1. Field of Invention
The present invention relates to a table, and more particularly to a foldable table which is equipped with a reinforcing frame for substantially strengthening a structural integrity of the foldable table, and a hinge arrangement for selectively and conveniently folding and unfolding a tabletop of the foldable table.
2. Description of Related Arts
A conventional foldable table usually comprises a tabletop and a supporting frame which comprises a tabletop reinforcing frame and a foldable leg frame connected thereunder in a pivotally foldable manner. When the foldable table is in use, the leg frame is pivotally unfolded and extended to support the tabletop at an elevated height, and when the foldable table is not in use, the leg frame is capable of being folded towards the tabletop for reduction in its overall size so as to facilitate easy storage and transportation.
Conventionally, most of the improvements for conventional foldable tables have been overwhelmingly concentrated on the leg frame. Persons skill in the art have devoted themselves in developing new kinds of leg frames and the foldable mechanism in order to make the foldable table easier to fold, more compact in size and more secure in structure.
On the other hand, however, it has been recognized that the tabletop may also be designed to reduce an overall size of the foldable table (e.g. by making the tabletop foldable). Although it is conceived that by altering the structure of the tabletop, the overall stability and security of the foldable table may be substantially deteriorated, this disadvantage should be carefully tackled so as to develop an optimal foldable table which is both compact in size and secure in structure.
The invention is advantageous in that it provides a foldable table which is equipped with a reinforcing frame for substantially strengthening a structural integrity of the foldable table, and a hinge arrangement for selectively and conveniently folding and unfolding a tabletop of the foldable table.
Another advantage of the invention is to provide a foldable table which comprises a foldable frame which is capable of supporting a tabletop in a foldably movable manner without affecting the stability of the foldable table.
Another advantage of the invention is to provide a foldable table, wherein after the foldable table is moved at its unfolded condition, all the movable gaps thereof are minimized to enhance the rigidity and stabilization of the foldable table.
Another advantage of the invention is to provide a foldable table which comprises a hinge arrangement comprising a pivot pin pivotally connecting a two connecting joints for facilitating folding motions between two tabletop panels.
Another advantage of the invention is to provide a foldable table comprising a foldable frame which does not involve complicated and expensive mechanical components and processes so that the manufacturing cost of the present invention can be minimized.
Additional advantages and features of the invention will become apparent from the description which follows, and may be realized by means of the instrumentalities and combinations particular point out in the appended claims.
According to the present invention, the foregoing and other objects and advantages are attained by providing a foldable table, comprising:
a tabletop, which comprises:
a first tabletop panel;
a second tabletop panel;
a first peripheral edge rim downwardly and peripherally extended from the first tabletop panel to define a first receiving cavity within a bottom surface of the first tabletop panel and the first peripheral edge rim; and
a second peripheral edge rim downwardly and peripherally extended from the second tabletop panel to define a second receiving cavity within a bottom surface of the second tabletop panel and the second peripheral edge rim; and
a foldable frame, which comprises:
a reinforcing frame which comprises first through fourth elongated reinforcing member spacedly mounted along two longitudinal sides of the first receiving cavity and the second receiving cavity respectively;
a first and a second leg frame pivotally mounted on the first receiving cavity and the second receiving cavity respectively; and
a hinge arrangement, which comprises:
a first connecting joint provided between inner ends of the first and third elongated reinforcing member respectively for allowing the first elongated reinforcing member and the third elongated reinforcing member to pivotally fold and unfold with respect to each other;
a second connecting joint provided between inner ends of the second and fourth elongated reinforcing member respectively for allowing the second elongated reinforcing member and the fourth elongated reinforcing member to pivotally fold and unfold with respect to each other; and
one or more locker devices coupled to at least one of the first connecting joint and the second connecting joint, wherein the locker device is arranged to operate between a locked position and an unlock position, wherein in the locked position, the locker device is arranged to lock up pivotal movements of the respective connecting joint, wherein in the unlocked position, the locker device is arranged to unlock the pivotal movements of the respective connecting joint so as to allow the first tabletop panel to fold and unfold with respect to the second tabletop panel.
Still further objects and advantages will become apparent from a consideration of the ensuing description and drawings.
These and other objectives, features, and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
The following description is disclosed to enable any person skilled in the art to make and use the present invention. Preferred embodiments are provided in the following description only as examples and modifications will be apparent to those skilled in the art. The general principles defined in the following description would be applied to other embodiments, alternatives, modifications, equivalents, and applications without departing from the spirit and scope of the present invention.
Referring to
The tabletop 10 comprises a first tabletop panel 11, a second tabletop panel 12, a first peripheral edge rim 13 and a second peripheral edge rim 14. On the other hand, the foldable frame 20 comprises a reinforcing frame 21, a first leg frame 22, a second leg frame 23 and a hinge arrangement 24.
The first peripheral edge rim 13 is downwardly and integrally extended from the first tabletop panel 11 to define a first receiving cavity 111 within a bottom surface 112 of the first tabletop panel 11 and the first peripheral edge rim 13.
The second peripheral edge rim 14 is downwardly and integrally extended from the second tabletop panel 12 to define a second receiving cavity 121 within a bottom surface 122 of the second tabletop panel 12 and the second peripheral edge rim 14.
The reinforcing frame 21 comprises first through fourth elongated reinforcing member 211, 212, 213, 214 spacedly mounted along two longitudinal sides of the first receiving cavity 111 and the second receiving cavity 121 respectively.
The first and the second leg frame 22, 23 are pivotally mounted on the first receiving cavity 111 and the second receiving cavity 121 respectively. On the other hand, the hinge arrangement 24 comprises a first connecting joint 241 and a second connecting joint 242. The first connecting joint 241 is provided between inner ends of the first and third elongated reinforcing member 211, 213 respectively for allowing the first elongated reinforcing member 211 and the third elongated reinforcing member 213 to pivotally fold and unfold with respect to each other. The second connecting joint 242 is provided between inner ends of the second and fourth elongated reinforcing member 212, 214 respectively for allowing the second elongated reinforcing member 212 and the fourth elongated reinforcing member 214 to pivotally fold and unfold with respect to each other.
The hinge arrangement 24 further comprises at least one locker device coupled at one of the first and second connecting joint 241, 242 adapted for actuating between a lock position to lock up a pivotal movement between the first and second tabletop panels 11, 12 in an unfolded condition, and an unlocked position to unlock the pivotal movements between the first and second tabletop panels 11, 12 to allow the first tabletop panel 11 to fold and unfold with respect to the second tabletop panel 12.
According to one embodiment, a first locker device 243 and a second locker device 244 are provided at the first and second connecting joints 241, 242 respectively. The first and a second locker device 243, 244 are coupled to the first connecting joint 241 and the second connecting joint 242 respectively, wherein the first locker device 243 and the second locker device 244 are arranged to operate between a locked position and an unlock position, wherein in the locked position, the first locker device 243 and the second locker device 244 are arranged to lock up pivotal movements of the first connecting joint 241 and the second connecting joint 242, wherein in the unlocked position, the first locker device 243 and the second locker device 244 are arranged to unlock the pivotal movements of the first connecting joint 241 and the second connecting joint 242 so as to allow the first tabletop panel 11 to fold and unfold with respect to the second tabletop panel 12.
According to the preferred embodiment of the present invention, the first tabletop panel 11 and the second tabletop panel 12 are made of plastic material and are preferably formed by injection molding. Other manufacturing method is feasible but injection molding is the preferred mode of manufacturing method of the present invention. Moreover, each of the first tabletop panel 11 and the second tabletop panel 12 is rectangular in cross-sectional shape so that when they are foldably connected by the foldable frame 20, the entire foldable table has a rectangular cross sectional shape as well.
The first peripheral edge rim 13 and the second peripheral edge rim 14 are integrally extended from the first tabletop panel 11 and the second tabletop panel 12 respectively for forming the first receiving cavity 111 and the second receiving cavity 121. In this preferred embodiment, each of the first peripheral edge rim 13 and the second peripheral edge rim 14 is extended from a corresponding outer transverse edge and two longitudinal edges of the first tabletop panel 11 and the second tabletop panel 12 respectively. In other words, each of the first peripheral edge rim 13 and the second peripheral edge rim 14 form a U-shaped cross section with viewed from the bottom side of the foldable table.
Thus, the first peripheral rim 13 has a first transversely extending portion 131 and two first longitudinally extending portion 132, while second peripheral rim 14 has a second transversely extending portion 141 and two second longitudinally extending portion 142.
The first and the second elongated reinforcing member 211, 212 are extended along first longitudinally extending portions 132 of the first peripheral rim 13 respectively, while the third and the fourth elongated reinforcing member 213, 214 are extended along the longitudinally extending portions 142 of the second peripheral edge rim 14.
The reinforcing frame 21 further comprises a first transverse member 215 transversely extended between the first and second reinforcing members 211, 212 at outer end portions thereof, and a second transverse member 216 transversely extended between the third and fourth reinforcing members 213, 214 at outer end portions thereof. As shown in
According to one embodiment, two end portions of each of the first and second transverse members 215, 216 are respectively welded to the first and second reinforcing members 211, 212 and the three and fourth reinforcing members 213, 214 respectively. In other words, the first transverse member 215 is non-rotatable with respect to the first and second reinforcing members 211, 212, and the second transverse member 216 is non-rotatable with respect to the third and fourth reinforcing members 213, 214. Since the first transverse member 215 is affixed to between first and second reinforcing members 211, 212, each of the first and second reinforcing members 211, 212 does not contain any hole for the end of the first transverse member 215 inserting into thereto. Likewise, since the second transverse member 216 is affixed to between third and fourth reinforcing members 213, 214, each of the third and fourth reinforcing members 213, 214 does not contain any hole for the end of the second transverse member 216 inserting into thereto. Any hole formed at each of the first to fourth reinforcing members 211, 212, 213, 214 will weaken the structure thereof. The foldable table will be wobbly due to the gap between the hole and the end of each of the first to fourth reinforcing members 211, 212, 213, 214.
On the other hand, the first leg frame 22 comprises a first supporting leg 221 having two first leg members 2211 pivotally connected to the first and the second elongated reinforcing member 211, 212, and a first connecting frame 222 foldably connected between the first tabletop panel 11 and the first supporting leg 221 in such a manner that the first supporting leg 221 is capable of selectively and pivotally folding toward and unfolding from the first tabletop panel 11 through the first connecting frame 222.
Similarly, the second leg frame 23 comprises a second supporting leg 231 having two second leg members 2311 pivotally connected to the third and the fourth elongated reinforcing member 213, 214, and a second connecting frame 232 foldably connected between the second tabletop panel 12 and the second supporting leg 231 in such a manner that the second supporting leg 231 is capable of selectively and pivotally folding toward and unfolding from the second tabletop panel 12 through the second connecting frame 232.
More specifically, the first connecting frame 222 comprises a first folding rod 2221 transversely extended between two inner end portions of the first reinforcing member 211 and the second reinforcing member 212 in the first receiving cavity 111, a first pivotal connecting shaft 2222 having one end pivotally extended from a mid portion of the first folding rod 2221, and a plurality of first elongated folding rods 2223 each having one end pivotally connected to the first leg members 2211 respectively, and another end pivotally coupled with another end of the first pivotal connecting shaft 2222. As shown in
The second connecting frame 232 comprises a second folding rod 2321 transversely extended between two inner end portions of the third reinforcing member 213 and the fourth reinforcing member 214 in the second receiving cavity 121, a second pivotal connecting shaft 2322 having one end pivotally extended from a mid portion of the second folding rod 2321, and a plurality of second elongated folding rods 2323 each having one end pivotally connected to the second leg members 2311 respectively, and another end pivotally coupled with another end of the second pivotal connecting shaft 2322. Also as shown in
As shown in
A length of the first folding member 2215 is shorter than a length of the first transverse member 215. In particular, the length of the first folding member 2215 is slightly longer than a distance between two upper ends of the first leg members 2211. Therefore, the pivot movement point of the first leg frame 21 is shifted closer to the longitudinal centerline of the first tabletop panel 11. Unlike the conventional leg structure, the folding leg is coupled at two longitudinal sides of the tabletop, such that the pivot movement point of the conventional folding leg is located at the two longitudinal sides of the tabletop.
Since the length of the first folding member 2215 is shorter than the length of the first transverse member 215, the first leg frame 22 may slide along the first transverse member 215. The reinforcing frame 21 further comprises two first retainers 217 affixed to the first transverse member 215 at two ends of the first folding member 2215 respectively to block the sliding movement of the first folding member 2215 with respect to the first transverse member 215. Accordingly, each of the first retainers 217 has a U-shaped cross section affixed to the first transverse member 215. The two ends of the first folding member 2215 are frictionally engaged with the first retainers 217 respectively. In particular, inner surfaces of the first retainers 217 are frictionally biased against outer circumferential surfaces of the first folding member 2215 at the two ends thereof when the first retainers 217 are affixed to the first transverse member 215. Therefore, the first folding member 2215 is pressed to the first transverse member 215 by the first retainers 217 to minimize the gap therebetween while the first folding member 2215 is still able to be rotated about the first transverse member 215 when the rotational force at the first folding member 2215 is larger than the frictional force at the first retainers 217. When the gap between the first folding member 2215 and the first transverse member 215 is minimized, the first leg frame 22 will press toward the first transverse member 215 to enhance the rigidity of the first tabletop panel 11 which is supported by the first leg frame 22, so as to prevent any unwanted wobbling movement thereof. Therefore, the first retainers 217 not only provides a blocking function to prevent the unwanted sliding movement of the first leg frame 22 but also minimize the gap between the first leg frame 22 and the first transverse member 215 to prevent the unwanted wobbling movement of the first tabletop panel 11.
It is worth mentioning that the first retainers 217 are also coupled at the bottom side of the first tabletop panel 11 through the first transverse member 215, through the screws of the first retainers 217, so as to lock up the first transverse member 215 at the bottom side of the first tabletop panel 11. As a result, the clearance between the first transverse member 215 and the bottom side of the first tabletop panel 11 will be minimized to enhance the support of the first tabletop panel 11 and to prevent the unwanted wobbling movement of the first tabletop panel 11.
Accordingly, in order to provide a rotatable movement, the diameter of the first folding member 2215 is larger than the diameter of the first transverse member 215, such that when the first transverse member 215 is coaxially received at the first folding member 2215, a rotatable movable gap is formed between the first transverse member 215 and the first folding member 2215 for enabling the rotatable movement of the first folding member 2215 in order to fold the first leg frame 22. If there is no rotatable movable gap, the first folding member 2215 cannot be rotated about the first transverse member 215.
As shown in
As shown in
A length of the second folding member 2315 is shorter than a length of the second transverse member 216. In particular, the length of the second folding member 2315 is slightly longer than a distance between two upper ends of the second leg members 2311. Therefore, the pivot movement point of the second leg frame 23 is shifted closer to the longitudinal centerline of the second tabletop panel 12. Unlike the conventional leg structure, the folding leg is coupled at two longitudinal sides of the tabletop, such that the pivot movement point of the conventional folding leg is located at the two longitudinal sides of the tabletop.
Since the length of the second folding member 2315 is shorter than the length of the second transverse member 216, the second leg frame 23 may slide along second first transverse member 216. The reinforcing frame 21 further comprises two second retainers 218 affixed to the second transverse member 216 at two ends of the second folding member 2315 respectively to block the sliding movement of the second folding member 2315 with respect to the second transverse member 216. Accordingly, each of the second retainers 218 has a U-shaped cross section affixed to the second transverse member 216. The two ends of the second folding member 2315 are frictionally engaged with the second retainers 218 respectively. In particular, inner surfaces of the second retainers 218 are frictionally biased against outer circumferential surfaces of the second folding member 2315 at the two ends thereof when the second retainers 218 are affixed to the second transverse member 216. Therefore, the second folding member 2315 is pressed to the second transverse member 216 by the second retainers 218 to minimize the gap therebetween while the second folding member 2315 is still able to be rotated about the second transverse member 216 when the rotational force at the first folding member 2215 is larger than the frictional force at the second retainers 218. When the gap between the second folding member 2315 and the second transverse member 216 is minimized, the second leg frame 23 will press toward the second transverse member 216 to enhance the rigidity of the second tabletop panel 12 which is supported by the second leg frame 23, so as to prevent any unwanted wobbling movement thereof. Therefore, the second retainers 218 not only provides a blocking function to prevent the unwanted sliding movement of the second leg frame 23 but also minimize the gap between the second leg frame 23 and the second transverse member 216 to prevent the unwanted wobbling movement of the second tabletop panel 12.
It is worth mentioning that the second retainers 218 are also coupled at the bottom side of the second tabletop panel 12 through the second transverse member 216, through the screws of the second retainers 218, so as to lock up the second transverse member 216 at the bottom side of the second tabletop panel 12. As a result, the clearance between the second transverse member 216 and the bottom side of the second tabletop panel 12 will be minimized to enhance the support of the second tabletop panel 12 and to prevent the unwanted wobbling movement of the second tabletop panel 12.
It is worth mentioning that the first and second transverse member 215, 216 are symmetrical and the first and second folding members 2215, 2315 are symmetrical. The first and second retainers 217, 218 are also symmetrical.
Accordingly, in order to provide a rotatable movement, the diameter of the second folding member 2315 is larger than the diameter of the second transverse member 216, such that when the second transverse member 216 is coaxially received at the second folding member 2315, another rotatable movable gap is formed between the second transverse member 216 and the second folding member 2315 for enabling the rotatable movement of the second folding member 2315 in order to fold the second leg frame 23. If there is no rotatable movable gap, the second folding member 2315 cannot be rotated about the second transverse member 216.
As shown in
In other words, the first connecting frame 222 and the second connecting frame 232 are capable of facilitating folding and unfolding of the first leg frame 22 and the second leg frame 23. When the first leg frame 22 and the second leg frame 23 are folded toward the first and the second tabletop panel 11, 12, the entire foldable table can be reduced to a compact size.
Referring to
On the other hand, the third joint member 2412 is coupled to the inner end of the third elongated reinforcing member 213. The third joint member 2412 comprises a plurality of third connecting panels 2415 spacedly mounted to the third elongated reinforcing member 213, wherein each of the third connecting panels 2415 has a third pivot hole 2416 alignedly formed thereon. As shown in
Similarly, as shown in
On the other hand, the fourth joint member 2422 is coupled to the inner end of the fourth elongated reinforcing member 214. The fourth joint member 2422 comprises a plurality of fourth connecting panels 2424 spacedly mounted to the fourth elongated reinforcing member 214, wherein each of the fourth connecting panels 2422 has a fourth pivot hole 2425 alignedly formed thereon. As shown in
It is worth mentioning that the first pivot pin 245 and the second pivot pin 246 are rigid and may be embodied as having a wide variety of cross sectional shapes so as to ensure sound stability of the hinge arrangement 24. Moreover, the first pivot pin 245 and the second pivot pin 246 can be made of a wide variety of materials so as to accommodate different manufacturing and marketing needs.
According to the preferred embodiment, two ends of the first folding rod 2221 are affixed to the first and second joint members 2411, 2421 respectively. In particular, one end of the first folding rod 2221 is affixed to the first connecting panel 2413 at an inner position of the first joint member 2411 while an opposed end of the first folding rod 2221 is affixed to the second connecting panel 2423 at an inner position of the second joint member 2421. Two ends of the second folding rod 2321 are affixed to the third and fourth joint members 2412, 2422 respectively. In particular, one end of the second folding rod 2321 are affixed to the third connecting panel 2415 at an inner position of the third joint member 2422 and an opposed end of second folding rod 2321 is affixed to the fourth connecting panel 2424 at an inner position of the fourth joint member 2422. Accordingly, the first folding rod 2221 is non-rotatable between the first and second joint members 2411, 2421 while the second folding rod 2321 is non-rotatable between third and fourth joint members 2412, 2422.
Therefore, no hole is formed at the inner end portions of the first, second, third and fourth reinforcing members 211, 212, 213, 214 in order to connect to the first and second folding rods 2221, 2321 so as to enhance the rigidity of the reinforcing frame 21.
Each of the first connecting panels 2413 has a first base portion 2500 coupled to the first elongated reinforcing member 211 and a first head portion 2501 upwardly and inwardly extended from the first base portion 2500, wherein the first pivot hole 2414 is formed on the first head portion 2502. Similarly, each of the third connecting panels 2415 has a third base portion 2700 coupled to the third elongated reinforcing member 213 and a third head portion 2701 upwardly and inwardly extended from the third base portion 2500, wherein the third pivot hole 2416 is formed on the third head portion 2701.
Each of the second connecting panels 2423 has a second base portion 2600 coupled to the second elongated reinforcing member 212 and a second head portion 2601 upwardly and inwardly extended from the second base portion 2600, wherein the second pivot hole 2424 is formed on the second head portion 2601. Finally, each of the fourth connecting panels 2424 has a fourth base portion 2800 coupled to the fourth elongated reinforcing member 214 and a fourth head portion 2801 upwardly and inwardly extended from the fourth base portion 2800, wherein the fourth pivot hole 2425 is formed on the fourth head portion 2801.
From the forgoing descriptions, it can be shown that the first tabletop panel 11 and the second tabletop panel 12 can be selectively folded and unfolded through hinge arrangement 24 of the foldable frame 20. Moreover, as mentioned earlier, the first leg frame 22 and the second leg frame 23 can also be folded and unfolded with respect to the first tabletop panel 11 and the second tabletop panel 12 respectively.
Referring to
Accordingly, the first locker hole 2417 and the third locker hole 2418 are two circular holes and are aligned with each other when the first and second tabletop panels 11, 12 are pivotally folded in the unfolded condition. In other words, when the first and second tabletop panels 11, 12 are pivotally folded in the folded condition, the first locker hole 2417 is misaligned with the third locker hole 2418. As shown in
It is worth mentioning that the first connecting panels 2413 and the third connecting panels 2415 are parallel and overlapped with each other, wherein the first connecting panels 2413 and the third connecting panels 2415 are pivotally coupled via the first pivot pin 245. In particular, the first head portion 2501 of the first connecting panel 2413 is spacedly overlapped with the third head portion 2701 of the third connecting panel 2415 to define a clearance or gap therebetween, wherein the first head portion 2501 of the first connecting panel 2413 is pivotally coupled with the third head portion 2701 of the third connecting panel 2415 via the first pivot pin 245. In view of the first connecting joint 2411, the first pivot pin 245 is located between the first locker hole 2417 and a first free edge 2502. In view of the third connecting joint 2412, the first pivot pin 245 is located between the third locker hole 2418 and a third neck portion 2702 which is a portion between the third head portion 2701 and the third base portion 2700.
After the first free end portion 2431B of the first locker pin 2431 is inserted into the third locker hole 2418, the first locker pin 2431 is kept rotating until the first neck platform 2431C is biased against the corresponding third connecting panel 2415. As a result, a portion of the third connecting panel 2415, i.e. the third head portion 2701, around the third locker hole 2418 is pressed away from the corresponding first connecting panel 2413. Due to the pivot movement of the third connecting panel 2415 at the pivot point of the first pivot pin 245, an opposed portion of the third connecting panel 2415, i.e. the third neck portion 2702, is pivotally moved to press against the corresponding first connecting panel 2413 at the first free edge 2502 thereof. Therefore, a gap between the first and third connecting panels 2413, 2415 will be minimized. Accordingly, when the first connecting panels 2413 and the third connecting panels 2415 are parallel with each other, the gap will be formed between the first and third connecting panels 2413, 2415 without contacting with each other. When the loading force is applied on the tabletop 10, the loading force will be concentrated at the first pivot pin 245 which may damage the first pivot pin 245 and may cause the foldable table unstable. The foldable table will be wobbly due to the gap. When the gap between the first and third connecting panels 2413, 2415 is minimized, the first and third connecting panels 2413, 2415 will press with each other to enhance the rigidity of the reinforcing frame 21 especially to reinforce the connection between the inner ends of the first and third elongated reinforcing members 211, 213. Furthermore, when the loading force is applied on the tabletop 10, the loading force will be evenly distributed along the first and third elongated reinforcing member 211, 213 via the first and third connecting panels 2413, 2415, such that the foldable table will be stable to prevent any unwanted wobbling movement thereof. It is worth mentioning that the neck platform is biased against the corresponding third connecting panel 2415 to substantially retain the gap distance between the first and third connecting panels 2413, 2415 so as to prevent the unwanted relative movement between the first and third connecting panels 2413, 2415.
On the other hand, the second locker device 244 comprises a second locker pin 2441 and a second locker handle 2442 extended from the second locker pin 2441, wherein the second locker pin 2441 is arranged to selectively penetrate one of the second connecting panels 2423 and the corresponding fourth connecting panel 2424 for restricting the relative pivotal movement between the corresponding second joint member 2421 and the fourth joint member 2422. Accordingly, the second joint member 2421 further has a second locker hole 2426 formed on one of the second connecting panels 2423 while the fourth joint member 2422 further has a fourth locker hole 2427 formed on the corresponding fourth connecting panel 2424, wherein the second locker hole 2426 and the fourth locker hole 2427 are aligned with each other so that the second locker pin 2441 is arranged to rotatably penetrate the second locker hole 2426 and the fourth locker hole 2427 for selectively locking the second joint member 2421 and the fourth joint member 2422. Note that the rotational movement of the second locker pin 2441 is actuated by a movement of the second locker handle 2442.
Similarly, the second locker hole 2426 and the fourth locker hole 2427 are two circular holes and are aligned with each other when the first and second tabletop panels 11, 12 are pivotally folded in the unfolded condition. In other words, when the first and second tabletop panels 11, 12 are pivotally folded in the folded condition, the second locker hole 2426 is misaligned with the fourth locker hole 2427. As shown in
It is worth mentioning that the second connecting panels 2423 and the fourth connecting panels 2424 are parallel and overlapped with each other, wherein the second connecting panels 2423 and the fourth connecting panels 2424 are pivotally coupled via the second pivot pin 246. In particular, the second head portion 2601 of the second connecting panel 2423 is spacedly overlapped with the fourth head portion 2801 of the fourth connecting panel 2424 to define a clearance or gap therebetween, wherein the second head portion 2601 of the second connecting panel 2423 is pivotally coupled with the fourth head portion 2801 of the fourth connecting panel 2424 via the second pivot pin 246. In view of the second connecting joint 2421, the second pivot pin 246 is located between the second locker hole 2426 and a second free edge 2602. In view of the fourth connecting joint 2422, the second pivot pin 246 is located between the fourth locker hole 2427 and a fourth neck portion 2802 which is a portion between the fourth head portion 2801 and the fourth base portion 2800.
After the free end portion 2441B of the second locker pin 2441 is inserted into the fourth locker hole 2427, the second locker pin 2441 is kept rotating until the second neck platform 2441C is biased against the corresponding fourth connecting panel 2424. As a result, a portion of the fourth connecting panel 2424, i.e. the fourth head portion 2801, around the fourth locker hole 2427 is pressed away from the corresponding second connecting panel 2423. Due to the pivot movement of the fourth connecting panel 2424 at the pivot point of the second pivot pin 246, an opposed portion of the fourth connecting panel 2424, i.e. the neck portion 2802, is pivotally moved to press against the corresponding second connecting panel 2423 at the second free edge 2602 thereof. Therefore, a gap between the second and fourth connecting panels 2423, 2424 will be minimized. Accordingly, when the second connecting panels 2423 and the fourth connecting panels 2424 are parallel with each other, the gap will be formed between the second and fourth connecting panels 2423, 2424 without contacting with each other. When the loading force is applied on the tabletop 10, the loading force will be concentrated at the second pivot pin 246 which may damage the second pivot pin 246 and may cause the foldable table unstable. The foldable table will be wobbly due to the gap. When the gap between the second and fourth connecting panels 2423, 2424 is minimized, the second and fourth connecting panels 2423, 2424 will press with each other to enhance the rigidity of the reinforcing frame 21 especially to reinforce the connection between the inner ends of the second and fourth elongated reinforcing members 212, 214. Furthermore, when the loading force is applied on the tabletop 10, the loading force will be evenly distributed along the second and fourth elongated reinforcing members 212, 214 via the second and fourth connecting panels 2423, 2424, such that the foldable table will be stable to prevent any unwanted wobbling movement thereof. It is worth mentioning that the neck platform is biased against the corresponding fourth connecting panel 2424 to substantially retain the gap distance between the second and fourth connecting panels 2423, 2424 so as to prevent the unwanted relative movement between the second and fourth connecting panels 2423, 2424.
It is worth mentioning that the first and second connecting joints 241, 242 are symmetrical and the first and second locker devices 243, 244 are symmetrical. As shown in
As shown in
When the first and second tabletop panels 11, 12 are folded at the folded condition, the first and third locker holes 2417, 2418 are not aligned with each other. Therefore, the first free end portion 2431C of the first locker pin 2413 cannot be inserted into the third locker hole 2418. Once the first and second tabletop panels 11, 12 are moved at the unfolded condition, the first and third locker holes 2417, 2418 are aligned with each other. Therefore, the first free end portion 2431C of the first locker pin 2413 can be inserted into the third locker hole 2418 when the first thread portion 2431A of the first locker pin 2431 is driven to rotate, as shown in
As shown in
Similarly, the two fourth connecting panels 2424 are two inner connecting panels while the second connecting panels 2423 are two outer connecting panels, wherein the fourth connecting panels 2424 are located and overlapped between the second connecting panels 2423. The two second connecting panels 2423 are the second connecting panel with the second locker hole and the second connecting panel without the second locker hole respectively. The two fourth connecting panels 2424 are the fourth connecting panel with the fourth locker hole and the fourth connecting panel without the fourth locker hole respectively. The pivotal movable gap is formed between each of the second and fourth connecting panels 2423, 2424. In other words, the two pivotal movable gaps will enable the pivotal movement between the second and fourth connecting panels 2423, 2424.
When the first and second tabletop panels 11, 12 are folded at the folded condition, the second and fourth locker holes 2426, 2427 are not aligned with each other. Therefore, the second free end portion 2441C of the second locker pin 2441 cannot be inserted into the fourth locker hole 2427. Once the first and second tabletop panels 11, 12 are moved at the unfolded condition, the second and fourth locker holes 2426, 2427 are aligned with each other. Therefore, the second free end portion 2441C of the second locker pin 2441 can be inserted into the fourth locker hole 2427 when the second thread portion 2441A of the second locker pin 2441 is driven to rotate, as shown in
As shown in
Referring to
Accordingly, by minimizing the gap at each of the first and second connecting joints 241, 242, and the gap at each of the first and second leg frames 22, 23, the entire structure of the reinforcing frame 21 will be substantially increased its rigidity. For example, if the loading capacity of the conventional foldable table is about 300 lb, the loading capacity of the foldable table of the present invention will increase to 3 times or more, such as 1000 lb.
Referring to
The tabletop A10, according to this preferred embodiment, is an injection mold tabletop having a top side A11 and a bottom side A12. It is appreciated that the tabletop A10 can be made of rigid material such as wood or other materials.
The foldable leg frame arrangement comprises two runners A20, a leg frame A30, and a reinforcement unit A40.
According to the preferred embodiment, the runners A20 are extended along two longitudinal sides of the tabletop A10, wherein each of the runners A20 has a fastening hole A21 formed at an inner side thereof. Accordingly, the two runners A20 are extended along the two longitudinal sides of the tabletop A10 at the bottom side A12 thereof. Preferably, the two runners A20 are partially embedded at the bottom side A12 of the tabletop A10 when the tabletop A10 is made of plastic by mold injection process.
The leg frame A30 is pivotally coupled at the bottom side A12 of the tabletop A10 to pivotally move between a folded position and an unfolded position. As shown in
The leg frame A30 comprises a leg folding member A31 having two end portions A311 rotatably inserted into the fastening holes A21 of the runners A20 respectively, and a leg standing member A32 extended from the leg folding member A31, such that the leg standing member A32 is moved to rest on the bottom side A12 of the tabletop 10 in the folded position by the rotational movement of the leg folding member A31 with respect to the runners A20. The leg standing member A32 is also moved to transversely extend from the bottom side A12 of the tabletop 10 in the unfolded position by the rotational movement of the leg folding member A31 with respect to the runners A20. According to this preferred embodiment, each of the end portion A311 of the leg folding member A31 has a hollow structure.
The leg frame A30 further comprises a table support A33 having has a table coupling end pivotally coupled at the bottom side A12 of the tabletop A10, and a leg support A34 having a leg coupling end pivotally coupled at the leg frame A30. The table support A33 and the leg support A34 are pivotally coupled with each other.
In particular, the table support A33 is an elongated brace pivotally extended from the bottom side A12 of the tabletop A10, wherein the table support A33 further has a first pivot end portion extended opposite to the table coupling end. Accordingly, the table coupling end of the table support A33 can be directly mounted to the bottom side A12 of the tabletop A10 or can be pivotally mounted to a transverse support transversely supported between the two runners A20 at the mid-portion of the bottom side A12 of the tabletop A10.
The leg support A34, preferably formed in a Y-shaped configuration, defines two leg coupling ends pivotally coupled at the leg standing member A32 of the leg frame A30, and further has a second pivot end portion extended opposite to the leg coupling end. Accordingly, the first and second pivot end portions of the table support A33 and the leg support A34 are pivotally coupled with each other.
The reinforcement unit 40 comprises two reinforcing shafts A41 transversely extended from the runners A30 respectively, wherein when the end portions A311 of the leg folding member A31 are rotatably inserted into the fastening holes A21 of the runners A20 respectively, the reinforcing shafts A41 are coupled at the end portions A311 of the leg folding member A31 respectively. Preferably, the reinforcing shaft A41 is extended from an outer side of the runner A20 and is slidably inserted into the end portion A311 of the leg folding member A31 in a rotatably movable manner. Therefore, the reinforcement unit A40 not only forms a double lock configuration to securely mount the leg frame A30 between the runners A20 but also guides the leg frame A30 to be rotated between the folded position and the unfolded position.
According to the preferred embodiment, a diameter of the fastening hole A21 is slightly larger than an outer diameter of the end portion A311 of the leg folding member A31, such that when the end portion A311 of the leg folding member A31 is inserted into the fastening hole A21, the leg folding member A31 can be rotated with respect to the runner A20. In addition, an inner diameter of the end portion A311 of the leg folding member A31 is slightly larger than a diameter of the reinforcing shaft A41, such that when the reinforcing shaft A41 is inserted into the end portion A311 of the leg folding member A31, the leg folding member A31 can be rotated with respect to the reinforcing shaft A41. In other words, the end portion A311 of the leg folding member A31 is restricted to rotate between the fastening hole A21 and the reinforcing shaft A41 so as to minimize the stress created between the surrounding edge of the fastening hole A21 and the leg folding member A31, especially when the leg frame A30 is moved at the unfolded position. In addition, the clearance between the surrounding edge of the fastening hole A21 and the leg folding member A31 will be retained to prevent the unstable folding movement of the leg frame A30 between the folded position and the unfolded position. It is worth mentioning that the end portion A311 of the leg folding member A31 is supported by the entire reinforcing shaft A41 to enhance the supportive of the leg frame A30.
As shown in
According to this preferred embodiment, each of the runners A20 has a double-wall structure to define an inner wall A22 and an outer wall A23 spacedly apart from each other, wherein the fastening hole A21 is formed at the inner wall A22 of the runner A20. In other words, when the runners A20 are coupled at the longitudinal sides of the tabletop A10, the inner walls A22 of the runner A20 are facing toward each other while the fastening holes A21 of the runners A20 are coaxially aligned with each other.
The reinforcing shaft A41 is extended from the outer wall A23 of the runner A20 toward the inner wall A22 thereof. In particular, the reinforcing shaft A41 is extended from the outer wall A23 of the runner A20 to coaxially pass through the fastening hole A21 thereof. In other words, a length of the reinforcing shaft A41 is longer than a distance between the inner wall A22 and the outer wall A23 of the runner A20, such that a free end portion of the reinforcing shaft A41 is protruded out of the inner wall A22 of the runner A20 through the fastening hole A21. Preferably, the reinforcing shaft A41 is integrally extended from the outer wall A23 of the runner A20 to the inner wall A22 thereof. It is worth mentioning that the reinforcing shaft A41 is stationary when the leg folding member A31 is rotated with respect to the fastening hole A21 of the runner A20 to move the leg frame A30 between the folded position and the unfolded position.
It is worth mentioning that when the leg frame A20 is moved at the unfolded position, the loading force, i.e. the object on the tabletop A10, is transferred from the tabletop A10 to the runners A20. Therefore, the loading force will substantially be transmitted to the leg frame A20 through the runners A20 and the reinforcing shafts A41 as well, so as to evenly distribute the loading force to the leg frame A20. Since the end portion A311 of the leg folding member A31 is retained between the surrounding edge of the fastening hole A21 and the reinforcing shaft A41, the leg frame A20 can be pivotally moved between the folded position and the unfolded position in a stable manner, so as to prevent any wobbling movement of the leg frame A20 during the folding/unfolding operation thereof.
The reinforcing shaft A41′ is integrally extended from the inner wall A22 of the runner A20 around the fastening hole A21 thereof, wherein the reinforcing channel A411′ is coaxially aligned with the fastening hole A21. Preferably, a diameter of the fastening hole A21 is the same as a diameter of the reinforcing channel A411′, such that the end portion A311 of the leg folding member A31 is slidably inserted into the fastening hole A21 of the runner A20 through the reinforcing channel A411′ of the reinforcing shaft A41′ in a rotatably movable manner. It is worth mentioning that the engaging surface area between the end portion A311 of the leg folding member A31 and the reinforcing channel A411′ of the reinforcing shaft A41′ will be increased to minimize the stress created between the surrounding edge of the fastening hole A21 and the leg folding member A31, especially when the leg frame A30 is moved at the unfolded position. In addition, the clearance between the surrounding edge of the fastening hole A21 and the leg folding member A31 will be retained to prevent the unstable folding movement of the leg frame A30 between the folded position and the unfolded position. It is worth mentioning that the end portion A311 of the leg folding member A31 is supported by the entire reinforcing shaft A41′ to enhance the supportive of the leg frame A30.
Each of the reinforcing shafts A41″ has an enlarged shaft head A411″ and an elongated elastic shaft body A412″ extended therefrom, such that the elastic shaft body A412″ of the reinforcing shaft A41″ is slidably passed through the guiding hole 24 and the fastening hole A21 of the runner A20 to insert into the end portion A311 of the leg folding member A31 until the shaft head A411″ of the reinforcing shaft A41″ is biased against the outer wall A23 of the runner A20. The length of the elastic shaft body A412″ is larger than the distance between the inner wall A22 of the runner A20 and the outer wall A23 thereof, such that the elastic shaft body A412″ is long enough to pass through the fastening hole A21 of the runner A20 when the elastic shaft body A412″ is inserted into the end portion A311 of the leg folding member A31. It is worth mentioning that the elastic shaft body A412″ has a deformable surface, such that when the elastic shaft body A412″ is inserted into the end portion A311 of the leg folding member A31, the deformable surface of the elastic shaft body A412″ is deformed to engage with an inner surface of the end portion A311 of the leg folding member A31 to securely couple the reinforcing shaft A41″ with the end portion A311 of the leg folding member A31.
Accordingly, the elastic shaft body A412″ has a V-shaped configuration defining two elastic body portions, wherein when the elastic shaft body A412″ is inserted into the end portion A311 of the leg folding member A31, the two elastic body portions of the elastic shaft body A412″ are pressed toward each other to bias against the inner surface of the end portion A311 of the leg folding member A31. It is worth mentioning that when the leg folding member A31 is rotated with respect to the fastening hole A21 of the runner A20 to move the leg frame between the folded position and the unfolded position, the reinforcing shaft A41″ is rotated correspondingly by the leg folding member A31. In addition, the end portion A311 of the leg folding member A31 is supported by the entire reinforcing shaft A41″ to enhance the supportive of the leg frame A30.
One skilled in the art will understand that the embodiment of the present invention as shown in the drawings and described above is exemplary only and not intended to be limiting.
It will thus be seen that the objects of the present invention have been fully and effectively accomplished. The embodiments have been shown and described for the purposes of illustrating the functional and structural principles of the present invention and is subject to change without departure from such principles. Therefore, this invention includes all modifications encompassed within the spirit and scope of the following claims.
This is a Continuation application that claims the benefit of priority under 35U.S.C.§119 to a non-provisional application, application Ser. No. 15/097,262, filed Apr. 12, 2016, and another non-provisional application, application Ser. No. 14/743,992, filed Jun. 18, 2015, which is a Continuation application that claims the benefit of priority under 35U.S.C.§119 to a non-provisional application, application Ser. No. 14/507,797, filed Oct. 6, 2014, which is a Continuation application that claims the benefit of priority under 35U.S.C.§119 to a non-provisional application, application Ser. No. 14/097,224, filed Dec. 4, 2013, which is a Continuation-In-Part application that claims the benefit of priority under 35U.S.C.§119 to a non-provisional application, application Ser. No. 13/694,182, filed Nov. 1, 2012, now U.S. Pat. No. 8,677,912.
Number | Date | Country | |
---|---|---|---|
Parent | 15097262 | Apr 2016 | US |
Child | 15216654 | US | |
Parent | 14743992 | Jun 2015 | US |
Child | 15097262 | US | |
Parent | 14507797 | Oct 2014 | US |
Child | 14743992 | US | |
Parent | 14097224 | Dec 2013 | US |
Child | 14507797 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13694182 | Nov 2012 | US |
Child | 14097224 | US |