1. Field of the Invention
The present invention relates generally to the fabrication and assembling of building frame components and, more particularly, to devices and structures relating to frame components and assemblies made of metal. Specifically, the present invention relates to prefabricated foldable metal wall frame members which enable easy transportation and on-site assembly of the same for both commercial and residential structures.
2. Description of the Prior Art
In general, wall structures for both residential and commercial construction have been made over the years using the so-called stick framing method and construction. In such stick frame construction, the structural walls are made from wood studs, and the top and bottom wood framing members are called plates. Typically, the studs and plates are made from two-by-four lumber members which are generally 2″ in thickness and 4″ in width cut to the desired length. Stick framing generally involves the technique of nailing the studs to the top and bottom plates and are normally spaced 16″ on center to form a building structural wall. Systems for arranging these components into wall structures are illustrated in U.S. Pat. No. 3,986,247, No. 4,876,787 and No. 5,646,860.
In recent years, high-rise and other commercial building structures have replaced standard stick frame construction with steel structures. High-rise buildings typically employ straight column members subjected to high axial compression forces. The use of solid or rectangular rolled-steel sections typically in the form of steel studs supported between steel tracks has now become the standard construction format for commercial wall construction. Such steel members can be produced economically in a wide range of sizes and are readily assembled on site into wall and window sections. Examples of such devices are illustrated in U.S. Pat. No. 3,877,129 and No. 4,078,288.
Light gauge steel framing has been available to the construction market for well over forty years now. In fact, it has become the dominant, i.e. greater than 90 percent, construction technique in the commercial building industry. However, wood is still the dominant framing material for use in the residential construction field, still amounting to about 85-92 percent of new residential frame structures. Considerable time and money has been expended by numerous trade and industry organizations, particularly during the past ten or twelve years, in study and research to determine why there is this vast difference in usage between these two related construction fields, which at first glance would appear to have equal need and use for this material in their respective construction fields. As a result of the above studies, it has been determined that there has been noticeable progress made by light gauge steel framing in gaining a larger portion of the residential building market. Nonetheless, this progress has been a slow, moderate increase as opposed to the extreme dominance of steel framing vs. wood stick framing which has occurred in the commercial construction field.
There are a number of reasons for this disparity of usage of steel framing between these two fields of construction. Among the obstacles faced are entrenched traditional residential construction approaches as well as production methods for steel framing components. The production method of choice for producing light gauge steel framing has been, and will most likely continue to be, cold roll forming. This is due to its inherent low production cost with almost no material scrap loss factors. During the last 50 years, cold roll forming of steel has gone from substantially a “black art” with machines and materials which required considerable operator experience and skill, to a production technology which today is performed by higher precision machines and with fewer operator skills while using materials that are much more uniform in quality.
There are two main components used in light gauge metal framing. These components include studs (similar to wood framing) which in walls are the vertical members, and tracks, which are the top and bottom horizontal frame members to which the studs are attached. Both components are basically a U-shape component with the studs having inwardly turned stiffened lips or ledges on the outer distal edge of each leg while the tracks do not have such stiffening ledges. The tracks are dimensioned widthwise to fit over the ends of the studs, and the stud and track members are used to frame wall sections. The same basic shapes in wider and heavier gauge sizes are also used for floor framing sections. Both shapes are also used to assemble roof and other truss members of considerable spanning and load carrying capabilities.
Traditional cold roll forming devices consist of sets of two driven shafts positioned one above and one below a metal sheet passing through the device. Mounted on these shafts are roll elements whose profile has been machined to bend or form a strip of flat metal as it passes between the tightly spaced roll contours. This set of shafts, rolls and the mechanism that drives them is referred to as a roll pass. A roll former generally consists of a number of such roll passes mounted on a flat steel base with all passes being mounted in a straight line, and with all shafts in parallel with each other. The profile of each set of rolls in each succeeding pass is designed to gradually change the cross section of the initially flat metal strip fed into the machine, into the final desired shape as it passes through the sets of rolls. The number of passes required will vary with the complexity of the shape being formed as well as the type of material, its thickness and its physical properties.
To successfully roll form a finished shape, the metal's yield strength must not be exceeded as the metal is formed by the rolls. Assuming that the roll tooling has been properly designed to avoid this particular problem, there are a number of other factors which still cause problems in existing roll forming technology. The above referenced co-pending patent application focuses on significantly improved techniques and devices for accomplishing the formation of such roll formed metal studs and tracks as well as the assembling of metal studs and tracks into wall frame sections.
While the formation of metal wall frame studs and tracks as well as the preassembly of wall frame sections from such studs and tracks has been enhanced by the inventions of the above-referenced patent application, there still exists a number of problems relating to the acceptance and use of metal wall frame structures in the residential building market. One such problem involves teaching new assembly and construction techniques for on site formation of metal wall frames from the stud and track components to individuals who are used to using wood framing members. While one approach to lessen this problem involves the preassembly of basic metal wall frame structures at a location remote to the residential construction site, this solution creates a yet another set of new problems including the costs and complexities of transporting, unloading and then connecting the large and cumbersome preassembled metal wall frame structures. Thus, there remains a need in the art for metal wall frame structures as well as assembly techniques which overcome the aforementioned problems inherent in the existing technology. The present invention addresses and solves these particular problems in the art.
Accordingly, it is one object of the present invention to provide pre-formed metal wall frame components and wall structures therefrom.
It is another object of the present invention to provide a wall frame structure from metal studs and tracks.
Yet another object of the present invention is to provide pre-fabricated metal wall frame units capable of being selectively attached to each other at the site of residential or commercial building construction to form a residential or commercial building structure.
Still another object of the present invention is to provide a pre-fabricated, foldable metal wall frame unit which is capable of easy transportation and selective erection on the site of residential or commercial building construction.
A further object of the invention is to provide a pre-fabricated, foldable metal wall frame unit which is adapted for ensuring good load transfer in load-bearing wall applications.
To achieve the foregoing and other objects and in accordance with the purpose of the present invention, as embodied and broadly described herein, a foldable wall frame is disclosed. The wall frame includes first and second track members spaced from each other, each track member having a center web and a pair of opposite side flanges. A plurality of spaced stud elements are positioned between and substantially perpendicular to the track members with each stud element having a first and a second end portion. A first attachment element is provided for pivotally securing the first end portion of each said stud element to the first track member. A second attachment element is also provided for pivotally securing the second end portion of each stud element to the second track member. The first and second pivotal attachment elements enable the first track member to be folded down proximate the second track member for storage and transportation, and to be unfolded at a construction site for installation into a building structure.
In one modification of the invention, the first and second attachment elements are each in the form of a clip member having a pair of apertures and include a fastener attaching one aperture to an adjacent track member. In another modification, the frame includes removable retention members to selectively engage and hold the end portions of a stud element in the track members when the frame is in an unfolded position. In still another modification, the frame is selected from the group consisting of metal and wood.
In another aspect of the invention, the stud end portions are adapted for engagement with the track web portion upon unfolding of said frame to create a load-bearing wall.
In another modification, the wall frame further includes collapsible spacer members adapted for engaging the end portions of the stud elements to position the stud elements relative to the track members during formation and adapted for collapsible removal upon folding and transport of the wall frame, each spacer member including two interacting wedge elements and a mechanism for releasably attaching the wedge elements together to expand the spacer member for supporting load transfer through the stud element from the upper track member to the lower track member. In one form of this modification, the spacer members are adapted to engage the stud end portions upon unfolding of the frame to create load-bearing walls.
In still another modification of the invention, the wall frame further includes a pair of substantially parallel, transversely oriented notches disposed in the lower track web along the inside edges of adjacent studs to mark door frame positions.
Another aspect of the invention is wherein the stud member includes a center web portion having at least one elongated opening therein defined by a substantially elliptical edge. Each opening has a pair of side slots disposed opposite each other in the elliptical edge. The wall frame further includes an elongated brace member having a pair of opposite elongated side portions and at least two pairs of opposing notches disposed in the edges of the elongated side portions at their axial ends, the notches interengaging the elliptical edge slots to firmly hold the brace member between adjoining studs of the wall frame.
In still another modification, the track member center web includes a pair of raised transfer pads defining a depression cavity therebetween at the junction of the stud element end portions and the track member web to enhance the transfer of structural loads from the first track member to the second track member through the stud elements when the wall frame is in a fully unfolded and erect position.
An additional modification of the invention is in the form of a foldable wall frame having upper and lower track members. Each track member has a center web and a pair of opposite side flanges, the track members being spaced from each other with their respective side flanges projecting toward each other. A plurality of spaced stud elements are also provided with each having a center web, a pair of opposite side flanges and a pair ledge portions projecting inwardly from the edges of the flanges. Each stud element has first and second end portions and is arranged substantially parallel between the track members. A first attachment element pivotally secures the first end portion of each stud element to the upper track member. A second attachment element pivotally secures the second end portion of each stud element to the lower track member. The first and second pivotal attachment elements enable the upper track member to be folded down proximate the second track member for storage and transportation. Finally, a load transferring mechanism is disposed at the junctions of the first and second stud end portions and the upper and lower track members for enhancing and creating reliable load transference between the upper and lower track members when the wall frame is in a fully unfolded and erect position.
Yet another aspect of the invention is in the form of an elongated brace member for laterally supporting adjoining studs of a wall frame. The wall frame includes a plurality of studs interconnected at their ends between a pair of tracks, with each stud having a central web portion and side flanges. The brace member includes an elongated support element having first and second end portions, a pair of elongated side edges extending between the support element end portions, and a channel defined along the center of the support element and extending between the support element end portions. A first pair of opposing notches are defined in the side edges proximate the support element first end portion. A second pair of opposing notches are also defined, in the side edges proximate the support element second end portion. The pairs of notches are sized and shaped for removable engagement with adjoining studs to provide lateral support thereof.
The accompanying drawings which are incorporated in and form a part of the specification illustrate preferred embodiments of the present invention and, together with a description, serve to explain the principles of the invention. In the drawings:
The present invention is a multifaceted foldable metal wall frame arrangement for residential and commercial building frames and the assembling of building structures therefrom. Referring first to
The metal components 22, 30 are preferably formed for assembly together into a wall frame unit 36. The frame unit 36 includes a plurality of stud members 30 spaced at about 16″ centers and attached at each end to a track element 22. In another form, the metal components may be assembled to form a roof truss unit 38. In this form and by way of example only, the eaves and base support are formed from several track elements 22 and are interconnected with stud members 30.
Once the metal components are cut, formed into stud elements 30 and track members 22, and then punched, they must be assembled into building wall frame units 36. To accomplish this with more expediency and efficiency, the frame units may be pre-assembled. Despite the costs of steel framing leaning more and more in steel's favor as compared to wood framing, the cost for assembling the steel framing units in situ on the job site compared to comparable costs for wood framing has remained significantly higher, especially for residential construction projects. The lack of readily available experienced and skilled metal framing crews in most areas further increases this cost difference. One approach to this problem has been the in-house plant panelized framing where frame sections are produced in-plant under controlled conditions by less skilled labor and then trucked to the job site. Referring to the above-referenced related patent application, one such assembler embodiment is illustrated therein. In this embodiment, a device provides pre-cut stud elements and track members with pre-punched holes in the flanges. This device essentially produces an “erector set” of metal wall frame components which are taken by an assembler device and assembled into finished framed sections complete with door and window openings as designed by a computer software program. While generally more cost effective compared to prior typical job-site assembly, this approach has its own set of problems and limitations, in particular the cost of shipping large pre-assembled units and then handling such large and heavy units at a construction site without specialized equipment.
When assembling metal wall frame units, whether foldable or not, it is always preferred to obtain the tightest fit possible between the end portion of a stud element 30 and the web surface of a track member 22. To assist in accomplishing this in one form of the invention, the end portions of the stud elements may be modified by deformation. Referring to
The deformation of the stud end portion 292 to create the reduced portion 294 may be performed as part of a final stud formation process, or it may be performed on an as needed basis at the site of assembly into wall units 36. This election is most preferred since a non-load bearing wall section will function quite well with a typical joint 289. However, a load bearing wall application will preferably benefit substantially from a modified joint 290 arrangement.
Referring now to
The embodiments of an automated assembler device, as described in the above referenced related patent application, require only about one fourth of the man-hours that manual assembly of frame panels requires. This is a savings of about 75-80 percent of the typical on-site manual assembly time of wood or metal frames. When the metal frame panels are preassembled in folding frame arrangements, the frame panels typically require only approximately 20-23% of the on-truck trailer space required for the unfolded frames. Typically, a tractor-trailer can haul approximately 50,000 lbs. of the folded frames while only being able to load approximately 8-12,000 pounds of non-folded frames. In addition, trucks may very well need to obtain an over-width permit at extra cost to haul non-folded metal frames if such frames project over the trailer bed width.
At the job site, a light crane is normally required for unloading the non-folded frames, while folded frames can usually be unloaded by hand. In addition, the folded frames can be stacked in less space at the job site and can pass through openings between studs when folded. This provides substantially easier on-site handling of the frames. In addition, there is a significant shortage of steel framers, while there are plenty of wood framers in the market. It would be relatively easy to train existing at wood framers to work with steel frames when they are preassembled and folded.
Referring more particularly to
In non-load bearing wall sections, which are primarily interior wall sections, the stud ends are left cut square with the studs cut short as illustrated below. In the embodiment illustrated in
Alternatively, the studs 30 may be attached to the tracks 22 using metal clips 348 as illustrated in
A folded frame section typically only occupies about 20-30% of the space of the unfolded frame. This compactness of the folded frame is a factor of the size of the stud leg and the stud center spacing. The folded frame section can be handled more easily in most job site situations. The smaller size allows the folded section to pass through standard door openings or between studs in already erected wall sections for instance, and a simple two wheel dolly can carry the weight and allow easy turning of the section. In situations where the foldable wall section is to be load bearing, certain modifications can be made. It should be understood that this folding concept is also applicable to wood frames as well.
Referring in particular to
Because of the radius that must always be present at the band junction between the web and flange portions of the track 22, it is not possible for the web of the stud to rest tightly and flush against the inner face of the track web. Without accounting for this issue, downward load transfer between the track and stud would place a sheer strain on the fasteners which join the two members as described below. These fasteners are primarily intended to hold the track and studs in position laterally with each other and to permit the relative folding action between them. Therefore, in load bearing walls the extreme lower edge of the trackway is preferably bent inwardly to transfer the downward load directly between the tracks and studs. This basically relieves the fastener of the shear load and improves the structural qualities of the panel frame.
To illustrate the above and referring now to
It should be noted that the punch unit that creates the four hole pattern as illustrated in
Referring now to
As previously discussed, collapsible spacers may be utilized to center the studs evenly between the inside track web surfaces of the upper and lower tracks for non-load and load bearing wall sections. Referring now to
The spacers 388 may also be used to convert non-load bearing frame members to load bearing. In this instance, the studs 30 in a load bearing position need to be a proper gauge thickness for supporting the desired load, and may either be used with the extruded aluminum spacers 388 or changed out for the load bearing stud retainer mechanism 354 previously described. When the spacers 388 are utilized for such a conversion, the screw 418 is driven into place. The spacer 388 is then placed under the stud web, and the screw 418 is tightened to vertically expand the spacer 388 to support load transfer from the stud web to the track web. Since only a portion of a wall frame may need to be load bearing, the spacers 388 may be utilized only in the necessary and appropriate positions within the frame.
In certain instances, the foldable frame units of the present invention need to incorporate doorways therein. In order to accomplish this and as illustrated in
Referring now to
One axial end portion includes a pair of opposing end notches 450, 452 in the flat end elements 440, 442, respectively. A similar pair of end notches 454, 456 are disposed in the flat end elements 440, 442, respectively, of the opposite axial end portion of the brace member 430. In addition, a third pair of opposing notches 458, 460 is defined in the flat end elements 440, 442, respectively, spaced laterally inwardly from the end notches 454, 456. The distance between the notches 458, 460 and the end notches 454, 456 is defined as distance “A”, while the distance between the end notches 450, 452 and the end notches 454, 456 is defined as distance “B. In preferred form, the distance “A” is approximately equal to the width of a stud flange 26, while the distance “B” is approximately equal to the stud center-to-center distance in a wall frame structure.
In the illustrated embodiment of
As previously discussed, the stud elements of the foldable metal frames must form hinge points with the upper and lower track flanges. In essence, hinge points must be created between the track members and the stud elements which are offset from each other, one on either side of the centerline of the stud elements as illustrated herein. The farther away these points are located from the centerline, the easier the frame will fold. In addition, the stud elements must be able to transfer the structural load from the upper track member to the lower track member, and there are several different embodiment illustrated above that accomplish this using expandable clips or stud end deformation arrangements. The key to forming the foldable track members lies in the fact that there must be some radius where the web of the track member and the leg of the stud element meet. This radius prevents the distal ends of the stud elements from sitting directly in contact with the webs of the track members for good load transference from and to the track members.
As a result of this recognition,
When the tracks 22, 22′ are rotated at their attachment screws 500, 502 in the direction indicated by the arrow 504, the upper and lower end portions of the stud web 24, the stud flanges 26, 28 and the stud stiffened edges or lips 32, 34 all slide off the pads 494, 496 into the adjacent cavity 492 to permit such folding action. When the frame unit 498 is then erected on site, the tracks 22, 22′ are rotated at their attachment respective screws 500, 502 in the opposite direction of the arrow 504 so that the various end portions of the stud 30 reengage the transfer pads 494, 496 for firm stability and load transference. The depth of the cavity 492 along with the height of the pads 494, 496 is preferably equal to or slightly greater than the radius R between the web 24′ and the legs or flanges 26′, 28′ of the track 22 or 22′. This arrangement effectively raises the web 24′ for load transfer purposes, thus eliminating the effect of the radius R.
As illustrated in this and the various prior embodiments, punched or pre-drilled holes 506 are preferably provided in the legs 26′, 28′ of the tracks 22, 22′ for the attachment screws 500, 502. This pre-drilled hole arrangement saves the time involved with the screws 500, 502 having to drill holes in both the legs of the tracks as well as the flanges of the stud when assembling the foldable frame unit. While this time saving is not much per screw, it does add up when one considers the thousands of holes drilled per day at the pre-assembly location for the foldable wall frame sections. In addition, the pre-punch or drilled holes 506 in the track legs 26′, 28′ may be oversized as illustrated in
Referring now to
As can be seen from the above, a new and unique system is provided for rapidly and effectively securing the metal stud and track components into wall frames without requiring any particular metal assembly skills. Moreover, the invention includes a unique and new approach to prefabricated wall frames by providing various foldable wall frame structures that can be simply and easily erected on site without requiring metal working experience and training, thereby reducing the expense of erecting building structures as well as increasing the available work force for performing such tasks. The foldable wall frame units of the present invention also assist in the folding and erection operations as well as provide various alternatives to insure that good load transference is accomplished between the upper and lower tracks of the frame units once they are unfolded and installed into a housing structure. The present invention finally aids significantly in reducing the costs of manufacturing, transporting and installing metal wall framing as well as assists greatly in the ease of actual installation of the units into a complete structure for both commercial and residential uses.
The foregoing description and the illustrative embodiments of the present invention have been described in detail in varying modifications and alternate embodiments. It should be understood, however, that the foregoing description of the present invention is exemplary only, and that the scope of the present invention is to be limited to the claims as interpreted in view of the prior art. Moreover, the invention illustratively disclosed herein suitably may be practiced in the absence of any element which is not specifically disclosed herein.
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 11/446,317, filed Jun. 2, 2006, to William C. Heirich entitled, “Apparartus for the Fabrication of Metal Wall Frame Members and Assembly of Wall Frames Therefrom, and Foldable Wall Frame Structures”, the contents of which are hereby expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11446317 | Jun 2006 | US |
Child | 11809809 | Jun 2007 | US |