Folded steel plate girders are commonly used in constructing bridge spans. These types of girders are advantageous for short bridge spans of 60 feet or less, which accounts for about half of the almost 700,000 bridges in the United States. Folded steel girders provide a quick, cost-effective system for building new, short span bridges and for repairing existing ones. The folding process forms an open channel in the girder that traverses the length of the bottom side of a folded plate girder. This channel allows for quicker and easier inspection, which can also save costs.
Folded steel plate girders are limited to short span bridges or simple spans. Longer bridges and those intended to support greater weights are designed to have a certain amount of camber. Camber is an obtuse curvature in a long span that helps to absorb weight near the center of the span and increase strength. Because of the method by which folded steel plate girders are manufactured and the final shape of the girders, it is not possible to introduce camber into the girder. This limits the applicability of folded steel plate girders.
The subject invention provides connector systems that facilitate the introduction of camber between the folded plate girders for use across long bridge spans. Currently the maximum length of a Folded Plate Steel Bridge System is limited to the maximum length of available press breaks, which is about 60 ft. Utilizing the unique connecting components and method of the subject invention, folded plate girders can be utilized in simple bridge systems where a single girder is sufficient and, when two or more girders are connected, can be used for any length of continuous bridge systems to cross any span.
A standard folded steel plate girder is fabricated from a single steel plate of uniform thickness that is cold bent along multiple lines using a hydraulic metal press break. The single steel plate is transformed into a tubular trapezoidal-like shape with an open, longitudinal channel between flanges along the length of the wider bottom end. At the top end of the folded steel plate are headed studs to which a concrete deck can be attached.
The folded plates can be cut at a cross section angle, where the top end of the girder extends slightly past the bottom or open end of the girder. This can create an obtuse angle at the bottom end of the folded plate, such that the top end extends past the bottom end. A splice plate can be fixedly attached, such as by welding, to the angled ends and used to bolt the girders together. Alternatively, the splice plate can be welded to girder and fill material can be used to impart an obtuse angle to the shear plate. With either technique, when the girders are bolted together, there is formed an arc between them, relative to the longitudinal length of the connected girder that performs the same function as camber. The addition of a filler plate hear the splice plate and between the bottom flanges of the girder provides additional width to the bottom flange can reduce concentration of stress in the vicinity of the splice plate.
In order that a more precise understanding of the above recited invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. The drawings presented herein may not be drawn to scale and any reference to dimensions in the drawings or the following description is specific to the embodiments disclosed. Any variations of these dimensions that will allow the subject invention to function for its intended purpose are considered to be within the scope of the subject invention.
The subject invention pertains to improvements to folded steel plate girders. More specifically, the subject invention provides methods for forming camber between two or more folded plate girders. For literary convenience, a folded plate girder is also referred to herein as a girder.
The ends of a girder 10 can be attached utilizing a connection system 100 that can form an arc or angle 11 between two connected girders, and can reinforce the connection points. The arc formed between two or more girders can perform the same function as camber in absorbing loads.
In one embodiment, the arc 11 formed between the bottom ends 2 two connected girders is between about 181° and about 190°. In a further embodiment, the arc 11 formed between two connected girders is between about 181° and about 185°. In more particular embodiment, the arc formed between the bottom sides of two connected girders is between about 181° and about 183°. In a specific embodiment, the arc formed between the bottom sides of two connected girders is about 182°.
In a further embodiment, a filler plate 20 is fixedly attached within the girder channel 15 and to the flanges 14 on either side of the channel. The filler plate can have a thickness that is greater than the thickness of the girder 10. In one embodiment, the thickness of the filler plate is between approximately 0.75 inch and approximately 1.0 inch. In a particular embodiment, the thickness of the filler plate is approximately 0.5 inch. The filler plate can be positioned near the end face 12 of the girder, as shown in
In a further embodiment, a splice plate 50 is fixedly attached against the end face 12 of the girder, as shown in
Complete joint penetration welds can be used to join the girders and the splice plate. In one embodiment, a complete joint penetration weld is employed to attach at least a portion of a splice plate to a girder. In a further embodiment, a complete joint penetration weld is employed to attach at least a portion of the splice plate to the girder at or about the bottom side. For example, a bottom third of the girder and splice plate can be joined by a complete joint penetration weld. In a further embodiment a double fillet weld can be used to attach at least a portion of the splice plate to the girder. For example, a portion of the splice plate can be attached to the girder at or about the top end with a double fillet weld.
The splice plate can have a plurality of bolt holes 55. The bolt holes can be used to connect the splice plate of one girder to the splice plate of another girder using bolts, such as, for example, 1″ A490 bolts. In one embodiment, a plurality of bolt holes is located in the outside plate portion 18, as shown in the example in
Two girders, each having a filler plate 20 fixed within the channel 15 and a splice plate fixed at the end faces 12, can be joined by connecting their respective splice plates. When joined together, the obtuse angle at the bottom ends 2 imposes an angle between two girders, as shown, by way of example, in
Camber is a deviation from the straightness of an edge. Camber in a girder is the amount of deviation or bend along the length of a girder. Typically, camber is expressed as inches per feet. When two straight girders are joined, according to the subject invention, camber can be a measure of the deviation or bend between the two girders. In one embodiment, the camber between two 40 ft. girders 10 is between approximately 0.5 inch and 2.0 inches. In a further embodiment, the camber between two 40 ft. girders 10 is between approximately 0.75 inch and approximately 1.5 inches. In a specific embodiment, the camber between two 40 ft. girders 10 is approximately 1.0 inch.
In a further embodiment, the end faces 12 of the girders and the filler plate 20 located between the bottom flanges 14 are directed attached, such as by welding, to a splice plate. Advantageously, this allows the splice plate to compensate for fabrication tolerances in the folded girders. It can be beneficial if the bottom flanges of the girders are aligned with each other, so that tension forces along the longitudinal length of connected girders are directly and uniformly distributed. Any offset at the top end can be compensated for by the concrete deck 80 placed over the top end around shear studs (head studs) 85, as shown, for example, in
With reference to
Folded plate girders are commonly used for bridge spans. Their use is often limited to short span bridges because manufacturing constraints to not allow the incorporation of camber along the length of the girder. The embodiments of the subject invention provide a modification to folded plate girders that allow them to be used on longer bridge spans. By angling the ends of the girders and the addition of a splice plate at the ends of a girder for attaching girders, camber can be formed between girders. The further incorporation of a filler plate between the bottom flanges can aid in reducing areas of stress around the splice plate, which allows a larger span of attached girders. With the subject invention, folded plate girders can be used on larger bridge spans.
All patents, patent applications, provisional applications, and other publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification. Additionally, the entire contents of the references cited within the references cited herein are also entirely incorporated by reference.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” “further embodiment,” “alternative embodiment,” etc., is for literary convenience. The implication is that any particular feature, structure, or characteristic described in connection with such an embodiment is included in at least one embodiment of the invention. The appearance of such phrases in various places in the specification does not necessarily refer to the same embodiment. In addition, any elements or limitations of any invention or embodiment thereof disclosed herein can be combined with any and/or all other elements or limitations (individually or in any combination) or any other invention or embodiment thereof disclosed herein, and all such combinations are contemplated with the scope of the invention without limitation thereto.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/419,132, filed Nov. 8, 2016, the disclosure of which is hereby incorporated by reference in its entirety, including all figures, tables and drawings.
This invention was made with government support under DTRT13-G-UTC41 awarded by U.S. Department of Transportation. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
1639930 | Louis | Aug 1927 | A |
2336622 | Le Tourneau | Dec 1943 | A |
2854742 | Guild | Oct 1958 | A |
2894527 | Riley | Jul 1959 | A |
4080681 | Olrik | Mar 1978 | A |
7069614 | Sivachenko | Jul 2006 | B1 |
7367075 | Kim | May 2008 | B2 |
7627921 | Azizinamini | Dec 2009 | B2 |
8752225 | Meheen | Jun 2014 | B2 |
Number | Date | Country | |
---|---|---|---|
62419132 | Nov 2016 | US |