The invention relates to a foldable structural (building) plate element, including a method for the manufacture thereof and a building plate element comprising the profile.
If a flat plate is used in building construction, for example for covering of a wall which contains parts which are not located in the same plane, for example which extend forward or backward, the plate (gypsum board, or other plate) is sawn and cut out at 45°, and the two parts are then glued to each other in order to create a corner (forwards or backwards).
Object of the present invention is to provide a method, which enables production of foldable building plate elements in a factory instead of at the construction site; wherein the plate members—entirely sized beforehand—can be transported in a flat state to the construction site concerned, and there be folded down during their installation. Further object of the invention is to provide for that the production—in the factory—is performed under better-controlled conditions than customary at the construction site. Object of the invention is thereby to contribute to the quality of the respective building elements and also to the reduction of the production and installation time. Additionally, as will apparent hereinafter, a building element is obtained which has a tighter angle finish and which moreover is less susceptible to damage. Therefore with the invention, applying edge protectors (edge corners/profiles/sections) to prevent damaging of protruding corners is no longer necessary prior to plastering.
The invention therefore comprises a method for producing a foldable building plate element, comprising the steps of:
In order to be able to provide that the folding profile is easy to handle during transport (during which the folding profile is still in a flat state) and does not undesirable fold, preferably, the (open) side wings of the folding profile are interconnected by means of a pull-off or otherwise removable bridging strip (or locking strip) that in particular is pulled off immediately prior to the folding of the plate, or is removed in some other way (e.g., cut loose) from the space between the two (open) side wings, where after the plate can be folded by means of the folding profile (which is released or in other words “unlocked” by removal of the bridging strip, and thus becomes foldable).
Preferably, the side wings of the profile are provided with connecting means, which are arranged to detachably interconnect with each other when the side wings are folded towards each another (i.e., in their closed position). In this way, the building element is provided with increased rigidity after the parts of the flat plate are folded towards each other.
The connecting means are preferably mutually snap-connectable (“clickable”) when the side wings are folded (closed) toward each other. The same (preferably “clickable”) connecting means can also be used for the bridging/locking strip, which is intended—in the locked position—to maintain the folding profile in its open position during transport and storage (i.e., prior to the folding of the plate element), by connecting its side ends (“clickable/detachable”) to the (inside of the) side wings of the folding profile. Unlocking of the folding profile, prior to the folding of the plate element, and subsequently folding over of the plate member and thereby at the same time folding up the folding profile, can then be carried out by firstly pulling off the bridging strip from (the connecting means of) the (open) folding profile, which holds the wings at a distance from each other.
After the plate member is folded over, in which the side wings move towards each other, the side wings are (“clickable”) interconnected and are held in the closed position (“locked”), using the same (“clickable”) connecting means which previously ensured that the bridging/locking strip could hold the side wings locked in their open position.
Seen in cross-sectional view, the opening angle of the folding groove generally is 90°, when the angle between the plate parts is 90°. However, this angle may also be larger or smaller than 90°.
In order to provide that the opening angle of the folding groove is not directly dependent on the mutual angle between the plate members, a filler strip may be provided, which is arranged to be fitted between the side wings of the folding profile. Preferably, the filler strip and the side wings of the folding profile are provided with connecting means, which are arranged to detachably interconnect with each other, when the side wings and the spacer strip are folded towards each other. The connecting means are preferably mutually snap-connectable (“clickable”) when the side wings and the spacer strip are folded towards each other.
Method for mounting a building plate element manufactured according to any one of the preceding claims, comprising the steps of
If desired, as is already mentioned, a filler strip may be provided between the side wings of the folding profile. When a bridging strip is present across the side wings of the folding profile, firstly this bridging strip must be removed before being able to fold the plate element.
The invention also comprises a profile, arranged to be used as a folding profile in a method or as a building plate element as mentioned previously. In cross-sectional view, the profile comprises two side wings and an interposed folding portion, wherein the side wings are arranged to be able to form a strong connection with both side faces of the folding groove and/or with the zones of the flat plate that are located adjacent to the folding groove. Preferably the side wings of the folding profile are interconnected with each other or can be connected by means of a pull-off or otherwise removable bridging strip. The purpose of the bridging strip is to space and hold apart (lock) the side wings in order to be able to stably store and (in particular) transport the plate. Only when the plate is to be folded, the bridging strip is removed, so that (the side wings of) the profile and the plate, in which the profile has been incorporated, can be folded.
Preferably, the side wings of the folding profile are provided with connecting means, which are arranged to detachably interconnect with each other, when the side wings are folded towards each other. Preferably the connecting means are mutually snap-connectable when the side wings are folded towards each other. Additionally, the profile is preferably arranged for co-operation with a filler strip which, if desired, is arranged to be fitted (inserted) between the side wings of the folding profile. The filler strip and the side wings of the folding profile are preferably provided with connecting means, which are arranged to detachably interconnect with each other, when the side wings and the filler strip are folded towards each other. Preferably, the connecting means are mutually snap-connectable when the side wings and the filler strip are folded towards each other.
The invention also comprises a filler strip, which is arranged to be fitted between the side wings of the folding profile, and preferably is provided with connecting means, which are arranged to detachably interconnect with the side wings of the folding profile, when the side wings and the filler strip are folded towards each other. Preferably the connecting means are snap-connectable when the side wings and the filler strip are folded towards each other.
The invention also comprises an assembly comprising a profile and a filler strip which are both described hereinbefore.
Thus, by means of a method as described hereinbefore, a building plate element is obtained, comprising a flat plate with at least one folding groove, having inserted therein a folding profile comprising, in cross-sectional view, two side wings and an interposed folding portion, wherein the side wings form a strong connection with both side faces of the folding groove and/or with the zones of the flat plate located adjacent to the folding groove. Preferably, in order to increase the stability of the plate during transport etc., the opening of the side wings is bridged by a bridging strip, which must be removed before the plate member is to be folded.
Further it is observed that the profile according to the invention offers protection for the corners, this includes the (invisible) inside of the cardboard layer of a gypsum board, or the plastic layer of other plates, such as chipboard.
Due to the invention, therefore, corners can be made on the construction site without glue, since the plates can be quickly and efficiently folded and locked in place. Due to the profile on the inside of the protective layer (cardboard, polystyrene or laminated layer) a good mechanical protection is offered against damage (which will become clear in more detail from the following description of the figures).
The system proposed by the invention is therefore quick and easy. No gluing is required, and it is also essential that the plate-shaped building elements, before they are installed, can be stored and transported in a flat state. The plates are not formed until arrival at the construction site. During storage and transport, the “folding openings” between the side wings (preferably) are closed/locked by a readily removable bridging or locking strip.
In the factory the folding groove is milled, after which—also in the factory—the folding profile is fitted (fixed) therein, for example glued. Furthermore is envisaged to manufacture a (limited) number of basic sizes, however, customization is also possible. So the plates arrive at the factory, where they are milled and provided with the folding profile, they subsequently leave the factory on the same pallet as on which they arrived, for example.
The invention will be hereinafter further explained by means of the description of the drawing.
a-e illustrate the method according to the invention and an example of an embodiment of the result thereof;
a -e show the same method in which, however, use is made of a folding profile with a bridging strip;
a-c show schematically the method of the
a-b show a preferred embodiment of a bridging/locking profile, in combination with a folding profile as shown in
a-e show schematically the method according to the invention for the manufacture of a foldable building plate element, comprising the steps of:
The side wings 7 of the folding profile 6 are provided with connecting means 10, which are arranged to be detachably interconnect with each other when the side wings 7 are folded towards each other. The connecting means 10 are preferably mutually snap-connectable (clickable) when the wings 7 are folded towards each other. In many cases the opening angle α, in cross-sectional view, of the folding groove is 90°; however if appropriate, the opening angle α may be chosen greater than or less than 90°.
c shows the result of gluing the folding profiles 6 into the folding groove 2. In this way—of which
d shows the same plate 1 as shown in
When an angle other than 90° is desired, while the opening angle α of the folding groove is 90°, a filler strip 11 may be provided—as illustrated by FIG. 1—which is arranged to be fitted between the side wings 7 of the folding profile 6. The filler strip 11 and the side wings 7 of the folding profile 6 are provided with connecting means 10 (previously mentioned) and 12, which are arranged to be detachably interconnect with each other when the side wings 7 and the filler strip 11 are folded towards each other. The connecting means 10 and 12 are mutually snap-connectable when the side wings 7 and the filler strip 11 are folded towards each other, so that also here a robust corner connection is formed, corresponding to the embodiment where no filler strip 11 is used.
It should be noted that preferably the (remaining intact) protective layer 3 extends over the folding portion 8 on the side of the folding portion 8, so that the folding portion 8 is not visible from the outside, since it is located under the original protective layer 3 of the plate material.
The installation of a building plate element manufactured as described hereinbefore, and shown in
a-e show the same method as the
a-c show schematically the method of
The profile 6′, shown in
a-b show a preferred embodiment of a bridging/locking profile or strip, in combination with a folding profile as shown in
Number | Date | Country | Kind |
---|---|---|---|
1040162 | Apr 2013 | NL | national |
1040481 | Nov 2013 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NL2014/000015 | 4/15/2014 | WO | 00 |