This disclosure relates to easels. More specifically, this disclosure relates to foldable blanks which can be folded to assemble an easel.
Painters, artists, and art students frequently use easels to support a work piece, such as a canvas, while painting or drawing. Traditional easels are often made of wood and metal, and can be heavy and expensive. Traditional easels are often collapsible, but are still bulky and cumbersome to store. It would be desirable to have a low-cost, lightweight easel that can be assembled from a flat blank and unfolded again for convenient storage.
Disclosed is a foldable easel blank including a main panel defining a first side and a second side, the first side positioned opposite from the second side, the main panel defining a locking aperture extending through the main panel from a front main surface to a rear main surface, the front main surface positioned opposite from the rear main surface; a support panel hingedly connected to the main panel, the support panel defining a locking tab configured to engage the locking aperture; a first side panel hingedly connected to the first side of the main panel; a second side panel hingedly connected to the second side of the main panel; and a base panel, the base panel hingedly connected to the main panel, the base panel configured to secure to the first side panel and the second side panel to form a base stand.
Also disclosed is a folded easel including a base stand including a main panel defining a front main surface and a rear main surface, the front main surface opposite from the rear main surface; a first side panel hingedly connected to the main panel; a second side panel hingedly connected to the main panel; a base panel hingedly connected to the main panel, the base panel secured to the first side panel and the second side panel; and a ledge connected to the main panel, the ledge including a ledge subpanel hingedly connected to the main panel; and a locking subpanel hingedly connected to the ledge subpanel, the locking subpanel engaging the main panel.
Also disclosed is a method for assembly a folded easel including obtaining a foldable easel blank, the foldable easel blank including a main panel, the main panel defining a front main surface and a rear main surface, the front main surface positioned opposite from the rear main surface; a support panel hingedly connected to the main panel by a support hinge; and a base panel hingedly connected to the main panel by a base hinge; a first side panel hingedly connected to the main panel by a first side hinge; a second side panel hingedly connect to the main panel by a second side hinge; folding the first side panel about a first side hinge axis towards the rear main surface; folding the second side panel about a second side hinge axis towards the rear main surface; folding the base panel about a base hinge axis towards the rear main surface; forming a base stand; and folding the support panel about a support hinge axis towards the front main surface to form a ledge.
Various implementations described in the present disclosure may include additional systems, methods, features, and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.
The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and the previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description is provided as an enabling teaching of the present devices, systems, and/or methods in their best, currently known embodiments. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an element” can comprise two or more such elements unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
For purposes of the current disclosure, a material property or dimension measuring about X or substantially X on a particular measurement scale measures within a range between X plus an industry-standard upper tolerance for the specified measurement and X minus an industry-standard lower tolerance for the specified measurement. Because tolerances can vary between different materials, processes and between different models, the tolerance for a particular measurement of a particular component can fall within a range of tolerances.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list. Further, one should note that conditional language, such as, among others, “can,” “could,” “might,” or “can,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain aspects include, while other aspects do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular aspects or that one or more particular aspects necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or Steps are included or are to be performed in any particular embodiment.
Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods.
Disclosed is a foldable easel blank and associated methods, systems, devices, and various apparatus. The foldable easel blank includes a main panel, a support panel, a base panel, a first side panel, and a second side panel. It would be understood by one of skill in the art that the disclosed foldable easel blank is described in but a few exemplary embodiments among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom.
One embodiment of a foldable easel blank 100 is disclosed in
As shown in
As shown in
As shown in
As shown in
As shown in
The first side aperture 182A and the second side aperture 182B are configured to receive the first corner 140A and the second corner 140B, respectively. The first bore 188A and the second bore 188B are wider than the pair of first notches 183A,B and the pair of second notches 183C,D. The first bore 188A and the second bore 188B are configured to aid in introducing the first corner 140A and the second corner 140B into the pair of first notches 183A,B and the and the pair of second notches 183C,D, respectively. As the first corner 140A and the second corner 140B are inserted further into the first side aperture 182A and the second side aperture 182B, the pair of first aperture slits 186A,B and the pair of second aperture slits 186C,D frictionally engage the first corner 140A and second corner 140B, respectively. The frictional engagement secures the respective corner 140A,B in the respective side aperture 182A, 182B, thereby securing the base panel 110 to the first side panel 104A and the second side panel 104B. In some embodiments, the first corner 140A and the second corner 140B can define a notch, a barb, an arrowhead shape, a hinged tab, or other shape configured to secure the respective corner 140A,B in the respective side aperture 182A, 182B.
The foldable easel blank 100 can be folded in order to assemble a folded easel 500 as shown in
The ledge 502 comprises the retention tab 160 which extends away from the ledge subpanel 144. The retention tab 160 is defined by the locking subpanel 145, and folding the locking subpanel 145 about the subpanel hinge 150 relative to the ledge subpanel 144 extends the retention tab 160 away from the retention tab cutout 158 of the ledge subpanel 144. The retention tab is configured to retain the work piece on the ledge surface 544 by preventing the work piece from sliding away from the front main surface 403 and off of the ledge 502. A portion of the front main surface 403 disposed above the ledge 502 and on both sides of the support panel cutout 156 defines a backing surface 503. When placed on the ledge surface 544, the work piece rests against the backing surface 503. The backing surface 503 can be wider than the ledge surface 544. In some embodiments, the ledge surface 544 can be substantially perpendicular to the backing surface 503. The ledge surface 544 can be substantially planar.
The base panel 1210 is defined by a first base panel cutout 1232A and a second base panel cutout 1232B, each extending through the main panel 1202. The base panel 1210 defines a first corner 1240A positioned opposite from the base hinge 1220 and proximate to the first base panel cutout 1232A. The first corner 1240A defines a first locking slot 1297A extending through the base panel 1210. The base panel 1210 also defines a second corner 1240B positioned opposite from the base hinge 1220 and proximate to the second base panel cutout 1232B. The second corner 1240B defines a second locking slot 1297B extending through the base panel 1210. The base panel 1210 can also define a plurality of tool holders 1296A,B,C,D,E. The quantity and shape of the tool holders 1296 should not be viewed as limiting. In this embodiment, the tool holders 1296 are each defined by a circular aperture disposed between a pair of slits. Each circular aperture and pair of slits extends through the base panel 1210. Each tool holder 1296 is configured to receive and frictionally engage a tool handle, such as the handle of a paint brush, mahl stick, or other tool.
The support panel 1208 is defined by a support panel cutout 1256 which extends through the main panel 1202. The support panel 1208 comprises a ledge subpanel 1244 which defines a first ledge end 1246 and a second ledge end 1247 positioned opposite from the first ledge end 1246. The support panel 1208 also comprises a locking subpanel 1245 which defines a first locking end 1248 and a second locking end 1249 positioned opposite from the first locking end 1248. The ledge subpanel 1244 is hingedly connected to the main panel 1202 at the first ledge end 1246 by the support hinge 1222. The first locking end 1248 of the locking subpanel 1245 is hingedly connected by a subpanel hinge 1250 to the second ledge end 1247 of the ledge subpanel 1244. The locking subpanel 1245 can define an aperture 1298 extending through the locking subpanel 1245. The first locking end 1248 can define a retention tab 1260. The retention tab 1260 can be formed by a retention tab cutout 1258 extending through the support panel 1208. When folded to form a ledge, the retention tab 1260 is configured to retain a work piece on the ledge.
The second locking end 1249 defines a locking tab 1252 which is hingedly connected at the second locking end 1249 by a locking tab hinge 1263. The locking tab 1252 and the locking tab hinge 1263 are positioned between a pair of locking shoulders 1253A,B defined by the second locking end 1249. The locking tab 1252 is configured to engage the locking aperture 1266 in order to form a ledge, similar to the ledge 502 of the folded easel 500. The locking tab 1252 also defines a pair of locking notches 1254A,B positioned proximate to the locking shoulders 1253A,B. The locking notches 1254A,B are configured to retain the locking tab 1252 in the locking aperture 1266 once the locking tab 1252 has engaged the locking aperture 1266. The locking shoulders 1253A,B limit a depth of insertion of the locking tab 1252 into the locking aperture 1266, and the locking notches 1254A,B prevent the locking tab 1252 from accidentally pulling out of the locking aperture 1266.
As shown in this embodiment of the foldable easel blank 1200, the first side panel 1204A defines a first side aperture 1282A. In this embodiment, the first side aperture 1282A extends to a first side edge surface 1299A. The first side edge surface 1299A is defined by the first side panel 1204A distal from the main panel 1202. In other embodiments, the first side aperture 1282A may not extend to the first side edge surface 1299A and can instead form a closed slot. The first side aperture 1282A defines a first locking key 1285A configured to engage the first locking slot 1297A. The second side panel 1204B of the foldable easel blank 1200 defines a second side aperture 1282B. In this embodiment, the second side aperture 1282B extends to a second side edge surface 1299B. The second side edge surface 1299B is defined by the second side panel 1204B distal from the main panel 1202. In other embodiments, the second side aperture 1282B may not extend to the second side edge surface 1299B and can instead form a closed slot. The second side aperture 1282B defines a second locking key 1285B configured to engage the second locking slot 1297B.
The first side aperture 1282A is configured to receive the first corner 1240A of the base panel 1210, and the second side aperture 1282B is configured to receive the second corner 1240B of the base panel 1210. Upon inserting each corner 1240A,B into the respective side aperture 1282A,B, the respective locking key 1285A,B engages the respective locking slot 1297A,B in order to secure the first side panel 1204A and the second side panel 1204B to the base panel 1210. With the side panels 1204A,B secured to the base panel 1210, a base stand is formed, similar to the base stand 302 of the folded easel 500.
The foldable easel blanks 100,1200 can be comprised of a sheet of corrugated cardboard which is economical and lightweight. Forming the foldable easel blanks 100,1200 from a single sheet of corrugated cardboard can also lower manufacturing costs. The various cutouts 156, 158, 132A,B, 1256, 1258, 1232A,B, and apertures 166, 182A,B, 1266, 1282A,B, 1296A,B,C,D,E, and 1298 can all be formed by a die-cut. However, the material should not be viewed as limiting, and the foldable easel blanks 100,1200 can be comprised of plastic, paper, metal, or any other material. The foldable easel blanks 100,1200 can be shipped, stored, and sold in stores as a flat blank. The flat blank can easily be stored such as by stacking several foldable easel blanks 100 on top of one another. The foldable easel blank 100 can be folded to form the folded easel 500 when desired for use by the user. Upon completion of the project, the folded easel 500 can be disassembled or unfolded into the form of the foldable easel blank 100, such as for storage. When in the folded easel 500 configuration, the base surface 304 of the base stand 302 can be placed on a horizontal surface such as a tabletop or the ground, and the folded easel 500 will stand in the upright position. The user can then place the work piece, such as the canvas, on the ledge surface 544 of the ledge 502 with the work piece resting against the backing surface 503. In this position, the work piece is stable, and the user can draw or paint the work piece without supporting or stabilizing the work piece.
The method for assembling the folded easel 500 comprises obtaining a foldable easel blank 100, folding the first side panel 104A about the first side hinge axis 168A towards the rear main surface 103, folding the second side panel 104B about the second side hinge axis 168B towards the rear main surface 103, folding the base panel 110 about the base hinge axis 121 towards the rear main surface 103, forming a base stand 302, and folding the support panel 108 about the support hinge axis 123 towards the front main surface 403 to form the ledge 502. Forming the base stand 302 can comprise securing the base panel 110 to the first side panel 104A and the second side panel 104B. Securing the base panel 110 to the first side panel 104A can comprise inserting the first corner 140A into the first side aperture 182A. Securing the base panel 110 to the second side panel 104B can comprise inserting the second corner 140B into the second side aperture 182B. The method can further comprise inserting the locking tab 152 defined by the support panel 108 into the locking aperture 166 defined by the main panel 102. Folding the support panel can comprise folding the locking subpanel 145 about the subpanel hinge axis 151 relative to the ledge subpanel 144 until the locking subpanel 145 contacts the front main surface 403 of the main panel 102.
One should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular embodiments or that one or more particular embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all combinations and sub-combinations of all elements, features, and aspects discussed above. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the present disclosure, nor the claims which follow.