Not applicable.
The present invention relates to corrugated materials and methods for producing same, and more particularly but not by way of limitation, to decorative grass, flower pot covers, floral wrappings and ribbon materials made from such folded corrugated materials. In one aspect, the present invention relates to methods for producing decorative grass and flower pot covers and to methods of wrapping floral groupings and flower pots with a sheet of folded corrugated material to provide a decorative cover for such floral groupings and flower pots.
Referring now to
The length of the first and second legs or segments 14 and 16 of the folds 12 can vary widely and will generally depend on the shingle effect and appearance desired in the sheet of folded corrugated material 10. Generally, however, it is desirable that the lengths 20 and 22 of the first and second legs or segments 14 and 16, respectively, be such so that when the folds 12 are formed, the overlaying folds 12 cover at least about 55 percent of the surface area of the adjacent underlying folds 12, and more desirably at least about 90 percent of the surface area of the adjacent underlying folds 12.
Referring now to
The bonding material 28 may have a backing or release strip (not shown). The backing or release strip may be left applied for a period of time to the bonding material 28 after it is disposed on a surface of the sheet of folded corrugated material 10a prior to its use as a wrapping material, to protect the bonding qualities of the bonding material 28. The bonding material 28 can be disposed on a sheet of material used in the production of the folded corrugated material 10a (
The term “bonding material” when used herein can mean an adhesive, frequently a pressure sensitive adhesive, or a cohesive or any adhesive/cohesive combination having adhesive qualities (i.e., qualities of adhesion or adhesion/cohesion, respectively) sufficient to cause the attachment of a portion of the sheet of folded corrugated material 10a to itself, to a floral grouping, or to a flower pot. Since the bonding material 28 may comprise either an adhesive or an adhesive/cohesive combination, it will be appreciated that both adhesives and cohesives are known in the art, and both are commercially available. When the bonding material 28 is a cohesive, a similar cohesive material must be placed on the adjacent surface for bondingly contacting and bondingly engaging with the cohesive material.
The term “bonding material” also includes materials which are heat sealable and, in this instance, the adjacent portions of the material must be brought into contact and then heat must be applied to effect the seal. The term “bonding material” also includes materials which are sonic sealable and vibratory sealable. The term “bonding material” when used herein also means a heat sealing lacquer or hot melt material which may be applied to the material and, in this instance, heat, sound waves, or vibrations, also must be applied to effect the sealing.
The term “bonding material” when used herein also means any type of material or thing which can be used to effect the bonding or connecting of the two adjacent portions of the sheet of folded corrugated material 10a to effect the connection or bonding described herein. The term “bonding material” may also include ties, labels, bands, ribbons, strings, tapes (including single or double-sided adhesive tapes), staples or combinations thereof. Some of the bonding materials would secure the ends of the material while other bonding materials may bind the circumference of a wrapper, or a sleeve, or, alternatively and/or in addition, the bonding materials would secure overlapping folds in the material and/or sleeve. Another way to secure the wrapping and/or sleeve is to heat seal the ends of the material to another portion of the material. One way to do this is to contact the ends with an iron of sufficient heat to heat seal the material.
Alternatively, a cold seal adhesive may be utilized as the bonding material 28. The cold seal adhesive adheres only to a similar substrate, acting similarly as a cohesive, and binds only to itself. The cold seal adhesive, since it bonds only to a similar substrate, does not cause a residue to build up on equipment, thereby both permitting much more rapid disposition and use of such equipment to form articles and reducing labor costs. Further, since no heat is required to effect the seal, the dwell time, that is, the time for the sheet of material to form and retain the shape of an article, such as a flower pot cover or flower pot, is reduced. A cold seal adhesive binds quickly and easily with minimal pressure, and such a seal is not readily releasable. This characteristic is different from, for example, a pressure sensitive adhesive.
The term “bonding material” when used herein also means any heat or chemically shrinkable material, and static electrical or other electrical materials, chemical welding materials, magnetic materials, mechanical or barb-type fastening materials or clamps, curl-type characteristics of the film or materials incorporated in material which can cause the material to take on certain shapes, cling films, slots, grooves, shrinkable materials and bands, curl materials, springs, and any type of welding method which may weld portions of the material to itself or to the pot, or to both the material itself and the pot.
The folded corrugated sheets of material 10 and 10a can be produced from a sheet or web of substantially flat material 32 (See
The sheet or web of material 32 may also vary in color. Further, the sheet or web of material 32 may consist of designs which are printed, etched, and/or embossed; and in addition, the sheet or web of material 32 may have various colorings, coatings, flockings, and/or metallic finishes, or be characterized totally or partially by pearlescent, translucent, transparent, iridescent, or the like characteristics. Each of the above-named characteristics may occur alone or in combination.
At least one surface of the sheet or web of material 32 may be modified to provide the sheet or web of material 32 with a matte or textured finish simulating the appearance of cloth. The modification of the sheet or web of material 32 to provide the same with a matte or textured finish can be accomplished in several ways. For example, a matte finish can be provided by printing a desired pattern on the sheet or web of material 32 and thereafter laminating a matte material, such as a translucent polymeric film over the printed pattern. To further enhance the cloth-like appearance of the sheet or web of material 32, the matte material may or may not have a plurality of spatially disposed holes extending there through. A matte or textured finish can also be produced by printing the sheet or web of material 32 with a matted (i.e. dull finish) ink, by lacquering at least one surface of the sheet or web of material 32 with a dull finish lacquer or a matting lacquer, by embossing the sheet or web of material 32 to provide an embossed pattern simulating the weave or texture of cloth, or by embossing and printing the sheet or web of material 32 to provide embossed and printed patterns wherein the embossed and printed patterns may be in registry, out of registry, or wherein a portion of the embossed and printed patterns are in registry and a portion of the embossed and printed patterns are out of registry. In addition, a matte or textured finish capable a providing the sheet or web of material 32 with a cloth-like appearance can be achieved by extruding a resin onto a matted or textured chill roll or by laminating a second sheet of material to the sheet or web of material 32.
The sheet of folded corrugated material 10 or 10a used to form a flower pot cover can be of any shape, configuration or size as long as the sheet of folded corrugated material 10 or 10a is sufficiently sized and shaped to wrap and encompass a floral grouping or a flower pot. That is, the sheet of folded corrugated material 10 or 10a may have a square, rectangular, round, oval, octagonal or asymmetrical shape. Further, multiple sheets of the folded corrugated material 10 or 10a may be used in a single circumstance to provide a decorative cover or sleeve for a floral grouping or a flower pot. Moreover, when multiple sheets of material are used to form the folded corrugated material 10 or 10a, the sheets of material need not be uniform in size or shape.
The thickness or stiffness of the sheet or web of material 32 employed in the production of the folded corrugated materials 10 and 10a can vary widely as long as the sheet of folded corrugated material 10 or 10a can be wrapped about at least a portion of a floral grouping or a flower pot, as described herein. Generally, the sheet of folded corrugated material 10 or 10a will have a thickness of from about 0.1 mil to about 30 mil, and more desirably a thickness of from about 0.5 mil to about 2.5 mil.
As noted above, the sheet of folded corrugated material 10 or 10a can be utilized to form a decorative cover for a floral grouping or a flower pot. The term “flower pot” as used herein refers to any type of container for holding a floral grouping, or a plant, or even another pot type container. Examples of flower pots and/or pot type containers include, but are not limited to, clay pots, wooden pots, plastic pots, pots made from natural and/or synthetic fibers, or any combination thereof. Such flower pots and or pot-type containers are provided with a retaining space for receiving a floral grouping. The floral grouping may be disposed within the retaining space of the flower pot with a suitable growing medium described in further detail below, or other retaining medium, such as a floral foam. It will also be understood that in some cases the floral grouping, and any appropriate growing medium or other retaining medium, may be disposed in a sleeve formed from the sheet of folded corrugated material 10 if the sleeve is adapted to contain a medium.
“Floral grouping” as used herein means cut fresh flowers, artificial flowers, a single flower or other fresh and/or artificial plants or other floral materials and may include other secondary plants and/or ornamentation or artificial or natural materials which add to the aesthetics of the overall floral grouping. Further, the floral grouping may comprise a growing potted plant having a root portion as well. However, it will be appreciated that the floral grouping may consist of only a single bloom or only foliage, or a botanical item (not shown), or a propagule. The term “floral grouping” may be used interchangeably herein with the term “floral arrangement”. The term “floral grouping” may also be used interchangeably herein with the terms “botanical item” and/or “propagule.”
The term “growing medium” when used herein means any liquid, solid or gaseous material used for plant growth or for the cultivation of propagules, including organic and inorganic materials such as soil, humus, perlite, vermiculite, sand, water, and including the nutrients, fertilizers or hormones or combinations thereof required by the plants or propagules for growth.
The term “botanical item” when used herein means a natural or artificial herbaceous or woody plant, taken singularly or in combination. The term “botanical item” also means any portion or portions of natural or artificial herbaceous or woody plants including stems, leaves, flowers, blossoms, buds, blooms, cones, or roots, taken singly or in combination, or in groupings of such portions such as bouquet or floral grouping.
The term “propagule” when used herein means any structure capable of being propagated or acting as an agent of reproduction including seeds, shoots, stems, runners, tubers, plants, leaves, roots or spores.
A system for producing the folded corrugated materials 10 and 10a and the use of the sheet of folded corrugated material 10 to produce the strips or segments 46 and 48 (
Referring now to
It should be noted that when using the folded corrugated material 10 produced from a sheet of the substantially flat material 32, the shredding assembly 44 may only be required to cut the sheet of folded corrugated material 10 into strips of material which have a length determined by the dimensions of the folded corrugated material 10. However, when the folded corrugated material 10 is produced from a web of material 32, the shredding assembly 44 comprises a slitting unit for slitting the folded corrugated material 10 and a cutting or chopper unit for cutting the slit folded corrugated material into segments.
Referring more specifically to
Any suitable apparatus can be employed as the first and second corrugation forming members 50 and 54 which is capable of forming a crease in the sheet or web of material 32 and forming a bend in the sheet or web of material 32 as same passes between the first and second corrugation forming members 50 and 54. For instance, the first and second corrugation forming members 50 and 54 can be spur gears which are modified such that the distal end of each of the teeth of the spur gears forms a single crease in the sheet or web of material when same is passed between the first and second corrugation forming members 50 and 54, and such gears can be driven by the shafts 52 and 56 which are connected to two helical gears which are capable of changing the timing of the spur gears in order to obtain the desired relationship between the first and second corrugation forming members 50, 54 so as to produce the corrugated sheet or web of material 74 wherein one leg of each corrugation is longer than the other leg of each corrugation.
To enhance folding of the corrugations of the corrugated sheet or web of material 74 to provide the folded corrugated material 10 or 10a (as shown in
The sheet of folded corrugated material 10 or 10a can then be cut into sheets for use in the formation of decorative covers for floral groupings or flower pots, or the sheet of folded corrugated material 10 or 10a can be fed through the shredding assembly 44 wherein the sheet of folded corrugated material 10 or 10a is cut into strips or segments of material 46, 48 having a predetermined width and length to produce decorative grass segments 46 (
To produce the strip of material 46 depicted in
Any conventional device and method can be employed as the shredding assembly 44 for slitting the sheet of folded corrugated material 10 or 10A into a plurality of strips of predetermined width and/or for cutting the strips of the sheet of folded corrugated material 10 or 10A to form the corrugated decorative grass in accordance with the present invention. Examples of conventional devices which can be used as the shredding assembly 44, including a device for slitting the sheet of folded corrugated material 10 or 10A and thereafter, if required, cutting the slit material into segments, are rotary knives, reciprocating knives, die cutting, laser cutting, water jet cutting, air jet cutting and the like.
Another embodiment of a corrugation assembly 42a is illustrated in
Another embodiment of a corrugation assembly 42b is illustrated in
Another embodiment of a corrugation assembly 42c is illustrated in
In operation, an operator may dispose the sheet of folded corrugated material 10 on a support surface (not shown). The floral grouping 92 is placed upon the sheet of folded corrugated material 10 in a diagonal orientation. The floral grouping 92 has an upper bloom or foliage portion 96 and a lower stem portion 98. The sheet of folded corrugated material 10 is then wrapped about the floral grouping 92 (
In another embodiment, illustrated in
In another version of the invention the sheet of folded corrugated material 10 may be used to wrap a flower pot or pot-type container, as noted above. Shown in
The sheet of folded corrugated material 10 may be wrapped about the flower pot 100 by any one of numerous methods used to wrap sheets of material about flower pots to form decorative pot covers for flower pots, such as a decorative cover 113 disposed about the flower pot 100 as illustrated in
Referring now to
The sheet of folded corrugated material 10 is positioned on an upper surface 130 on the support platform 126 such that the sheet of folded corrugated material 10 is positioned over the opening 128 in the support platform 126. The flower pot 100 is positioned above the sheet of folded corrugated material 10 and is moved in a direction 132 into the opening 128 of the flower pot cover former and band applicator apparatus 120. As the flower pot 100 is moved into the opening 128, the sheet of folded corrugated material 10 is pressed about the outer peripheral surface 106 of the flower pot 100 thereby forming the decorative cover 113 about the flower pot 100. The decorative cover 113 is then secured about the flower pot 100 by the elastic band 114. The flower pot 100 having the decorative cover 113 secured thereto is then moved in a direction 134 out of the opening 128 in the support platform 126.
The elastic band 114 can be applied manually or automatically such as by the method shown in U.S. Pat. No. 5,105,599 which is hereby incorporated herein by reference. The elastic band 114 can also be applied as a tie using a method such as described in “Single Station Covering and Fastening System”, U.S. Ser. No. 08/252,876, the specification of which is hereby incorporated herein by reference. The sheet of folded corrugated material 10 can also be applied automatically about the flower pot 100, for example, by methods shown in U.S. Pat. Nos. 4,733,521 and 5,291,721, both of which are hereby incorporated herein by reference.
Instead of securing the decorative cover 113 about the flower pot 100 via the elastic band 114, the decorative cover 113 formed from the sheet of folded corrugated material 10 may be secured to the flower pot 100 by the use of one or more bonding materials. For example, the sheet of folded corrugated material 10 may have a bonding material disposed upon a portion thereof. When the sheet of folded corrugated material 10 is disposed about the flower pot 100, at least a portion of the sheet of folded corrugated material 10 contacts the outer peripheral surface 106 of the flower pot 100 and is thereby bonded and held about the flower pot 100 via the bonding material.
The bonding material may cover a portion of one surface of the sheet of folded corrugated material 10, or the bonding material may entirely cover one surface of the sheet of folded corrugated material 10. The bonding material may be disposed on the surface of the sheet of folded corrugated material 10 in the form of a strip or in the form of spaced-apart spots. One method for disposing a bonding material on the sheet of folded corrugated material 10 is described in U.S. Pat. No. 5,111,637, entitled “Method For Wrapping A Floral Grouping”, issued to Weder, et al. on May 12, 1992, which is expressly incorporated herein by reference.
Referring now to
The decorative preformed pot cover 140 has an upper end 148, a lower end 150, and an outer peripheral surface 152. An opening 154 intersects the upper end 148, forming an inner peripheral surface 156 which defines and encompasses a retaining space 157 within which a flower pot 100 containing a plant 110 may be disposed in a manner well known in the art and which is shown in
As previously stated, the decorative preformed flower pot cover 140 may be constructed of a sheet of the folded corrugated material 10, or from a sheet of the folded corrugated material 10a, and a bonding material may be disposed on at least a portion of one of the surfaces thereof which is capable of connecting at least a portion of the overlapping folds 146 formed in the decorative preformed flower pot cover 140. If desired, the decorative preformed flower pot cover 140 can be formed of a plurality of sheets of the same and/or different types of material. The method and apparatus employed to form the decorative preformed flower pot cover 140 is substantially identical whether one uses one or more sheets of the folded corrugated material 10, or one or more sheets of the folded corrugated material 10a, or one or more sheets of a substantially flat material in combination with one or more sheets of the folded corrugated material 10 or 10a, or one or more sheets of the folded corrugated material 10 which have a bonding material disposed on at least a portion of one of the surfaces thereof or a combination of such sheets of material. Thus, only the formation of the decorative preformed flower pot cover 140 using a sheet of the folded corrugated material 10 will be described in detail hereinafter.
The decorative preformed flower pot cover 140 may be formed using a conventional mold system 160 comprising a male mold 162 and a female mold 164 having a mold cavity 166 for matingly receiving the male mold 162. The sheet of folded corrugated material 10 is positioned between the male and female molds 162 and 164, respectively. Movement of the male mold 162 in the direction 168 and into the mold cavity 166 forces the sheet of folded corrugated material 10 to be disposed about the portion of the male mold 162 disposed in the mold cavity 166 of the female mold 164 and thereby forms the sheet of folded corrugated material 10 into the preformed decorative flower pot cover 140. Further, in accordance with the present invention, the decorative preformed flower pot cover 140 constructed from the materials described hereinabove may have a bonding material disposed upon a portion thereof.
Methods for forming such preformed decorative pot covers are well known in the art. Two methods of forming such covers are described in U.S. Pat. Nos. 4,773,182 and 5,291,721, each of which is expressly incorporated herein by reference.
Shown in
The sleeve 172 has an opening 180 at the upper end 174 and may be open at the lower end 176, or closed with a bottom at the lower end 176. The sleeve 172 also has an inner peripheral surface 181 which, when the sleeve 172 is opened, defines and encompasses an inner retaining space 182. When the lower end 176 of the sleeve 172 has a closed lower end 176, a portion of the lower end 176 may be inwardly folded to form one or more gussets (not shown) for allowing the lower portion of the inner retaining space 182 to be expandable, for example, for receiving the circular bottom of a pot or growing medium.
The sleeve 172 is generally frusto-conically shaped, but the sleeve 172 may be, by way of example but not by way of limitation, cylindrical, frusto-conical, a combination of both frusto-conical and cylindrical, or any other shape, as long as the sleeve 172 functions as described herein as noted above. Further, the sleeve 172 may comprise any shape, whether geometric, non-geometric, asymmetrical and/or fanciful as long as it functions in accordance with the present invention. The sleeve 172 may also be equipped with drain holes (if having a closed bottom) or side ventilation holes (not shown), or can be made from gas permeable or impermeable materials.
The material from which the sleeve 172 is constructed is the same as previously described above for the sheet of folded corrugated material 10 or 10a. Any thickness of material may be utilized in accordance with the present invention as long as the sleeve 172 may be formed as described herein, and as long as the formed sleeve 172 may contain at least a portion of a flower pot or a floral grouping, as described herein. Additionally, an insulating material such as bubble film, preferably as one of two or more layers, can be utilized in order to provide additional protection for the item, such as the floral grouping, contained therein.
In
Similarly, it may generally be desired to use the sleeve 172 as a decorative cover for a flower pot (not shown). The flower pot will generally contain a botanical item or plant. The flower pot can be deposited into the open sleeve 172 in a manner well known in the art, such as manually wherein the sleeve 172 is opened by hand and the flower pot deposited therein.
As noted above, a bonding material may be disposed on a portion of the sleeve 172 or any sleeve described herein to assist in holding the sleeve 172 to the flower pot when the flower pot is disposed within the sleeve 172 or to assist in closing the upper end 174 of the sleeve 172 or adhering the sleeve 172 to the flower pot after the flower pot has been disposed therein, as will be discussed in further detail below.
It will be understood that the bonding material, if present, may be disposed as a strip or block on a surface of the sleeve 172. The bonding material may also be disposed upon either the outer peripheral surface 178 or the inner peripheral surface 181 of the sleeve 172, as well as upon the flower pot. Further, the bonding material may be disposed as spots of bonding material, or in any other geometric, non-geometric, asymmetric, or fanciful form, and in any pattern including covering either the entire inner peripheral surface 181 and/or outer peripheral surface 178 of the sleeve 172 and/or the flower pot. The bonding material may be covered by a cover or release strip which can be removed prior to the use of the sleeve 172 or flower pot. The bonding material can be applied by methods known to those of ordinary skill in the art. One method for disposing a bonding material, in this case an adhesive, is described in U.S. Pat. No. 5,111,637, which is hereby incorporated herein by reference.
As noted above, a bonding material may be disposed on at least a portion of the inner peripheral surface 181 of the sleeve 172 (or any other sleeve described herein), or, alternatively, the bonding material may be disposed on the outer peripheral surface of a flower pot contained within the sleeve 172, while the sleeve 172 may be free of the bonding material. In a further alternative, the bonding material may be disposed both on at least a portion of the flower pot as well as upon at least a portion of the inner peripheral surface 181 of the sleeve 172. In addition, a portion of the bonding material may also be disposed on the outer peripheral surface 178 of the sleeve 172 as well. It will be understood that the bonding material may be disposed in a solid section of bonding material. The bonding material, when present, is disposed on the sleeve 172 and/or flower pot by any means known in the art.
Certain versions of sleeves described herein may be used in combination with a preformed pot cover. For example, a preformed pot cover may be applied to the pot, then the covered pot wrapped or disposed within a sleeve. Either the cover or the sleeve, or both, may be formed from the sheet of folded corrugated material 10. Examples of sleeves which may be used in this invention are shown in the specification of U.S. Pat. No. 5,625,979 which is expressly incorporated herein by reference in its entirety. Equipment and devices for forming sleeves are commercially available, and well known in the art.
Shown in
The sleeve 172b has an upper end 174b, a lower end 176b, and an outer peripheral surface 178b. The sleeve 172b has an opening 180b at the upper end 174b thereof, and the sleeve 172b may be open at the lower end 176b or closed with a bottom at the lower end 176b. In a flattened state, the sleeve 172b has a first side 198 and a second side 200. The sleeve 172b also has an inner peripheral surface 181b which, when the sleeve 172b is opened, defines and encompasses an inner retaining space 182b as shown in
As shown in
In a preferred embodiment, as shown in
In the intact sleeve 172b, the skirt portion 214 comprises an upper peripheral edge congruent with the detaching element 210 which is connected to a lower peripheral edge, also congruent with the detaching element 210, of the upper portion 204 of the sleeve 172b. In
The upper portion 204 of the sleeve 172b is thereby separable from the lower portion 206 of the sleeve 172b by tearing the upper portion 204 along both the detaching element 220 and the detaching element 210, thereby separating the upper portion 204 from the lower portion 206 of the sleeve 172b. The lower portion 206 of the sleeve 172b remains disposed as the base portion 212 about the flower pot 202 and as the skirt portion 214 about the plant 208 forming a decorative cover 170b as shown in
“Detaching element” as used herein, means any element, or combination of elements, or features, such as, but not by way of limitation, perforations, tear strips, zippers, and any other devices or elements of this nature known in the art, or any combination thereof. Therefore, while perforations are shown and described in detail herein, it will be understood that tear strips, zippers, or any other “detaching elements” known in the art, or any combination thereof, could be substituted therefor and/or used therewith.
In a general method of use of sleeve 172b as a decorative cover for a flower pot, an operator provides a sleeve 172b, and the flower pot 202 having a plant 208 disposed in a growing medium contained within the flower pot 202. The operator then disposes the flower pot 202 having the plant 208 contained therein into the sleeve 172b by opening the sleeve 172b at its upper end 174b and assuring both that the opening 180b therein is in an open condition, and that the inner peripheral surface 181b of the sleeve 172b is somewhat expanded outward as well, as shown in
Referring now to
Any material capable of being corrugated and folded to provide a sheet of folded corrugated material 10 can be employed in the formulation of the ribbon material 230. For example, a polymeric film 232 can be employed to produce the ribbon material 230, and the polymeric film 232 can be polypropylene film having a thickness of from about 0.1 mil to about 30 mil, and more desirably of from about 0.5 mil to about 2.5 mil, or an expanded core polymeric film having a thickness of from about 0.6 mil to about 10 mil.
Changes may be made in the construction and the operation of the various components, elements and assemblies described herein or in the steps or the sequence of steps of the methods described herein without departing from the spirit and scope of the invention as defined in the following claims.
This application is a continuation of U.S. Ser. No. 10/261,794, filed Sep. 30, 2002 now abandoned; which is a continuation of U.S. Ser. No. 09/532,809, filed Mar. 21, 2000, now abandoned; which is a continuation of U.S. Ser. No. 09/109,563, filed Jul. 2, 1998, now abandoned; which claims the benefit of U.S. Provisional application U.S. Ser. No. 60/052,361, filed Jul. 11, 1997; the contents of each of which are hereby expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2016334 | McComb | Oct 1935 | A |
2141235 | Angeletti | Dec 1938 | A |
2244845 | Matthews | Jun 1941 | A |
2336100 | Jacque et al. | Dec 1943 | A |
2399744 | Kaphan | May 1946 | A |
2679887 | Doyle et al. | Jun 1954 | A |
3398434 | Alesi, Jr. et al. | Aug 1968 | A |
3416991 | Yoshimura | Dec 1968 | A |
3459845 | Hebeter | Aug 1969 | A |
3503292 | Kingberg | Mar 1970 | A |
3558580 | Orser | Jan 1971 | A |
3607583 | Geschwender | Sep 1971 | A |
3650877 | Johnson | Mar 1972 | A |
3673056 | Nadler | Jun 1972 | A |
3773608 | Yoshimura et al. | Nov 1973 | A |
3869533 | Jonocha et al. | Mar 1975 | A |
3898117 | Taylor | Aug 1975 | A |
3933959 | Skochdopole et al. | Jan 1976 | A |
4012932 | Gewiss | Mar 1977 | A |
4045949 | Paton et al. | Sep 1977 | A |
4056646 | Westfall et al. | Nov 1977 | A |
4132155 | Hicks et al. | Jan 1979 | A |
4199627 | Weder et al. | Apr 1980 | A |
4201818 | Rohn | May 1980 | A |
4255487 | Sanders | Mar 1981 | A |
4292266 | Weder et al. | Sep 1981 | A |
4359442 | Cleminson et al. | Nov 1982 | A |
4385087 | Roberts et al. | May 1983 | A |
4401700 | Weder et al. | Aug 1983 | A |
4496614 | Weder et al. | Jan 1985 | A |
4549908 | Weder et al. | Oct 1985 | A |
4735669 | Guida et al. | Apr 1988 | A |
4989396 | Weder et al. | Feb 1991 | A |
5088972 | Parker | Feb 1992 | A |
5134013 | Parker | Jul 1992 | A |
5173352 | Parker | Dec 1992 | A |
5257492 | Watts | Nov 1993 | A |
5403259 | Parker | Apr 1995 | A |
D368654 | Santoiemmo et al. | Apr 1996 | S |
5573491 | Parker | Nov 1996 | A |
5580448 | Brandreth, III | Dec 1996 | A |
5656008 | Beierlorzer | Aug 1997 | A |
5678288 | Walton et al. | Oct 1997 | A |
5694741 | Weder et al. | Dec 1997 | A |
5706569 | Miyamoto et al. | Jan 1998 | A |
5711752 | Goldstein | Jan 1998 | A |
5712020 | Parker | Jan 1998 | A |
5802813 | Weder | Sep 1998 | A |
5811493 | Kent | Sep 1998 | A |
5871432 | Beierlorzer | Feb 1999 | A |
5921907 | Beierlorzer | Jul 1999 | A |
6241884 | Hansen | Jun 2001 | B1 |
6270664 | Tsabari | Aug 2001 | B1 |
6277472 | Weder | Aug 2001 | B1 |
6485641 | McLeod | Nov 2002 | B1 |
6589461 | Hansen et al. | Jul 2003 | B2 |
6638584 | Weder | Oct 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20050100684 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60052361 | Jul 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10261794 | Sep 2002 | US |
Child | 10691985 | US | |
Parent | 09532809 | Mar 2000 | US |
Child | 10261794 | US | |
Parent | 09109563 | Jul 1998 | US |
Child | 09532809 | US |