The disclosed invention relates to a foldable intraocular lens implant incorporating a prosthetic optical lens and a flexible haptic structure which adapt to the internal dimensions of the eye in which the lens is installed. The disclosed lens adapts to each individual eye with reduced circumferential compressive forces by the inner wall of the anterior chamber. Monofocal, bifocal, and multifocal optics of refractive and diffractive types are contemplated for use with the disclosed invention.
Intraocular lenses (IOLs) can be used to correct vision abnormalities. In 1949 Sir Harold Ridley made an artificial lens that he implanted in the eye of a cataract patient. The procedure worked, although Ridley's original lens design was rigid, painful and caused or contributed to glaucoma. Since Sir Ridley's pioneering work, the intraocular lens or “IOL” has evolved and is now commonly used to treat cataract patients.
Intraocular lens come in a variety of shapes and sizes. In general, all IOLs share two components, an optical lens, which is used to enhance or restore visual acuity and a haptic structure, which is used to hold the lens in a fixed position within the patient's eye. Haptic structures (“haptics”) come in a variety of designs. For example, the haptics disclosed in U.S. Pat. No. 6,224,628, “Haptics for an Intraocular Lens,” contemplate a stem structure extending from the optical lens, that transitions to a crossbar extending perpendicular to the stem. A bar with a bulbous end then extends from the crossbar in directions generally parallel to the direct of the stem. Another haptic design is described by U.S. Pat. No. 6,475,240, “Anterior Chamber Intraocular Lens and Method for Reducing Pupil Ovalling,” which describes a system of haptics comprising equally spaced stems that extend radially away from the center of the optical lens, where each stem terminates in a footplate that touches the inner wall of the anterior chamber of the eye. U.S. Pat. No. 6,517,577, “Crossed Haptics for Intraocular Lenses,” describes haptics for IOLs having pairs of haptic stems extending from a haptic base at obtuse angles, typically greater than 100° degrees relative to the center longitudinal axis of the lens. U.S. Pat. No. 6,616,693, “Flexible Fixation Members for Angle-Supported Anterior Chamber Intraocular Lenses,” provides for haptics with rectangular haptic footplates placed approximately 90° degrees from the haptic base. U.S. patent application Ser. No. 10/394,906, Publication No. US 2004/0186568 A1, “Foldable Angle-Fixed Intraocular Lens,” describes an IOL very similar to that disclosed in U.S. Pat. No. 6,616,693, except that the footplates in the application are bulbous and are positioned at about 80° degrees. U.S. patent application Ser. No. 09/794,990, Publication No. US 2002/0120331 A1, “Refractive Anterior Chamber Intraocular Implant,” describes a variety of IOL configurations in combination with a haptic footplate extension pad that is intended to help anchor the IOL to the eye of the patient. U.S. patent application Ser. No. 10/394,906, Publication No. US 2003/0199978 A1, “Stable Anterior Chamber Phakic Lens,” describes an IOL with haptic stems extending away from a haptic base at angles of approximately 65° degrees. U.S. patent application Ser. No. 10/918,078, Publication No. US 2005/0021140 A1, “Accommodating Intraocular Lens with Textured Haptics,” describes an IOL° with haptic placed perpendicular to the stem extending from the optic and at about degrees 70° degrees from the haptic base. Optical lenses and haptic structures may be formed from a common piece of material, or assembled from component parts.
Installation of an IOL may occur in the anterior chamber whether or not a natural, crystalline lens is present. If the natural crystalline lens is absent, an IOL may alternately be implanted in the lens capsule. For either case, it is desirable for an IOL to be small enough to pass through a minimal corneal incision for implantation, in order to reduce the likelihood of subsequent corneal distortion and other surgical side effects or complications.
A limiting factor governing the size of the corneal incision is the diameter of the optical lens required to accommodate a range of pupil diameters for various ambient light levels. Glare and other distortions are likely to occur if a prosthetic optical lens is not large enough to cover a fully dilated pupil for proper nighttime vision. One approach to reducing glare while at the same time reducing the size of the incision in the cornea is to construct the IOL from several pieces which are joined together after the individual pieces are inserted through the corneal incision as disclosed in U.S. Pat. No. 5,769,889, to Charles D. Kelman. The complexity of this type of IOL makes them difficult to install and still results in compromises between reduced incision size and peripheral glare coupled with impaired night vision.
Nordan and Morris improved on the work by Kelman by developing a thin foldable intraocular implant specifically configured for installation into the lens capsule of a phakic (having no natural crystalline lens) or the anterior chamber of a pseudophakic (having a natural crystalline lens) eye having broad haptic flaps with extended contact regions providing reduced peak pressure against the wall of the eye, but reducing the flow of aqueous humor in the anterior capsule resulting in possible complications. (See, U.S. Patent Publication Nos. 20030220687 and 20030097176, and WO 02/41806, which are hereby incorporated by reference in their entirety.) Installation of the disclosed intraocular lenses (IOLs) involves rolling and inserting the lens through a small corneal incision.
Multi-order diffractive (MOD) lenses are useful for bringing a plurality of spectral components of different wavelengths to a common focus. (See, U.S. Pat. No. 5,589,982, to Faklis and Morris, which is hereby incorporated by reference in its entirety.) A MOD lens typically comprises multiple annular zones having step heights defining zone boundaries, which can diffract light of each of the wavelengths in a different diffractive order to a common focus.
The invention described herein provides a low-compression, foldable intraocular lens to provide vision correction that allows for the flow of nutrient bearing fluids in the anterior chamber. Monofocal, bifocal, and polyfocal lenses are contemplated by the disclosed invention. The described invention can be used with refractive and diffractive lenses. In one embodiment, a multi-order diffractive lens is used for the intraocular lenses disclosed (IOL).
The disclosed lens can be used with refractive or diffractive optics. One embodiment of the disclosed invention is a low-compression IOL using a monofocal multi-order diffractive (MOD) corrective lens. Such a low-compression IOL comprises a monofocal lens body defining an aperture and wherein the lens comprises a multi-order diffractive structure having a plurality of zones which define zone boundaries at which light incident on the structure experiences an optical phase shift, and diffracts light of each of the wavelengths in a different diffractive order, m, such that m≧1, to said focus, thereby providing a plural order diffractive singlet.
a shows a top perspective view of a low-compression intraocular lens (IOL) according to a embodiment of the invention.
b shows an end perspective view of the IOL of
a illustrates a top view of an IOL according to an embodiment of the invention.
b illustrates a side view of the IOL shown in
a illustrates, in a schematic top view, the position and shape of an IOL according to an embodiment of invention, prior to implantation into the anterior chamber of a human eye.
b illustrates, in a schematic top view, the position and shape of an IOL according to the embodiment of
a illustrates, in a schematic side view, the IOL of
b illustrates, in a schematic side view, the IOL of
a illustrates in a schematic top view, the position and shape of an IOL according to an alternative embodiment of the invention, prior to implantation into the anterior chamber of a human eye.
b illustrates a schematic side view of the embodiment of
a illustrates a schematic side view of the embodiment of
b illustrates a schematic side view of the embodiment of
a through 10d illustrate embodiments of IOLs with different optical lens positions.
The disclosed invention contemplates a foldable, low-compression intraocular lens (IOL) for implantation into an eye for the correction of refractive errors. Traditional IOLs are compressive in nature in that they rely upon the compression of haptic structures by an inner wall of the eye to frictionally maintain the IOL position within the eye. In a traditional IOL, such compressive forces typically distort the structure of the implanted IOL, causing the optical lens to vault away from the iris and toward the corneal epithelium.
Relying upon a compressive mechanism for placement of the lens within the anterior chamber of the eye is problematic for a number of reasons. Because not all human eyes have the same anterior chamber diameter a clinician installing an intraocular lens in the anterior chamber is forced to engage in a method of trial-and-error lens fitting to select an intraocular lens that is sized appropriately for a particular patient. If the lens fit is too loose, the lens may not be properly fixed in position. If the lens fit is too tight, excessive vaulting of the implant structure can offset the lens position along the optical axis, thereby impairing optical performance. Also, if the lens fits too tightly, the shape of the cornea can be distorted, also potentially causing optical impairment, in addition to potential problems arising from too much contact force against the inner wall of the eye. Typically, 10 to 15 percent of anterior chamber IOL implantations have to be removed for improper fitting. A low-compression IOL of the current invention is superior to a traditional IOL in that it is compatible with an increased range of anterior chamber diameters so that a one-size-fits-all IOL can be used. Such an IOL eliminates the need for a clinician to guess which size IOL to use to correct refractive errors, and also eliminates the need to carry multiple sizes of IOLs in clinical stock.
The low-compression intraocular lens described herein is useful for the surgical treatment of optical distortions that reduce visual acuity in a human eye. To understand the utility of the disclosed invention it is helpful to have a grasp of the structural features of the human eye.
The iris 025 is an opaque diaphragm having an aperture called the pupil 028 at its center, and expands or contracts the opening of the pupil 028 by contracture and relaxation of the ciliary muscle in the ciliary body 024 to regulate the flow of light into the eye 020. Pigments of the iris provide the colored portion of the eye. The natural crystalline lens 029 is suspended between the iris 025 anteriorly and the vitreous body 030 posteriorly by ligaments known as the zonules of Zinn 031 attached to the muscles of the eye 020 in the ciliary body 024. At the junction between the iris 025 and the ciliary body 024 is a shallow depression known as the ciliary sulcus 032. An aqueous fluid filed anterior chamber 033 separates the posterior endothelial layer of the cornea from the iris. A prosthetic anterior lens can be implanted into this chamber. The iris 025 and pupil 028 divide the anterior region of the eye 020 into the anterior chamber 033 and the posterior chamber 034, which are filled with the aqueous humor, a fluid secreted by the ciliary process and flowing from the posterior chamber 034 through the pupil 022 into the anterior chamber 033. At the angle 035 of the anterior chamber 033 (at the junction of the cornea 022, and the iris 025), the fluid is filtered through the spaces of Fontana and the pectinate villi and drains through the sinus venosus sclerae, or canals of Schlemm 036. The lens 029 is contained within a thin membrane called the lens capsule (not shown).
Light passes through the cornea 022 and the iris 028, is focused by the crystalline lens 029 to form an image on the retina 026 which then transmits the detected electromagnetic radiation to the optic nerve and ultimately to the brain for processing. Six extra-ocular muscles that rotate the eye (not shown) are attached to the outside of sclera.
Errors in visual acuity results from a number of different causes, including refractive errors that can be corrected with visual prostheses (lenses). Nearsightedness (myopia), farsightedness (hyperopia), presbyopia (loss of accommodation) and astigmatism are the most common refractive errors. The low-compression, foldable intraocular lens (IOL), of which various embodiments as disclosed herein, provides a means to correct such refractive errors The IOL can be folded for insertion through a small corneal incision, with subsequent unfolding when in place in the eye. The implanted IOL allows the flow of nutrient bearing fluids (aqueous humor) for eye health. The IOL can accommodate a large range of anterior chamber diameters with reduced shifting of the axial position of the lens and consequent optical performance degradation, and without excessive haptic pressure on the eye.
a illustrates a perspective top view of an IOL embodiment of the invention. In this embodiment, haptic body 100 comprises a haptic base section 101 transitioning through haptic tail regions 103 to haptic pads 104. Optical lens 102 is held by haptic base 101. In one embodiment, optical lens 102 and the haptic body 100 can be fabricated from a single piece of suitable, biocompatible optical material. In alternative embodiments optical lens 102 and the haptic body 100 may be made of different materials and subsequently assembled. Such assembled embodiments can be used to avoid tradeoffs between the mechanical properties desired for the haptic body 100, and the optical properties desired for the optical lens 102. Lens 102 may be held by haptic base section 101 through a variety of means that are well known to one of ordinary skill in the art. For example, lens 102 may be held in place by compressive force from the haptic base 101, optionally with a circumferential tongue and groove configuration. Alternatively or additionally, optical lens 102 and the haptic body 100 may be held together with the help of a biocompatible adhesive material. A third assembly option is to bond optical lens 102 to the haptic body 100 using thermal, compressive, thermocompressive, or solvent based welding techniques.
The IOL is designed for intraocular implantation in the anterior chamber 033 as shown in
a and 4b show top and side cross-sectional views, respectively of an IOL embodiment of the current invention. Numbered elements of the drawings refer to the same numbered elements as those of
As seen in
For the embodiment of the present invention illustrated in
The angle of the anterior chamber contains several structures that make up the eye's drainage system. The angle is bound by the outermost part of the iris, circular fibers of the ciliaris (ciliary body), the trabecular meshwork, and the scleral venous sinus (Canal of Schlemm). Aqueous fluid flows from behind and through the iris into the anterior chamber. The aqueous fluid is drained from the anterior chamber through structures in the angle, such as the trabecular meshwork, through the scleral venous sinus. The production and drainage of aqueous fluid determines the eye's intraocular pressure (IOP). Obstruction of the angle, known as angle closure, results in elevations in IOP, which can be damaging to the health of the eye. Accordingly, proper placement of the device into the angle of the anterior chamber is important, among other reasons, to maintain proper IOP.
Features of the haptic tail 104 permit the installation of the device into the anterior chamber of the eye without unnecessarily blocking aqueous fluid from departing the anterior chamber. For example, in reference to the embodiment of
b shows a side view of an embodiment of an IOL. From this side view, one can visualize the transition 103 from the haptic tail 104 up through the haptic base 101 to the optical lens 102. Note the angle of the haptic base leading to optical lens 102. The angle of the haptic base relative to the haptic pads 104 and the lens provides the vaulting to the IOL, holding it away from the crystalline lens. Radially compressive force from the inner wall of the anterior chamber is transmitted to the IOL through haptic pads 104, causing the pads 104 to splay apart while holding the IOL substantially stationary relative to the crystalline lens. The placement of the haptic pads 20 (
Referring again to
a and 5b illustrate the two mechanisms of compliance in a schematic top view of the IOL. Dashed circle 500 indicates the interior wall of the anterior chamber that contacts the haptic pads.
The radial compression is better understood in the cross-sectional side view schematic drawings of
a and 7b illustrate top and cross-sectional side views, respectively, of another embodiment of the invention. Numbered elements correspond in both drawings. 703 is the haptic base, that holds optical lens 702. Haptic pads 704 are as described above with respect to the embodiments of
The operation of distal and proximal strain relief segments 706 and 707 is better understood in connection with relaxed and compressed cross-sectional side view drawings,
For example, In
The above embodiments show how using multiple elastic structural elements and/or multiple mechanical modalities for deforming those elements can extend the range of ideal-like force-compression behavior, without increasing the physical size of the IOL. For example, the pad splaying occurs tangentially in a plane normal to the optical axis, whereas the tail compression occurs radially in a plane normal to the optical axis.
Although all of the IOL embodiments described so far have two diametrically opposed haptic tails, in general, an arrangement of any number of haptic tails may be used. For example, embodiments with three, four, or more tails can be considered. In particular, an embodiment with three or more tails can provide improved IOL fixation in a plane normal to the optical axis. A drawback of using more than two haptic tails is a potential reduction in the flow of aqueous humor. Also, such embodiments may be more difficult to fold during implantation. The present invention provides the flexibility to make such tradeoffs for different clinical cases.
a shows an exemplary assembly of an optical lens 904 on a haptic base 901, having a front side 902 and a back side 903, of a haptic body 900. The optical lens 904 has a front side 905 and a back side 906. The front side 905 faces the cornea and the back side 906 faces the pupil. In the embodiment shown in
A particularly preferred embodiment of the disclosed device is the embodiment of
The corrective devices disclosed herein use any type of light focusing technology in the lens body. Thus, disclosed corrective devices can use refractive optics, diffractive optics, combinations of refractive and diffractive optics, and other types of optics systems as embodiments of the lens body. Use of refractive lens technology is exemplified in U.S. Pat. No. 5,089,022, to Koester, et al., entitled “Rectified intraocular lens,” which issued on Feb. 18, 1992 and is incorporated by reference in its entirety.
Diffractive lens technology is another viable optical system for use with the disclosed invention. One example of diffractive optics that can be used with the present invention is found in U.S. Pat. No. 5,152,787, to David Hamblen, entitled “Intraocular gradient-index lenses used in eye implantation,” which is hereby incorporated by reference in its entirety. Additional examples of diffractive lens technology used in intraocular lenses include U.S. Pat. Nos. 5,120,120, 5,358,520, 5,366,502, 5,384,606, 5,448,312, 5,485,228 and 6,634,751, all of which are hereby incorporated by reference in their entirety.
A preferred diffractive lens technology is disclosed in U.S. Pat. No. 5,589,982 to Faklis, et al., entitled “Polychromatic diffractive lens,” which is hereby incorporated by reference. This multi-order diffractive (MOD) lens technology can be used to construct the optical portion of the lens body. An MOD lens focuses light of different wavelengths to a multiple order diffractive singlet. The multi-order diffractive structure has a plurality of annular zones, which define zone boundaries that diffract light of each of the wavelengths in a different diffractive order to the focus thereby providing a plural or multiple order diffractive singlet. MOD lenses are superior to other lens technologies in that they focus light with less image distortion.
The disclosed corrective devices can be used with a monofocal, bifocal or polyfocal corrective optic. In one embodiment, a monofocal MOD corrective optic is used and focuses light comprised of multiple wavelengths to a single focal point. Accordingly, a bifocal MOD corrective optic focuses light comprised of multiple wavelengths to two focal points, while a polyfocal MOD corrective optic focuses light to three or more focal points. For example, recent advances by Morris, et al., U.S. patent application Ser. No. 10/462,294, entitled, “Bifocal Multiorder Diffractive Lenses for Vision Correction,” which is hereby incorporated by reference in its entirety, describes the construction of bifocal and polyfocal MOD lenses. It is noted that other types of lens technology can be used to produce monofocal, bifocal and polyfocal lenses.
It should also be noted that by varying the central optical zone of the MOD lens, different powers of the resulting lens body 130 can be manufactured. A higher MOD number permits a larger central “optical zone”. MOD optical zones will preferable range from 1 to 20 unites. More preferably from 10 to 20, and most preferably the lens body will have a MOD number of 10. By varying the nature of the MOD lens a progress set of lenses are produced that achieve the optimum contrast sensitivity for patients with varied pre-operative refractive errors.
The thickness of the optical lens 904 is an important feature of the described devices but its importance is reduced because of the haptics described herein. In general, it is preferred to minimize the overall size of an IOL to reduce unintended alterations to the shape of the cornea during the installation procedure. However, so long as the optical lens 904 itself avoids contact with the corneal epithelium and the iris, the optical lens 904 can be as thick as is necessary to restore visual acuity to an eye. Exemplary thicknesses of an optical lens range from approximately 25 to 1000 microns, 50 to 600 microns, 75 to 250 microns, and most preferably, the optical lens will be approximately 100 microns thick.
The optical lens 904 preferably has a diameter of at least 3 millimeters. A preferred lens body has a diameter from approximately 3 to 10 millimeters. Specific examples of diameters for the lens body include diameters of 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, or 10.0 millimeters.
Another feature of the optical lens 104 relates to its shape. The optical lens 904 can be flat or curved. The optical lens 904 can be positions above the haptic structure 900 (
The optical lens 904 assembled with haptic structure 900 preferably has a radius of curvature that provides a degree of flexibility for the IOL during and after installation. The radius of curvature will preferably range from approximately 1 to 50 mm, 5 to 40, 10 to 30, and most preferably, the radius of curvature of the optical lens 904 is approximately 12.5 mm. The radius of curvature for an optical lens is preferably established ex vivo and the ranges discussed above relate to radii of curvature from lenses that are not installed within an eye.
The dimensions of the described corrective devices will also depend on the nature of haptic structure 900. One IOL embodiment is constructed of materials that produce a device will preferably be 7 to 20 millimeters in length and from 3 to 10 millimeters in width.
Unlike WO 02/41806, which teaches the use of MOD lens technology for the construction of a thin, foldable intraocular implant, the presently described invention does not require such thin lenses. With respect to intraocular lenses, the present invention contemplates intraocular lenses wherein the lens structure can be of any thickness, so long as the resulting structure fits efficaciously and safely within the anterior chamber of an eye. In one embodiment, the thickness of the lens is greater than 125 microns. More specifically, the thickness of the monofocal lens embodiment will be 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450 or more microns in thickness. These thickness ranges preferably apply to embodiments comprising a monofocal MOD corrective lens.
While particular optical lens thicknesses are not required for optical performance, some embodiments may benefit from possessing a optical lens with a certain degree of thickness. Such a construction may serve to help stabilize the IOL, thus better holding the optical lens in a stable position relative to the retina of the eye in which the lens is installed. Additionally, an increased thickness of an IOL may prevent lens deformation once the lens is installed in a subject's eye. Accordingly, increased lens thickness may provide less distortion in the transmission of light through an intraocular lens to the retina.
The disclosed optical lenses are composed of a optically transmissive material, such as typically used in the manufacture of contacts, optic portion of conventional IOLs, spectacles, or other types corrective lenses (e.g., plastic, silicone, acrylic, glass, or polymers typically used for the particular contact, IOL, or spectacle application). Such lenses can be constructed using typical methods that are well known to one of ordinary skill in the art, for example: grinding, lathing, etching, molding, or combinations thereof. For example, the optic pin of a corrective device can be prepared by lathing.
When an IOL is designed for anterior chamber installation, it preferably comprises a lens body 904 and a haptic body 900, upon which the lens body is affixed, attached, or otherwise positioned. A unitary design where the lens body 904 and the haptic body 900 comprise a single continuous unit is also contemplated.
The haptic body 900 is preferably made of flexible silicone such as Material Number MED-6820 commercially available from NuSil Silicone Technology of Carpenteria, Calif. Other resilient materials such as PMMA or hydrogel can be used. The haptic body 900 serves as a scaffold to support and position the optical lens 904 and preferably has no corrective properties. In alternative embodiments, the haptic body 900 can be formed to enhance or contribute to the corrective effect of the optical 904.
Additionally, haptic body 900 can be coated with materials that render it less likely to interact with components of the eye. An example of such a coating would be a coating of heparin, an natural saccharide that inhibits blood clotting and protein adhesion. The haptic body material also comprises one or more ultraviolet light blocking agents.
The haptic body 900 is preferably made in a thickness of approximately 25-1000 microns, alternatively the membrane is from 50 to 600 microns, 75 to 250 microns, and most preferably, the optical lens 904 will be approximately 100 microns thick. Although flexible, it returns to a rest position with a radius curvature in a range of approximately 0 to 20 millimeters about a vertical axis. The range includes a radius curvature of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0 millimeters about a vertical axis. The combined layers exhibit a total thickness of about 475 plus or minus 10 microns. The overall dimensions are approximately 12 millimeters in length, 8 millimeters in width. The IOL can be bent and even rolled or folded for insertion into the interior chamber through a small incision of preferably no more than 3.0 millimeters, more preferably 2.75 millimeters in length or less. The IOL has enough resiliency to return to its prerolled or prefolded arcuate shape.
The IOL retains an arcuate shape in its resting position. The IOL within a circle having a radius R of approximately 12.5 millimeters. Due to the range of accommodation for haptic body 900, this size can accommodate practically all eye sizes. In other words, depending upon the span of the anterior chamber, the IOL upon installation can adjust its length by decreasing or increasing its radius R of curvature within a range of about 0 to 20 millimeters.
The IOL can be used in an aphakic, pseudophakic or phakic eye to correct impaired vision. For example, the disclosed lenses can be used in lens replacement procedures, such as for use in an aphakic eye. So, after the procedure the procedure the subject's eye would contain a plurality of lenses, including but not limited to the natural lens and at least one corrective lens or a plurality of IOLs. In a preferred embodiment, a multiorder MOD corrective lens is designed to correct a refractive error. Typically, the MOD corrective lens is fashioned after the nature and degree of the refractive error in a subject has been determined. The corrective lens can be monofocal, bifocal, or polyfocal. The MOD corrective lens, once fashioned, is provided to the subject, alleviating the refractive errors present in the uncorrected eye.
As discussed above, the dimensions for the corrective device are governed by the intended use of the device. For example, one IOL embodiment is designed for installation and use within the anterior chamber of the eye.
The size of the folded IOL is important because it is well known in the art that incisions for installing IOLs that are larger than 5 millimeters in length tend to induce astigmatism or other distortions of the cornea that may themselves lead to visual impairment. Accordingly, it is preferable that an intraocular corrective device intended for insertion into the anterior chamber of an eye will be adequately flexible. Preferably, such a device will be sufficiently flexible as to be foldable for insertion into an incision of preferably less than or equal to 4.0 millimeters in length. An incision size of 1.0 to 5.0 millimeters or less is most preferred. Specifically, an incision size of 1.0, 1.1, 1.2, 1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.75, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, and 5.0 millimeters in length. Sutures or other wound closing agents, such as glues, adhesives, protein cross-linking agents, and the like may or may not be used to close the incision.
The disclosed embodiments are implanted in the anterior chamber of the eye. The disclosed embodiments can be used alone or in combination with another IOL to correct vision. For example, a bifocal IOL of the disclosed design can be used in the anterior chamber to provide additional correction in an eye where the crystalline lens had been removed and replaced with a posterior chamber IOL.
The following examples are offered to illustrate but not to limit the invention.
A foldable phakic IOL is implanted using an injector that introduces the IOL through a clear corneal incision of less than 3 mm. The implantation technique for this lens is similar to that used for a pseudophakic IOL after cataract extraction. Preopertively, topically instilled pilocarpine 1% is administered to create a miotic pupil. The surgeon leads the phakic IOL into the lubricated injector cartridge, creates a sideport incision, and injects a viscoelastic agent into the anterior chamber. The IOL is then injected. The surgeon engages the inferior haptics of the IOL into the inferior angle before removing the cartridge tip from the anterior chamber. Bimanual irrigation/aspiration (I/A) removes all viscoelastic from the anterior chamber, and the surgeon uses the I/A instruments to adjust the position of the lens, if necessary. The anterior chamber is inflated to a normal pressure with BSS (Alcon Laboratories, Inc. Ft. Worth, Tex.), and the incision is checked. Finally, the surgeon places a bandage contact lens and a drop of ZYMAR (Allergan, Inc., Irvine, Calif.) on the eye. The entire surgical procedure takes only a few minutes, and can be performed using only topical anesthesia in an outpatient setting. Following implantation, the subject immediately enjoys improved visual acuity.
The surgeon may explant the IOL by grasping its superior haptic with forceps through an incision and then externalizing the entire IOL by means of gentle traction. Sutures or other methods for sealing the incision may be used.
This application claims the benefit of U.S. provisional patent application Ser. No. 60/696,380 filed Jul. 1, 2005, the disclosures of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60696380 | Jul 2005 | US |