The invention relates generally to vehicle head restraints and more particularly to foldable vehicle head restraints.
Head restraints protect a vehicle occupant from serious injury due to sudden movement of the vehicle. The head restraints generally extend upward from the seat.
While the head restraints are necessary to insure the safety of passengers, at times the head restraints can present difficulties. Head restraints can obstruct the driver's view when looking rearward. If a seat is folded forward to allow a passenger to enter the rear portion of a vehicle, the head restraint may contact an object in front of the seat thus stopping the seat from fully folding down. In vehicles with seats that fold flat into the floor, the head restraint must be removed or additional stowage space in the floor of the vehicle must be provided.
A foldable head restraint has been described in U.S. patent application Ser. No. 10/672,703, assigned to the assignee of this patent application. A foldable head restraint has a design position where the head restraint is generally upright and serves as protection for a vehicle passenger. The foldable head restraint also has a folded position, where the head restraint is rotated to allow complete kinematic movement of the seatback, or to increase rearward visibility.
While foldable head restraints offer advantages over non-foldable head restraints, foldable head restraints are generally more difficult to assemble and therefore relatively more expensive. A foldable head restraint which is easier to manufacture and less expensive is thus desirable.
The aforementioned problems are overcome in the present invention. An articulating head restraint with minimal freeplay includes an armature. A pair of rods extending from the armature are configured to hold a bun.
A first end of the armature is inserted through a bracket hole. The second end of the armature is inserted through a hole in a slave bracket. The slave bracket is then attached to the bracket. Because the armature is inserted into the bracket and the slave bracket before the slave bracket is attached to the bracket, the diameter of the holes in both the bracket and the slave bracket can be near the size of the diameter of the armature, or even be made to accommodate a line to line fit condition. Thus, lateral movement of the armature within the bracket and slave bracket is minimized.
Further, the articulating head restraint includes a torsion spring. A cam is positioned about the armature. The cam has a stop acumination and a lock acumination. The stop acumination and the lock acumination work in coordination with a slide. The slide moves laterally so as to become in contact with the lock acumination. The wedging action of the slide and lock acumination prohibit rotation of the armature.
A cable is attached to the slide. If a force is exerted on the cable, the slide will translate away from the lock acumination, allowing the cam to rotate, and thereby allowing the armature to rotate. The torsion spring causes the armature to rotate in a first direction. The stop acumination on the cam is positioned to prohibit excessive rotation of the armature in a second direction.
Because the cam, the acuminations on the cam, and the slide can be manufactured to a high degree of precision, the interaction of the lock acumination with the slide are exacting. Free play of the head restraint mechanism is thereby minimized, resulting in a solid feel and an ergonomically pleasing head restraint.
Further, a foldable head restraint has two head restraint supports set within a bracket. The head restraint supports are comprised of a metal substrate and a section of an over-molded geometry. The over-molded geometry is generally plastic. A latch is made integral with the metal substrate. The latch rests against a stop to prohibit rotation of the head restraint support in a first direction and rests against a rotational cam to prohibit movement of the head restraint supports in a second direction. A user rotates the cam to an open position to allow the head restraint supports to be pivoted to a folded position. To reduce the size of the slots in the seatback which are often provided to accommodate foldable head restraints, the head restraint supports have a general shape of a “J”. Other shapes and configurations are possible .
The metal substrate of the head restraint supports could be fine blanked, precision stamped, or manufactured by a close tolerance metal fabrication process thereby significantly reducing the cost of the head restraint support. The metal substrate can then be over-molded. The over-molded shape and cross-section can be varied as needed to allow mating of the head restraint supports with components found in the head restraint bun.
The head restraint supports for the primary side and the secondary side of the head restraint are identical, allowing for ease of mass production. Also, due to the geometry of the metal substrate and over-molded geometry the package size of the head restraint supports is more compact when compared to similar mechanisms.
These and other objects, advantages, and features of the invention will be more readily understood and appreciated by reference to the detailed description of the drawings.
Cam 16 contains stop acumination 18 and lock acumination 20. Cam 16 is preferably constructed by a close tolerance processes from material suitable for the applied loads, providing cam 16 with a highly finished surfaces, especially the lock acumination 20.
Cam 16 is located on armature 14 and outside of first rod 10. Torsion spring 22 is circumferentially disposed about armature 14 and between first rod 10 and second rod 12 and near second rod 12.
One end of annature 14 fits within bracket hole 21 of bracket 23, while the other end of armature 14 fits within slave bracket hole 24 of slave bracket 26. First Teflon bearing 28 fits within slave bracket hole 24m while second Teflon bearing 29 fits within bracket hole 21.
Armature 14 is placed within bracket 23 by first aligning armature 14 with bracket hole 21 and inserting one end of armature 14 within bracket hole 22. The other end of armature 14 is placed within slave bracket hole 24. Slave bracket 26 is then affixed to bracket 23. In this manner, slave bracket hole 24 can have a diameter only slightly larger than the diameter of armature 14. Since Teflon bearing 28 fits within slave bracket hole 24 and Teflon bearing 28 fits within bracket hole 21, the free play of annature 14 is minimized, causing the head restraint to have a solid feel. When bearings are installed, the armature has a line-to-line fit with the pivot holes.
One end of torsion spring 22 is attached to tab 30 in bracket 23. The second end of torsion spring 22 is attached to second rod 12. Torsion spring 22 is configured so that it is wound as armature 14 is rotated toward the design position and unwound as armature 14 is rotated toward the stowed position.
Stop rivet 32 extends through bracket 23. Stop rivet 32 is positioned such that stop acumination 18 will firmly contact stop rivet 32 and prevent rotation of armature 14 beyond the design position.
One end of coil spring 34 is attached to cable rivet 44 while the other end of coil spring 34 is attached to bracket 23. Slot 40 extends within bracket 23. On the inside of bracket 23 and immediately proximal to slot 40 is slide 36. Slide 36 is attached to washer 38 by rivet 42 and cable rivet 44.
Cable rivet 44 is similar to rivet 42. However, cable rivet 44 is elongated so that slide coil spring 34 may be attached to cable rivet 44. Additionally, cable 45 is attached to cable rivet 44.
In an alternative embodiment, a second cam could be provided on the armature on the side opposite the previously described cam. A stop pin would be attached to the bracket. This would provide additional support to the head restraint when it was in the design position.
As can be seen from
When sufficient force is exerted by cable 45 on slide 36, then slide 36 will translate in slot 40 until lock acumination is no longer above slide 36. At that time, torsion spring 22 will cause armature 14 to rotate so that rods 10, 12 assume the stowed position.
When the tension is reduced on cable 45, then slide 36 will translate upward to its former position. At that time, a force can be exerted on rods 10, 12 by a user or by some other mechanical means to return armature 14 to its locked position and the head restraint to its design position.
The use of the locking mechanism in the head restraint improves the overall feel of the head restraint. Additionally, due to the method of constructing the head restraint, there is very little lateral motion of the head restraint. The head restraint therefore has little free play. The lack of free play gives the head restraint a solid appearance and feel, thereby increasing the functionality and visual appeal of the head restraint.
As shown in
Cable wire 140 is also attached to cable pin 138. Cable wire 140 is part of cable 142. One end of cable 142 is attached to cable termination 144, which is normally integral to bracket 110. The other end of cable 142 may be attached to the vehicle body or to some other device, such as a manual release lever, in order to actuate the folding mechanism of head restraint 105.
The angle of head restraint supports 112, 114 relative to a vertical plane can be selected such that head restraint supports 112, 114 will immediately rotate toward the folded position when rotational cam 130 has rotated sufficiently to free latch 122 due to the force exerted on head restraint supports 112, 114 by torsion spring 107. Alternatively, the head restraint 105 could be designed such that some other force would need to be applied to head restraint supports 112, 114 to cause head restraint supports 112, 114 to rotate to the folded position.
To return head restraint 105 to the design position, a force is applied on head restraint supports 112, 114 usually through the head restraint bun. Head restraint support 112 rotates until latch 122 strikes rotational cam 310. Referring again to
When a further force is applied to head restraint support 112, latch surface 129 causes rotational cam 130 to rotate further so that latch 122 can come to rest against stop pin 132. Due to the configuration of the surfaces of latch 122, head restraint support 112 is then locked into the design position by contact between rotational cam 130 and latch surface 125.
Metal substrate 118 can be fine blanked, precision stamped, or close tolerance metal fabricated component, and would preferably be made of a high strength steel. Metal substrate 118 can be over-molded. By varying the design of the over-molded geometry, head restraint support 112 could easily mate with a variety of head restraint buns. Rotational rod 124 and stabilizer shaft 128 are usually steel rods.
Bracket 110 is usually contained within a seat back. Head restraint supports 112, 114 extend through the top of the seat back through a pair of slots. In order to minimize the size of these slots, head restraints supports 112, 114 have the shape of a “J”. Other shapes can be used for head restraint supports 112, 114 depending upon the particular application.
Assembly of head restraint 105 is simple. Head restraint supports 112, 114 are first joined by stabilizer shaft 128, and this assembly is then placed within bracket 110. Rotational rod 124 is inserted through bracket 110 and through head restraint supports 112, 14.
The above description is of the preferred embodiment. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. Any references to claim elements in the singular, for example, using the articles “a,” “an,” “the,” or “said,” is not to be construed as limiting the element to the singular.
This application is a continuation-in-part of U.S. application Ser. No. 10/633,770, which was filed on Aug. 4, 2003, now U.S. Pat. No. 6,935,696. This application also claims priority to U.S. application Ser. No. 10/797,294, which was filed on Mar. 10, 2004.
Number | Name | Date | Kind |
---|---|---|---|
2976915 | Spound | Mar 1961 | A |
2984293 | Bontempi et al. | May 1961 | A |
3065029 | Spound et al. | Nov 1962 | A |
3695700 | Flach | Oct 1972 | A |
4351563 | Hattori | Sep 1982 | A |
4353595 | Kaneko et al. | Oct 1982 | A |
4576401 | Harrison | Mar 1986 | A |
4576413 | Hatta | Mar 1986 | A |
4600240 | Suman et al. | Jul 1986 | A |
4682817 | Freber | Jul 1987 | A |
4761034 | Saito | Aug 1988 | A |
4830434 | Ishida et al. | May 1989 | A |
5011225 | Nemoto | Apr 1991 | A |
5026120 | Takeda et al. | Jun 1991 | A |
5145233 | Nagashima | Sep 1992 | A |
5181758 | Sandvik | Jan 1993 | A |
5346277 | Holobaugh et al. | Sep 1994 | A |
5492386 | Callum | Feb 1996 | A |
5590933 | Andersson | Jan 1997 | A |
5642918 | Sakamoto et al. | Jul 1997 | A |
5681079 | Robinson | Oct 1997 | A |
5738411 | Sutton et al. | Apr 1998 | A |
5826942 | Sutton et al. | Oct 1998 | A |
5913570 | Yoshida et al. | Jun 1999 | A |
5927804 | Cuevas | Jul 1999 | A |
6024405 | MacAndrew et al. | Feb 2000 | A |
6045181 | Ikeda et al. | Apr 2000 | A |
6050633 | Droual | Apr 2000 | A |
6068337 | De Filippo | May 2000 | A |
6074011 | Ptak et al. | Jun 2000 | A |
6192565 | Tame | Feb 2001 | B1 |
6371559 | Kienzle | Apr 2002 | B1 |
6375264 | Kienzle | Apr 2002 | B1 |
6485096 | Azar et al. | Nov 2002 | B1 |
6499805 | Watadani | Dec 2002 | B1 |
6517156 | Lin | Feb 2003 | B1 |
6612653 | Takata | Sep 2003 | B2 |
6702385 | Holdampf et al. | Mar 2004 | B2 |
6761548 | Snop | Jul 2004 | B1 |
20010054837 | O'Connor | Dec 2001 | A1 |
20020084686 | Takata | Jul 2002 | A1 |
20030234567 | O'Connor | Dec 2003 | A1 |
20050225146 | Sutter et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
2319468 | May 1998 | GB |
Number | Date | Country | |
---|---|---|---|
20060061187 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10633770 | Aug 2003 | US |
Child | 11177620 | US |