a crank which employs a cog that also selectively engages the rack. More specifically, acuation of the crank engages the cog into space between another set of rack teeth. Successive motion of the crank engages the cog onto the rail and causes the pawl to move one or more teeth. When the crank returns to its undeflected position by way of a spring, the pawl is firmly engaged onto the rack and is prevented from sliding. Successive crank motion will cause the carrier to move along the rack towards the upper jaw to tighten the jaws. A pawl release is depressed to remove the pawl from the rack, which allows the lower jaw to be separated from the upper jaw. The unique shape of the cog and its relation to the rack and crank allow for an interaction that allows the cog to reset with every crank pull and avoid contact with the rack inner teeth and associated jamming. The cog, which has three teeth in some embodiments, is curved relative to at least three planes, and yet moldable.
It is yet another aspect of the present invention to provide a clamp that can be folded for storage and transport. More specifically, some embodiments of the present invention provide an upper jaw that is hingedly interconnected to the rack and a lower jaw that is hingedly interconnected to the carrier. After the upper jaw is moved away from the lower jaw, the upper jaw and lower jaw are rotated inwardly towards the rack inner surface to configure the clamp for storage.
One of skill in the art will appreciate that the clamp described may be selectively scaled in size to suit the needs of the application to which is it is intended. Further, the clamp may be made of metal, plastic, a combination of plastic and metal, or any other suitable material.
The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. Moreover, references made herein to “the present invention” or aspects thereof should be understood to mean certain embodiments of the present invention and should not necessarily be construed as limiting all embodiments to a particular description. The present invention is set forth in various levels of detail in the Summary of the Invention as well as in the attached drawings and the Detailed Description of the Invention and no limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention. Additional aspects of the present invention will become more readily apparent from the Detail Description, particularly when taken together with the drawings.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, serve to explain the principles of these inventions.
To assist understanding of an embodiment of the present invention, the following list of components and associated numbering found in the drawings is provided herein:
It should be understood that the drawings are not necessarily to scale. In certain Instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
Referring now to
Referring specifically now to
The carrier 18 also accommodates a crank 22 that includes a cog 26 that operatively engages teeth 62 on the inside surface 30 of the rack 14. The crank 22 is rotated away from the rack 14 along arc C (see pg 4), which engages the cog 26 onto the teeth 62 to incrementally urge the lower jaw 10 towards the upper jaw 6. The cog 26 is also biased by a spring 66 such that when pressure is removed from the crank 22, it will return to a relaxed position away from the rack 14. In the relaxed position, the cog 26 is separated from the teeth 62 wherein only the pawl 34 holds the carrier 18 in place. Interaction between the cog 26 and the crank helps move the crank to a position adjacent the rack when pressure is released.
In some embodiments of the present invention, the upper jaw 6 and the lower jaw 10 include elastomeric members 70, 74 that allow them to engage surface without damaging the same. Elastomeric members 70, 74 also increase the friction between the jaws and the surface to which the clamp is interconnected which enhances the connection.
As mentioned above, the clamp 2 may also include a connector 78. The connector 78 may include four keys 82 that received a supporting device with a corresponding bayonet fitting.
Referring to
Referring to
There are also two small cuts on the underside of the pawl 58 to allow for pawl springs. The pawl 34 contributes to the ratcheting action of the clamp by preventing motion of the carrier that would allow the jaws to spread apart. The geometry of the pawl end 42 and the corresponding teeth on the rack allow the pawl 34 to be dragged over teeth on the rack when the jaws are moving closer, but prevents the jaws from spreading apart. When the button on the pawl 34 is depressed, the pawl end 42 rotates away from the rack and the jaws may open.
While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention, as set forth in the following claims. Further, the invention(s) described herein is capable of other embodiments and of being practiced or of being carried out in various ways. In addition, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
This application claims the benefit of U.S. Provisional Patent Application No. 61/783,937, filed Mar. 14, 2013, the entirety of which is incorporated by reference herein. This application is a continuation-in-part of U.S. patent application Ser. No. 14/045,692, filed Oct. 3, 2013, the entirety of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61783937 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14045692 | Oct 2013 | US |
Child | 14214148 | US |