Folded camera with optical image stabilization

Information

  • Patent Grant
  • 11640047
  • Patent Number
    11,640,047
  • Date Filed
    Thursday, January 3, 2019
    5 years ago
  • Date Issued
    Tuesday, May 2, 2023
    a year ago
Abstract
Folded digital camera comprising a lens having a lens optical axis, an image sensor and first and second optical path folding elements (OPFEs), in which the second OPFE is closest to the image sensor, wherein the lens is operative to move in a first direction substantially parallel to the lens optical axis and in a second direction substantially perpendicular to first and second optical paths, wherein the second OPFE is operative to move in the first direction, and wherein the combined motion of the lens and of the second OPFE is operative to provide focus and to compensate for tilts of the camera around the first and second directions.
Description
FIELD

Embodiments disclosed herein relate in general to digital cameras and in particular to folded digital cameras and dual folded-upright cameras incorporated in mobile electronic devices such as smartphones.


BACKGROUND

A typical digital camera includes an image sensor (or simply “sensor”) and a lens. The lens forms an image on the sensor. A lens module may include several lens elements, typically assembled in one lens barrel. Folded cameras (FCs) and double-folded cameras (DFCs) are known, see for example co-owned international patent application PCT/IB2015/056004. Folded cameras include an additional optical path folding element (OPFE) that folds the light from object to lens. The OPFE may be for example a prism or a mirror. Double-folded cameras include a second OPFE that folds the light from the lens to the image sensor. Such camera may have focus and auto-focus capabilities. FCs with optical image stabilization (OIS) capabilities are also known.


Folded cameras with a “distributed” (or ‘split”) lens are folded cameras in which one or more of the lens elements is installed in the optical path between an imaged object and the OPFE, while other lens elements are installed in the optical path between the OPFE and the image sensor (see e.g. the Asus ZenFone Zoom).


SUMMARY

In exemplary embodiments, there are provided digital cameras comprising: a lens having a lens optical axis, an image sensor, a first OPFE for folding light arriving from an object in a first optical path to a second optical path substantially aligned with the lens optical axis, and a second OPFE for folding light from the second optical path to a third optical path toward the image sensor, wherein the third optical path is substantially parallel with the first optical path, wherein the first and third optical paths are substantially orthogonal to the second optical path, wherein the lens is operative to move in a first direction substantially parallel to the lens optical axis and in a second direction substantially perpendicular to both the first and second optical paths, wherein the second OPFE is operative to move in the first direction, and wherein the combined motion of the lens and of the second OPFE is operative to provide focus and to compensate for tilts of the camera around the first and second directions. The first and second OPFEs may be prism, mirrors, or a prism and a mirror.


In some embodiments, the lens is fixedly attached to the first OPFE to form a lens-OPFE assembly.


In some embodiments, the lens is a folded lens.


In exemplary embodiments, there are provided methods for providing focus and optical image stabilization in a folded camera module that includes a first OPFE for folding light from a first optical path with a first optical axis to a second optical path with a second optical axis perpendicular to the first optical axis, a lens module carrying a lens with a symmetry axis parallel to the second optical axis, and a second OPFE for folding light from the second optical path to a third optical path, a method comprising moving the lens in a first direction substantially parallel to the lens optical axis and in a second direction substantially perpendicular to both the first and second optical paths, and moving the second OPFE in the first direction, wherein the combined motion of the lens and of the second OPFE is operative to provide focus and to compensate for tilts of the camera around the first and second directions.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. Identical structures, elements or parts that appear in more than one figure are generally labeled with a same numeral in all the figures in which they appear. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. In the drawings:



FIG. 1A shows schematically a double-folded camera (DFC) in a general perspective view, according to an example of the presently disclosed subject matter;



FIG. 1B shows the DFC of FIG. 1A from a side view;



FIG. 1C shows the DFC of FIG. 1A from a top view;



FIG. 2A shows schematically a double-folded camera (DFC) in a general perspective view, according to another example of the presently disclosed subject matter;



FIG. 2B shows the DFC of FIG. 2A from a side view;



FIG. 2C shows the DFC of FIG. 2A from a top view;



FIG. 3A shows schematically a double-folded camera (DFC) in a general perspective view, according to yet another example of the presently disclosed subject matter;



FIG. 3B shows the DFC of FIG. 3A from a side view;



FIG. 3C shows the DFC of FIG. 3A from a top view;



FIG. 4 shows schematically another DFC design in a general perspective view, according to an example of the presently disclosed subject matter.





DETAILED DESCRIPTION

In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding. However, it will be understood by those skilled in the art that the presently disclosed subject matter may be practiced without these specific details. In other instances, well-known methods have not been described in detail so as not to obscure the presently disclosed subject matter.


It is appreciated that certain features of the presently disclosed subject matter, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the presently disclosed subject matter, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.


The term “processing unit” as disclosed herein should be broadly construed to include any kind of electronic device with data processing circuitry, which includes for example a computer processing device operatively connected to a computer memory (e.g. digital signal processor (DSP), a microcontroller, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.) capable of executing various data processing operations.


Furthermore, for the sake of clarity the term “substantially” is used herein to imply the possibility of variations in values within an acceptable range. According to one example, the term “substantially” used herein should be interpreted to imply possible variation of up to 10% over or under any specified value. According to another example, the term “substantially” used herein should be interpreted to imply possible variation of up to 5% over or under any specified value. According to a further example, the term “substantially” used herein should be interpreted to imply possible variation of up to 2.5% over or under any specified value.



FIGS. 1A, 1B and 1C show respectively schematic perspective, side and top views of a DFC numbered 100 according to an example of the presently disclosed subject matter. An orthogonal X-Y-Z coordinate (“axis”) system shown applies also to all following drawings. This coordinate system is exemplary. DFC 100 includes a first OPFE 102 (here and exemplarily a prism), a lens 104, a second OPFE (here and exemplarily also a prism) 106 and an image sensor 108. In other embodiments, OPFEs 102 and 106 may be mirrors. Lens 104 has a lens optical axis 110. Lens 104 is characterized by a fixed effective focal length (EFL), as known in the art. EFL is measured in length units (micrometer (μm), millimeter (mm), or meter (m)). Optical axis 110 may also be referred to herein as “folded camera optical axis”. Light arriving from an object (not shown) in a first optical path 112 is folded by first OPFE 102 to a second optical path 114 substantially aligned with optical axis 110, passes through lens 104, is folded again by second OPFE 106 to a third optical path 116, and impinges on sensor 108 to form an image. All optical paths are marked in FIG. 1B.


In DFC 100, second OPFE 106 folds the optical path to a direction away from the object side (negative Z direction in the coordinate system given), with image sensor 108 being in the negative Z direction relative to OPFE 106. However, this is not mandatory, and the folding by OPFE 106 can be done in the opposite direction (closer to the object side). This configuration is presented in FIG. 4, showing a DFC 400 having all the elements with the same numbering and functionality as DFC 100, except that image sensor 108 is in the positive Z direction relative to OPFE 106. All the analysis above and below applies for such a case. The first and third optical paths (112 and 116) are substantially parallel. Second optical path 114 is orthogonal to the first and third optical paths (112 and 116). In the XYZ coordinate system used in all figures, the first and third optical paths (112 and 116) lie along the Z axis, while second optical path 114 lies along the X axis. The Y axis is perpendicular to the first, second and third optical paths. DFC 100 can thus capture images on image sensor 108 from objects that lie generally in planes substantially orthogonal to the first optical path. Image sensor 108 outputs an output image. The output image may be processed by an image signal processor (ISP—not shown) for demosaicing, white balance, lens shading correction, bad pixel correction and other processes known in the art of ISP design.


In DFC 100, several elements may be actuated (i.e. moved or shifted linearly). Actuation directions for lens 104 and second OPFE 106 are marked by dashed arrows in FIG. 1C (as well as in FIGS. 2C and 3C). Lens 104 may be actuated in plane XY. Shifting lens 104 in the X direction (along lens optical axis 110) may change the focus position of the system. Shifting lens 104 in the Y direction (a direction orthogonal to both lens optical axis 110 and first optical path 112) shifts the image on image sensor 108 in the Y direction. Shifting the image on the image sensor in the Y direction may be used to create OIS, which corrects for tilt of DFC 100 around the X axis (also referred to as “correction of a first tilt” of the DFC). Second OPFE 106 may be also actuated in the X direction. Shifting second OPFE 106 in the X direction creates two effects simultaneously: the first effect is to change the focus plane of the system (i.e. change the distance from the camera of a plane which is focused on the image sensor); the second effect is to shift the image on the sensor in the X direction. Shifting the image on the image sensor in the X direction may be used to create OIS to correct tilt of DFC 100 around the Y axis also referred to as “correction of a second tilt” of the DFC). In total, the actuation and movements described above provide 3 degrees of freedom (DOF) (shifting the lens in the X direction, shifting the lens in the Y direction, and shifting the second OPFE in the X direction) which may be used for three optical effects: focusing and OIS in two directions, as indicated in Table 1. To clarify, α and β in Table 1 are respectively the “first tilt” and the “second tilt” of the camera. Therefore, the three optical effects can be achieved as a linear sum of 3-movement DOF (i.e. movement in 3 DOFs) described herein.










TABLE 1





Desired optical effect
Actuation







Focus shift, A μm
Lens 104 shift X direction, A μm


Correction of a
Lens 104 shift Y direction, EFL × tan(α)


first tilt, α radians


Correction of a
OPFE 106 shift X direction, EFL × tan(β) +


second tilt, β radians
Lens 104 shift X direction, EFL × tan(β)









Actuation methods for actuating a lens in two directions (i.e. X and Y in FIG. 1C) are known. Such actuation may be performed using voice coil motors (VCMs), as described for example in co-owned international patent applications PCT/IB2016/052143, PCT/IB2016/052179 and PCT/IB2017/054088. Actuation of any optical element in one direction is also known, for example as described in U.S. Pat. No. 8,810,714. Other actuation methods may include use of stepper motors, shape memory alloy motors, piezo electric motors, micro-electro-mechanical system (MEMS) motors, etc.



FIGS. 2A, 2B and 2C show respectively schematic perspective, side and top views of a DFC numbered 200 according to another example of the presently disclosed subject matter. DFC 200 includes the same elements as DFC 100, numbered with the same numerals. In DFC 200, first OPFE 102 and lens 104 are made as one (integrated) part, i.e. form a lens-prism assembly 202. Lens-prism assembly 202 may be actuated like lens 104 in DFC 100 i.e. in plane X-Y along X direction and/or along Y direction. The actuation of lens-prism assembly 202 in plane X-Y has to a good approximation (less than 1-5 percent of the effect) the same optical effect as that of the actuation of lens 104 in plane X-Y in camera 100. In DFC 200, second OPFE 106 may be shifted in the same direction and with the same optical effects as in DFC 100. Therefore, in system 200, the three optical effects can also be achieved as a linear sum of 3-movement DOF described herein.



FIGS. 3A, 3B and 3C show respectively schematic perspective, side and top views of a DFC numbered 300 according to yet another example of the presently disclosed subject matter. DFC 300 is similar to DFC 200, except that lens-prism assembly 202 is replaced by a folded lens 302. Folded lens 302 is a distributed (split) folded lens in the sense defined above: it includes a plurality of lens elements and the first OPFE, wherein some of the lens elements (for example, one lens element 304) are positioned before the OPFE in first optical path 112, while one or more other lens elements are positioned after the OPFE in second optical path 114, being for example included in a barrel 306. An example of design of folded lens 302 may be seen in co-owned U.S. patent application Ser. No. 16/310,690. Folded lens 302 serves with the same optical properties of lens-prism assembly 202. Folded lens 302 may be actuated like lens 104 in DFC 100 and lens-prism assembly 202 in DFC 200, i.e. in plane X-Y along X direction and/or along Y direction. The actuation of folded lens 302 in plane X-Y has the same optical effect as the actuation of lens-prism assembly 202 in plane X-Y in DFC lens-prism assembly 202. In DFC 300, second OPFE 106 may be shifted with the same direction and same optical effects as in DFC 100. Therefore, in system 300, the three optical effects can also be achieved as a linear sum of 3-movement DOF described herein.


While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.


Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.


It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that element.


All references mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual reference was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

Claims
  • 1. A method, comprising: a) providing a folded camera having a single lens module having a single lens module optical axis and a fixed effective focal length (EFL), an image sensor, a first optical path folding element (OPFE) for folding light arriving from an object in a first optical path to a second optical path substantially aligned with the lens optical axis, and a second OPFE for folding light from the second optical path to a third optical path toward the image sensor, wherein the third optical path is substantially parallel with the first optical path and wherein the first and third optical paths are substantially orthogonal to the second optical path;b) moving the single lens module including all lens elements therein as a single integrated unit in a first direction substantially parallel to the single lens module optical axis and in a second direction substantially perpendicular to both the first and second optical paths; andc) moving the second OPFE in the first direction, wherein the combined motion of the single lens module and of the second OPFE is operative to provide focus and to compensate for tilts of the camera around the first and second directions.
  • 2. The method of claim 1, wherein the single lens module is fixedly attached to the first OPFE to form a lens-OPFE assembly and wherein moving the single lens module includes moving the lens-OPFE assembly.
  • 3. A method for providing focus and optical image stabilization in a folded camera module having a first optical path folding element (OPFE) for folding light from a first optical path with a first optical axis to a second optical path with a second optical axis perpendicular to the first optical axis, a single lens module with a symmetry axis parallel to the second optical axis and with a fixed effective focal length (EFL), and a second OPFE for folding light from the second optical path to a third optical path, the method comprising: a) moving the single lens module including all lens elements therein as a single integrated unit in a first direction substantially parallel to the symmetry axis and in a second direction substantially perpendicular to both the first and second optical paths; andb) moving the second OPFE in the first direction, wherein the combined motion of the single lens module and of the second OPFE is operative to provide focus and to compensate for tilts of the camera around the first and second directions.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a 371 application from international patent application No. PCT/IB2019/050059 filed Jan. 3, 2019, which claims the benefit of priority from U.S. Provisional patent application No. 62/629,298 filed Feb. 12, 2018, which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2019/050059 1/3/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/155289 8/15/2019 WO A
US Referenced Citations (288)
Number Name Date Kind
4199785 McCullough et al. Apr 1980 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5394520 Hall Feb 1995 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6208765 Bergen Mar 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7619683 Davis Nov 2009 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8238695 Davey et al. Aug 2012 B1
8274552 Dahi et al. Sep 2012 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8803990 Smith Aug 2014 B2
8896655 Mauchly et al. Nov 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070126911 Nanjo Jun 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100097444 Lablans Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100196001 Ryynänen et al. Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120105579 Jeon et al. May 2012 A1
20120124525 Kang May 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahi et al. May 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130270419 Singh et al. Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150138381 Ahn May 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160044250 Shabtay et al. Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160241751 Park Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20170019616 Zhu et al. Jan 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170242225 Fiske Aug 2017 A1
20170289458 Song et al. Oct 2017 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024329 Goldenberg Jan 2018 A1
20180059379 Chou Mar 2018 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20190121103 Bachar et al. Apr 2019 A1
20200264403 Bachar et al. Aug 2020 A1
Non-Patent Literature Citations (19)
Entry
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
International Search Report and Written Opinion in related PCT application PCT/IB2019/050059, dated May 31, 2019. 8 pages.
Office action in related EP patent application 19751717.0, dated Dec. 1, 2020.
Office action in related CN patent application 201980006227.8, dated Jan. 26, 2021.
Related Publications (1)
Number Date Country
20200400926 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62629298 Feb 2018 US