Folded zoom camera module with adaptive aperture

Information

  • Patent Grant
  • 11860515
  • Patent Number
    11,860,515
  • Date Filed
    Monday, April 17, 2023
    a year ago
  • Date Issued
    Tuesday, January 2, 2024
    10 months ago
Abstract
Systems comprising a folded camera that includes a lens module with a native aperture, the lens module having a height HM, an adaptive aperture located between the native aperture and an optical path folding element, and an adaptive aperture forming mechanism for forming the adaptive aperture, wherein the adaptive aperture forming mechanism has a height HAA not larger than HM, and methods of using same. In various embodiments, the adaptive aperture forming mechanism includes an actuator and at least one pair of blades operative to be moved by the actuator to a plurality of positions to form the adaptive aperture.
Description
FIELD

Embodiments disclosed herein relate in general to digital cameras, and in particular to thin folded zoom camera modules.


BACKGROUND

Personal computing and/or communication devices (such as smartphones), also referred to as “mobile electronic devices” often have dual-aperture zoom cameras on their back side, in which one camera (“Wide camera”) has a “Wide” field of view (FOVW) and the other camera (“Tele camera”) has a narrow or “Tele” field of view (FOVT).



FIG. 1 shows a known art optical lens module numbered 100 of a folded Tele camera with a cut lens design, disclosed for example in commonly owned PCT patent application PCT/IB2018/050988. Optical lens module 100 comprises a plurality of lens elements 104, at least some located in a lens barrel 102. Sides 106 in the front view on the lens elements 104 are substantially straight lines along axis X, where the sides 108 are curved. The design shown here that satisfies the condition HL<WL is referred to as “cut lens” design, HL being the height of the lens element and WL being the width of the lens element. Typically, cut lens ratios WL/HL are in the range of 1.1 to 2. Preferably, cut lens ratios WL/HL are 1.1 to 1.5.



FIG. 2A shows in perspective a known folded Tele camera 200. Camera 200 comprises an optical path folding element (OPFE) 202 included in an OPFE housing 204, an optical Tele lens 30 module 206 carrying a lens 208, and a Tele image sensor 210. For simplicity, in the following description, the term “Tele” is removed sometimes, leaving e.g. “optical lens module” or just “lens module” and “image sensor” or just “sensor”. Optical lens module 206, shown also separately in FIG. 2B, has a “native” (non-adaptive) Tele aperture 212, surrounded by an optical lens module housing 214. As used herein, the term “native aperture” refers to the size and geometry of the aperture of the lens module in the case where there is/are no additional element(s) that act(s) intentionally or unintentionally as aperture, i.e. there is/are no additional element(s) that block(s) light which would have reached the sensor in case of the absence of the element(s). With a cut lens design as in FIG. 1, a low module height HM can be achieved simultaneously with a large native Tele aperture.


Known folded Tele cameras (also referred to herein as “native” folded Tele cameras) for electronics mobile devices (e.g. smartphones) may have a focal length of e.g. 10 mm-30 mm, and at the same time are able to keep low module height and an aperture as large as possible, beneficial e.g. for imaging in low-light conditions and with high optical resolution. An exemplary aperture diameter may be 6 mm. In folded Tele cameras with a cut Tele lens, the aperture size may range, for example, from 3 mm to 8 mm in width, and more preferably from 6 mm to 7 mm in width.


A folded Tele camera with such a long focal length and with a relatively large aperture may result in an image with a very shallow depth of field (DOF). This may be desired for the purpose of creating optical Bokeh, but may cause a problem in scenes with objects that are spread over a certain range of distances from the cameras, for which it is required to keep all in focus. For example, a folded Tele camera with 30 mm effective focal length (EFL) and a f-number (“f/#”) of f/4 (“camera 1”), focusing on an object that is 3 m away, will have an object-side DOF of about 10 cm (assuming a 2 μm circle of confusion). In folded Tele cameras, typical f-numbers are in the range f/1.5 to f/5.


Slight misalignment in the position of the lens may cause significant defocus to the object intended to be in focus.


There is therefore a need for, and it would be beneficial to expand the capabilities of folded Tele cameras to control (i) the amount of light reaching the Tele sensor and (ii) the DOF of the Tele image by adapting the camera's f-number.


SUMMARY

Embodiments disclosed herein teach folded Tele cameras with adaptive apertures that (i) adapt the Tele aperture according to scene conditions, and (ii) still support the condition of low folded camera module height (no additional height penalty for the camera module due to the adaptive aperture). Such systems comprise a dedicated, adaptive, controllable aperture (henceforth, “adaptive Tele aperture” or simply “adaptive aperture” or “AA”) that can be added to the folded Tele camera. Such systems may be used with lenses with cut lens designs or with lenses without cut lens designs.


In various embodiments, an adaptive aperture disclosed herein is formed by a linearly sliding diaphragm using a single pair of linearly sliding blades or a plurality of overlapping linearly sliding blades to provide an aperture of a desired size. The terms “adaptive aperture” and “diaphragm” reflect the same entity.


In various embodiments there are provided systems comprising a folded camera that includes a lens module with a native aperture, the lens module having a height HM, an adaptive aperture located between the native aperture and an optical path folding element, and an adaptive aperture forming mechanism for forming the adaptive aperture, wherein the AA forming mechanism has a height HAA not larger than HM.


In various embodiments, the AA forming mechanism includes an actuator and at least one pair of blades.


In some embodiments, the actuator is operative to move the at least one pair of blades linearly to a given position to form the adaptive aperture.


In some embodiments, the at least one pair of blades includes a plurality of pair of blades, each pair of the plurality operative to be moved to different positions.


In some embodiments, the lens module includes a folded Tele lens with a cut lens design.


In some embodiments, the folded camera is a scanning folded Tele camera. In some embodiments, the scanning folded Tele camera captures a plurality of images of a scene with different fields of view. In some embodiments, the processor is configured to control the adaptive aperture so that the plurality of images have similar depth of field. In some embodiments, the processor is configured to stitch the plurality of images to one or more images having a larger field of view than any single image.


In some embodiments, the adaptive aperture does not limit the native aperture.


In some embodiments, the adaptive aperture is round in a closed position.


In some embodiments, the adaptive aperture is rectangular in a closed position.


In some embodiments, the adaptive aperture is square in a closed position.


In various embodiments, a system further comprises a processor configured for controlling the AA forming mechanism. In some embodiments, the controlling is based on the lightning conditions of a scene. In some embodiments, the processor is configured to control the adaptive aperture so that an image captured with the folded camera has a depth of field similar to a depth of field of an image simultaneously captured with a second camera. In some embodiments, the processor is configured to control the adaptive aperture so that each image captured in a focus stack with the folded camera has a depth of field similar to a depth of field of all other images captured in the focus stack.


In some embodiments, the folded camera is operational to capture objects at object-image distances of less than 50 cm, of less than 25 cm, or of less than 15 cm.


In some embodiments, the folded camera includes a sensor for detecting the lightning conditions. In some embodiments, the lightning conditions are detected with a sensor of a second camera. In some embodiments, the lightning conditions are detected using an illumination estimation.


In some embodiments, the processor is configured to control the AA forming mechanism based on scene depth. The scene depth may be detected with a sensor of the folded camera or with a sensor of a second camera. In some embodiments, the second camera may be a Time-of-Flight camera.


In some embodiments, the processor is configured to calculate the scene depth from stereo camera data provided by the folded Tele camera and by a second camera, from stereo camera data provided by a second camera and by a third camera, by depth from motion estimation, wherein the depth from motion estimation uses image data provided by the folded camera or by a second camera, or from a plurality of images captured under different adaptive aperture settings.


In some embodiments, the folded camera is a Tele camera and the processor is configured to calculate the scene depth from phase detection autofocus data of the folded Tele camera or from phase detection autofocus data of a second camera.


In some embodiments, the processor is configured to retrieve the scene depth information from an application programming interface.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein and should not be considered limiting in any way. Like elements in different drawings may be indicated by like numerals. Elements in the drawings are not necessarily drawn to scale. In the drawings:



FIG. 1 shows a schematic view on a known optical lens module of a folded Tele camera with a cut lens design;



FIG. 2A shows in perspective a known folded Tele camera with an optical lens module with a native, non-adaptive aperture;



FIG. 2B shows in more detail the optical lens module with the native aperture of the folded camera in FIG. 2A;



FIG. 3A shows in perspective an embodiment of a folded Tele camera with an optical lens module having an AA disclosed herein;



FIG. 3B shows the optical lens module and the AA of FIG. 3A, with the AA in an open state;



FIG. 3C shows the optical lens module and the AA of FIG. 3B in front view;



FIG. 3D shows in perspective the optical lens module and the AA of FIG. 3A, with the AA in a first closed state;



FIG. 3E shows the optical lens module and the AA of FIG. 3D in front view;



FIG. 3F shows in perspective the optical lens module and the AA of FIG. 3A, with the AA in a second closed state;



FIG. 3G shows the optical lens module and the AA of FIG. 3F in front view;



FIG. 3H shows in perspective the optical lens module and the AA of FIG. 3A, with the AA in a third closed state;



FIG. 3I shows the optical lens module and the AA of FIG. 3H in front view;



FIG. 3J shows another embodiment of a folded Tele camera with an optical lens module having an AA disclosed herein;



FIG. 3K shows the optical lens module and the AA of FIG. 3J in front view;



FIG. 4A shows another embodiment of an adaptive aperture disclosed herein in front view in an open state;



FIG. 4B shows the embodiment of FIG. 4A in a perspective view;



FIG. 4C shows the AA of FIG. 4A in first closed state;



FIG. 4D shows the AA of FIG. 4A in second closed state;



FIG. 4E shows the AA of FIG. 4A in third closed state;



FIG. 5A shows in perspective yet another embodiment of an embodiment of a folded Tele camera with an optical lens module having an adaptive aperture disclosed herein, with the AA in an open state;



FIG. 5B shows in perspective the optical lens module and the AA of FIG. 5A, with the AA in a first closed state;



FIG. 5C shows in perspective the optical lens module and the AA of FIG. 5A, with the AA in a second closed state;



FIG. 5D shows in perspective the optical lens module and the AA of FIG. 5A, with the AA in a third closed state;



FIG. 6A shows a perspective view and a front view of yet another embodiment of an optical lens module with an adaptive aperture disclosed herein, with the AA in an open state;



FIG. 6B shows the optical lens module with an adaptive aperture of FIG. 6A with the AA in a first closed state;



FIG. 6C shows the optical lens module with an adaptive aperture of FIG. 6A in a second closed state;



FIG. 6D shows a perspective view and a front view of yet another embodiment of an optical lens module with an adaptive aperture disclosed herein, with the AA in an open state;



FIG. 6E shows the optical lens module with an adaptive aperture of FIG. 6D, with the AA in a first closed state;



FIG. 6F shows a cross-sectional view on the embodiment shown in FIG. 6D and FIG. 6E;



FIG. 7 shows schematically in a block diagram an embodiment of a system disclosed herein;



FIG. 8 shows schematically in a flow chart an embodiment of a method disclosed herein.





DETAILED DESCRIPTION


FIG. 3A shows in perspective an embodiment of a folded Tele camera with an optical lens module having an adaptive aperture (AA) disclosed herein and numbered 300. Camera 300 may include some elements similar to elements in camera 200, for example an OPFE, an optical lens module and an image sensor, which are therefore numbered with same numerals as in FIG. 2A. In contrast with camera 200 and in addition, camera 300 comprises an AA 302 located between OPFE 204 and optical lens module 206 and an adaptive aperture forming mechanism (“AA forming mechanism” or simply “AA mechanism”) 310. In some embodiments, AA 302 is positioned close to native aperture 212 (i.e. external and close to a front panel 216 of an optical module housing 214), for example at a distance close enough to prevent stray light from entering the lens module. In some embodiments, the AA may be a part of (integral with) the lens module. In some embodiments, the AA may be attached physically to the lens module.


Adaptive apertures and AA mechanisms like 310 are characterized in that: a) when fully open, the AA does not limit the native aperture, and b) AA mechanism 310 does not increase a total folded Tele camera module height HM (shown in the Y direction).



FIG. 3B shows a perspective view of AA 302 and optical lens module 206 in an open state or position, where AA 302 corresponds to native aperture 212. FIG. 3C shows the same in a front view. AA mechanism 310 comprises six blades 304a, 304b, 306a, 306b, 308a and 308b, divided into left hand blades (304a, 306a and 308a) and right hand (304b, 306b and 308b) blades, and one or more actuators (se e.g. 714 in FIG. 7) and position sensors (not shown). The blades can slide inside respective sliding rails, (recesses) e.g. in a linear movement. Thus, blade 308a can slide in rails 312a and blade 308b can slide in rails 312b, blade 306a can slide in rails 314a and blade 306b can slide in rails 314b, blade 304a can slide in rails 316a and blade 304b can slide in rails 316b. The blades may be part of an actuator (not shown here). A pair of blades can be referred to by a single number. That is, blades 304a and 304b can be referred to as “blades 304”, blades 306a and 306b can be referred to as “blades 306” and blades 308a and 308b can be referred to as “blades 308”. A height of AA mechanism 310 HAA does not exceed a total folded Tele camera module height HM.


Mechanism 310 supports opening the AA to a size that is larger than the size of native lens aperture 212, so that, when it is open widely, AA mechanism 310 does not block light that would have otherwise (had the AA mechanism not been included in the Tele camera) reached native lens aperture 212. This property allows to set the adaptive aperture 302 to a large size in order to fully utilize the native Tele lens aperture size, in case it is important to collect as much light as possible, or in case a very shallow DOF is desired. Blades 304, 306, 308 have each an open state and a closed state. Blades 304 have to be closed in order to effectively close blades 306, and blades 306 have to be closed in order to effectively close blades 308, i.e. the overlapping of the blades underlies the functionality of AA mechanism 310.



FIG. 3D shows a more detailed perspective view of adaptive aperture 302 and optical lens module 206 of camera 300 in a first closed state, different from the one in FIGS. 3A and 3B. FIG. 3E shows the same in a front view. In these figures, blades 304a and 304b are closed while other blades, such as blades 306 and 308 are open. The folded Tele lens has an adaptive Tele aperture 302 that is rotationally symmetric. The folded Tele lens with adaptive aperture 302 and with blades 304 closed is smaller than the native Tele lens aperture 212, corresponding to a lower amount of light reaching the sensor and a deeper DOF than in the case of native Tele lens aperture 212. In an example, a stroke of the linear movement of each of the blades 304a and 304b for forming a first closed state may be in the range of 0.1 mm to 2 mm.



FIG. 3F shows optical lens module 206 in a second closed state, with blades 306a and 306b (as well as 304a and 304b) closed. FIG. 3G shows the same in a front view. Here, the size of AA 302 is smaller than in the case of FIG. 3D, and AA is rotationally symmetric. In an example, a stroke of the linear movement of each of the blades 306a and 306b for forming a second closed state may be in the range of 0.3 mm to 2.5 mm.



FIG. 3H shows optical lens module 206 in a third closed state with blades 308a and 308b (as well as 304a, 304b, 306a and 30b) closed. FIG. 3I shows the same in a front view. Here, the size of AA is even smaller than in the case of FIG. 3F, and AA is rotationally symmetric. The case shown in FIGS. 3H and 3I (with three blades of varying size), provides the lowest amount of light and the deepest DOF that can be adapted by this design. In an example, a stroke of the linear movement of each of the blades 308a and 308b for forming a third closed state may be in the range of 0.5 mm to 4 mm.



FIG. 3J shows in perspective view another embodiment of an optical lens module 206 with an AA mechanism 310′. FIG. 3K shows the same in a front view. AA mechanism 310′ comprises six blades 304a, 304b, 306a, 306b, 308a and 308b, divided into left hand blades (304a, 306a and 308a) and right hand (304b, 306b and 308b) blades, and one or more actuators (se e.g. 714 in FIG. 7) and position sensors (not shown). The functionality is identical to what is shown in FIG. 3B to FIG. 3I. For the sake of illustration, the blades are in an intermediate state, which is not desired for photography. Here AA mechanism 310 supports the formation of the adaptive aperture such that: 1) when fully open, the adaptive aperture does not limit the native aperture, 2) the adaptive aperture does not increase a total folded Tele camera module height HM, and 3) a width of AA mechanism 310 WAA does not increase a total folded Tele camera module width WM, i.e. WAA≤WM.


The design shown in FIGS. 3A-3H allows for four different, discrete adaptive aperture sizes formed by overlapping blades.



FIG. 4A shows in front view of another embodiment of an adaptive aperture numbered 402 together with optical lens module 206 in an open state. FIG. 4B shows the embodiment of FIG. 4A in a perspective view, showing also image sensor 210. “Open state” means here that the adaptive aperture 402 has the same size as the native aperture 212. An adaptive aperture forming mechanism 410 comprises only one blade pair 404a and 404b designed to form a semi-elliptic shape that corresponds to the non-symmetrical width and height of the native Tele lens aperture, as well an actuator (see FIG. 7). Blades 404a and 404b move linearly inside, respectively, rails 414a and 414b. In this embodiment, the rails are external to front panel 216 of optical module housing 214. FIG. 4C shows the embodiment of FIG. 4A and FIG. 4B with blades 404a and 404b partly closed in a first closed position. In this embodiment, the adaptive Tele aperture is non-rotationally symmetric. The semi-elliptic shape of the resulting aperture is retained when the adaptive aperture is in a different “closed” position but not fully closed as in FIG. 4D, as long as the adaptive Tele aperture width is larger than the native Tele lens aperture height.



FIG. 4D shows the embodiment of FIG. 4A and FIG. 4B with blades 404a and 404b in a second closed position more closed that the first closed position. The blades close in a way that forms a rotationally symmetric, round aperture shape.



FIG. 4E shows the embodiment of FIG. 4A and FIG. 4B with blades 404a and 404b in a third closed position more closed that the second closed position. In this embodiment, a folded Tele camera with a faceted folded Tele lens has an adaptive Tele aperture that is non-rotationally symmetric.


The design shown in FIGS. 4A-4E allows for continuously controlling the adaptive aperture size by linear actuation of the blades. In an example, a stroke of the linear actuation of each of the blades 404a and 404b to form adaptive apertures as shown here may be more than 0.1 mm and less than 4 mm.



FIG. 5A shows a perspective view of yet another embodiment numbered of an optical lens module with cut lens design with an adaptive aperture 502 in open state or position. Image sensor 210 is also shown. Here, an AA forming mechanism 510 comprises (like AA 302) six blades 504a,b, 506a,b and 508a,b, divided into left (a) and right (b) blades and one or more actuators (se e.g. 714 in FIG. 7) and position sensors (not shown).



FIG. 5B shows the embodiment of FIG. 5A in a first closed state, with blades 504a and 504b closed. In this embodiment, adaptive Tele aperture 502 is rectangular. The folded Tele lens has a smaller aperture than native Tele lens aperture 212, corresponding to a lower amount of light reaching the sensor and a deeper DOF than in case of native Tele lens aperture 212. In an example, a stroke of the linear movement of the blades 504a and 504b for forming a first closed state may be in the range of 0.1 mm to 2 mm.



FIG. 5C shows adaptive aperture 502 with blades 506a and 506b in a second closed state, closed. In this case, the folded Tele lens has a smaller aperture than in the case of FIG. 5B.



FIG. 5D shows the embodiment of FIG. 5A with blades in a third closed state, 508a and 508b closed. As above, aperture 502 is rectangular and the adaptive aperture is smaller than in the case of FIG. 5C. For the embodiment shown here (with three blades of varying size), this is the lowest amount of light and the deepest depth of field that can be adapted. In an example, a stroke of the linear movement of the blades 508a and 508b for forming a third closed state may be in the range of 0.5 mm to 4 mm.


In another embodiment, the rectangular shape may form a square aperture (not shown), i.e. an aperture with identical height and width.


The design shown in FIG. 5A-FIG. 5D allows for four different, discrete adaptive aperture sizes formed by overlapping blades.



FIG. 6A shows a perspective view and a front view of yet another embodiment of an optical lens module 206 with cut lens design with an adaptive aperture 602. Image sensor 210 is also shown. An AA forming mechanism 610 comprises only one pair of blades 604a and 604b, which in FIG. 6A are in open position. An actuator (not shown) can move the blade pair 604a and 604b in a continuous manner, so that the AA mechanism supports opening and closing the adaptive Tele aperture with the properties that: 1) when fully open, adaptive Tele aperture 602 corresponds to native Tele lens aperture 212, and 2) AA mechanism 610 does not increase the total folded Tele camera module height.



FIG. 6B shows the embodiment of FIG. 6A with blades 604a and 604b in a first closed position more closed than in FIG. 6A. In this embodiment, the adaptive Tele aperture has a rectangular shape. FIG. 6C shows the embodiment of FIG. 6A with blades 604a and 604b in a second closed position more closed that the first closed position. The design shown in FIG. 6A-FIG. 6C allows for continuously controlling the AA size. In an example, a stroke of the linear actuation of blades 604a and 604b to form AAs as shown here may be less than 4 mm.



FIG. 6D shows a perspective view and a front view of yet another embodiment of an optical lens module with cut lens design with an adaptive aperture 602. Image sensor 210 is also shown. An AA forming mechanism 610′ comprises one pair of blades 604a and 604b, both in open position. FIG. 6E shows the embodiment of FIG. 6D with blades 604a and 604b in a first closed position. FIG. 6F shows a cross-sectional view on the embodiment shown in FIG. 6D and FIG. 6E. An actuator (not shown) can move blade pair 604a and 604b linearly and in a continuous manner inside rails 614a and 614b. AA mechanism 610′ supports opening and closing of the AA with the properties that: 1) when fully open, adaptive Tele aperture 602 corresponds to the native Tele lens aperture 212; 2) AA mechanism 610′ does not increase the total folded Tele camera module height, HM; and 3) a width WAA of AA mechanism 310 does not increase a total folded Tele camera module width WM, i.e. WAA≤WM.



FIG. 7 shows schematically in a block diagram an embodiment of a system disclosed herein and numbered 750. System 750 comprises a folded Tele camera 700 with an image sensor 702, a lens module 704, an adaptive aperture 706 and an OPFE 708. An AA forming mechanism 710 comprises AA blades 712 (as shown e.g. in FIGS. 3-6) and one or more AA actuators 714. The AA actuator(s) is/are mechanically coupled to the AA blades and may be realized by deploying actuator technologies such as voice coil motor (VCM), stepper motor, or shaped memory alloy (SMA) actuator technologies. Position sensors (e.g. Hall sensors, not shown in FIG. 7) may be part of the actuator. A human machine interface (HMI) 716 allows a human user to choose specific AA settings, which are passed as specific control commands to AA mechanism 710. In an embodiment, the human user may choose a specific imaging mode out of some possible imaging modes which are saved in a processing unit or “processor” 718 (e.g. a CPU or an application processor). In this case, processing unit 718 receives the human user input, optionally determines some optimized settings based on the human user input, and passes this information as specific control commands to AA mechanism 710. In another embodiment, processor 718 may determine optimized adaptive aperture settings e.g. based on the available scene information, on object detection algorithms, or on typical human user behavior, and pass this information as specific control commands to AA mechanism 710.


System 750 may be included in an electronic mobile device (not shown) such as a smartphone. The Tele camera may be included with one or more additional cameras in a multi-camera. The additional camera(s) may be a Wide camera having a diagonal FOV of e.g. 50-100 degree and/or an Ultra-Wide camera having a diagonal FOV of e.g. 70-140 degree and/or a Time-of-Flight (ToF) camera. To clarify, a multi-camera may include any combination of two or more cameras where one camera is the Tele camera. In some embodiments, one or more of the cameras may be capable to capture image data that can be used to estimate a depth of scene or “scene depth”. Scene depth refers to the respective object-lens distance (or “focus distance”) between the objects within a scene and system 750. The scene depth may be represented by a RGB-D map, i.e. by a data array that assigns a particular depth value to each RGB pixel (or to each group of RGB pixels). In general, the pixel resolution of a RGB image is higher than the resolution of a depth map.


Image data used for estimating scene depth may be for example:

    • Phase detection auto focus (PDAF) data, e.g. from the Tele camera or from an additional camera;
    • Stereo image data, e.g. from the Tele camera and from an additional camera;
    • Focus stacking visual image data;
    • Focus stacking PDAF data;
    • Visual image data from the Tele camera and/or from an additional camera (for estimating depth from defocus);
    • Visual image data from the Tele camera and/or from an additional camera (for estimating depth from motion);
    • Depth data from a ToF camera.


In some embodiments, scene depth may be provided by an application programming interface (“API”), e.g. Google's “Depth API”. Knowledge on a scene depth may be desired as of the quadratic dependence of the DOF from the focus distance, i.e. from the depth of the object in focus.



FIG. 8 presents a flow chart illustrating steps of a method performed in a folded Tele camera with adaptive aperture disclosed herein.


In a scene sensing step 802 the camera's image sensors are used to detect the conditions and properties of a scene (e.g. lightning conditions, scene depth, visual content, etc.), which is done in pre-capture or preview mode. In some embodiments, additional sensor data (e.g. of ToF sensors, temperature sensors, humidity sensors, radar sensors etc.), e.g. of sensors present in the camera hosting device, may be read-out in the scene sensing step 802. Data generated in step 802 is fed into a processor (e.g. CPU, application processor) where a scene evaluation step 804 is executed. In step 804, the data is evaluated with the goal of determining ideal settings for the adaptive aperture, given the input of the human user or a dedicated algorithm. The term “ideal settings” refers here to settings that provide a maximum degree of user experience, e.g. a high image quality, or a high uniformity along stitching borders of panorama images. In case that the camera is operated in a mode highly reliant on automated image capturing, other steps may be performed besides sensor data evaluation. In some examples, ROIs and OOIs may be detected and automatically selected as focus targets by an algorithm in scene evaluation step 804. The ideal settings from step 804 are fed into an AA mechanism such as 710. The AA is set up according to these settings in an aperture adjustment step 806. The scene is then captured in a scene capture step 808. Steps 802 to 806 ensure improved user experience.


In an example, processor 718 calculates control commands concerning the size of the adaptive Tele aperture based on Wide camera image information and/or Tele camera image information, while one or both cameras operate in preview and/or video recording mode. In another example, AA mechanism 710 receives, from the user or from an automated detection method, a desired ROI or OOI, for example where Wide and Tele cameras are focused on, or intend to focus on. The processor 718 detects OOIs or ROIs (for example faces of persons) in a Wide camera image (or alternatively, receives information about OOIs or ROIs detected by another module) by means of dedicated algorithms, and estimates the relative or absolute distance between the objects, for example, by comparing the size of faces or properties of landmarks in each face. The processor then calculates the desired aperture size to keep at least part of said objects of interest in focus, and submits these ideal aperture settings to AA mechanism 710, which configures the adaptive Tele aperture to this aperture size.


In another example, control software running on processor 718 calculates a depth map of part of the scene (or alternatively, receives such a depth map calculated by another module), for example, based on stereo information between a Wide camera image and a Tele camera image, or based on information from phase detection autofocus (PDAF) pixels in the Wide camera sensor, or based on a ToF camera. A dedicated algorithm running on processor 718 determines the required range of distances to be in focus from the depth map, and calculates the desired aperture size to keep at least some of the OOIs in focus. The information is transmitted to AA mechanism 710, which configures the adaptive Tele aperture to this aperture size.


In yet another example, the software may take into account the light levels in the scene, by analyzing the Wide camera image and the Tele camera image (for example, by calculating a histogram of intensity levels), or by receiving an estimation for the illumination in the scene (for example, LUX estimation, or the Wide sensor and/or Tele sensor analog gain) and calculates the ideal adaptive Tele aperture size based on the illumination estimation.


In yet another example, the software may receive indications from the user (for example, by switching the camera between different imaging modes, e.g. to a dedicated portrait-mode or stitching mode, or by changing some parameter in the camera application) regarding the required DOF and aperture configuration, and may take this information into account to calculate ideal settings for the adaptive Tele aperture size to fulfill these requirements.


In yet another example with the folded Tele camera being a scanning folded camera with an adjustable FOV, when operating the camera in a scanning mode, i.e. capturing Tele camera images having different FOVs and stitching the Tele camera images together to create an image with a larger FOV (as e.g. for a high resolution panoramic image), for example as described in U.S. provisional patent application 63/026,097, software running on processor 718 determines the ideal adaptive Tele aperture size before scanning starts and updates this value throughout the scanning and capturing of the images to be stitched. This may be desired e.g. for achieving a similar DOF for all captured Tele images or to achieve similar lightning for all captured Tele images.


In yet another example, when operating the camera in a scanning mode and stitching the Tele camera images together to create an image with a larger FOV, for example as described in PCT/IB2018/050988, software running on processor 718 determines the ideal AA in a way such that single Tele images captured with this AA have very similar optical Bokeh, leading to a stitched image with larger FOV and very uniform appearance in terms of Bokeh, including along single Tele image borders.


In yet another example, for supplying an image with Wide camera FOV and Tele camera resolution for specific ROIs or OOIs, the ROIs and OOIs are captured by the Tele camera and these Tele images are stitched into the Wide camera image with large FOV. To supply a natural or seamless transition between the two images, software running on processor 718 determines the ideal AA size so that the optical Bokeh of the Tele image to be stitched is very similar to the optical Bokeh of the Wide image.


In yet another example, the adaptive Tele aperture is modified by AA mechanism 710 between two consecutive Tele image captures, (or between two Tele camera preview frames) to obtain two frames of largely the same scene with different depths of field and to estimate depth from the two images, for example by identifying features in one of these images that correspond to features in the other image, comparing the contrast in the local area of the image and based on this, calculating relative depth for the image region. Relevant methods are discussed in “Elder, J. and Zucker, S. 1998. Local scale control for edge detection and blur estimation” and “Depth Estimation from Blur Estimation, Tim Zaman, 2012”.


In yet another example, a software running on processor 718 may calculate the ideal AA settings from the distance between the camera and the object that the camera is focused on. For example, Hall sensors provide the information on the focus position. As DOF has a quadratic dependence on the focus distance, and in order to supply sufficient DOF in the image to be captured, the control software may assign smaller AA setting to closer objects and larger AA setting to objects farther away.


In yet another example, the camera may be operated in the native aperture state for high quality Tele images in low light conditions. To achieve the DOF necessary for achieving a crisp appearance of a specific ROI or OOI, an image series may be taken, whereas the focus scans the necessary DOF range and captures an image at each one of the different scan states, a technique known in the art as “focus stacking” to create a “focus stack”. In a second (computational) step, the output image may be assembled by stitching the crisp segments of the ROI or OOI from the series of images in a way so that the entire ROI or OOI appears crisp. In some examples, focus stacking may be also used for estimating scene depth.


In conclusion, adaptive apertures and methods of use described herein expand the capabilities of folded Tele cameras to control the amount of light reaching the Tele sensor and the DOF of the Tele image by adapting the camera's f-number. In particular, they provide solutions to problems of very shallow DOF, particularly in more severe cases, for example:

    • a) when using a scanning camera with a relatively long focal length (for example, the scanning camera in PCT/IB2016/057366);
    • b) when using a plurality of images captured by a scanning camera such as described in co-owned U.S. provisional patent application No. 63/026,097. For example, using camera with specifications of “camera 1” above for scanning and capturing a scene in the X and Y directions and stitching 9 images together may result in a FOV equivalent to that of a camera with 10 mm EFL. This mix of a larger FOV with a very shallow DOF may result in a non-natural user experience (i.e. user experience that is very different from that of using a single shot of a wide camera)—objects at different distances from the camera will appear blurry over the stitched, larger FOV;
    • c) when using a Tele camera having an EFL>10 mm and with-capability to focus to close objects (“Macro objects”), it may be desired to adapt the f/#, e.g. for achieving a higher DOF so that a larger part of a Macro object is at focus. Lens designs for such a Macro Tele camera are described in co-owned U.S. provisional patent application No. 63/070,501. Methods relating to such a Macro Tele camera are described in co-owned U.S. provisional patent application No. 63/032,576; and
    • d) when solving focus miss that arises from the very shallow DOF associated with a long focal length folded Tele lens: when the autofocus engine moves the folded Tele lens for focus, a small mismatch in the position of the lens (for example, due to an error in the position sensing mechanism in a closed-loop autofocus actuator of the folded Tele lens) may result in focus miss—i.e. the important object in the scene will not be in-focus.


While the description above refers in detail to adaptive apertures for folded Tele lenses with a cut lens design, it is to be understood that the various embodiments of adaptive apertures and AA mechanisms therefor disclosed herein are not limited to cut lens designs. Adaptive apertures and AA mechanisms therefor disclosed herein may work with, and be applied to, non-cut lens designs (i.e. lenses without a cut).


Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.


It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that elements.


All patents, patent applications and publications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual patent, patent application or publication was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present disclosure.

Claims
  • 1. A method, comprising: providing a folded camera that includes a lens module with a height HM and comprising a native aperture, an adaptive aperture (AA) located between the native aperture and an optical path folding element, and an AA forming mechanism, wherein the AA forming mechanism includes at least two pairs of blades and has a height HAA not larger than HM;sensing a scene to be captured with the folded camera;evaluating the sensed scene to determine ideal AA settings;adjusting the adaptive aperture according to the ideal AA settings; andcapturing an image of the scene with the adjusted adaptive aperture.
  • 2. The method of claim 1, wherein the AA forming mechanism includes an actuator.
  • 3. The method of claim 2, further comprising using the actuator to move the at least two pairs of blades linearly to form the adaptive aperture at a given position.
  • 4. The method of claim 3, wherein the at least two pairs of blades includes a plurality of pairs of blades, and wherein each pair of the plurality of pairs of blades is operative to form the adaptive aperture at a different given position.
  • 5. The method of claim 1, wherein the lens module includes a folded Tele lens with a cut lens design.
  • 6. The method of claim 1, wherein the folded camera is a scanning folded Tele camera.
  • 7. The method of claim 1, further comprising including the folded camera in a mobile device that also includes a processor, and configuring the processor to control the adaptive aperture such that each image captured in a focus stack with the folded camera has a depth of field similar to a depth of field of all other images captured in the focus stack.
  • 8. The method of claim 1, further comprising including the folded camera in a mobile device that also includes a processor, and configuring the processor to control the AA forming mechanism based on a scene depth.
  • 9. The method of claim 1, further comprising including the folded camera in a mobile device that also includes a processor and a sensor for detecting a depth of the scene.
  • 10. The method of claim 1, further comprising including the folded camera in a mobile device.
  • 11. The method of claim 10, wherein the mobile device is a smartphone.
  • 12. The method of claim 10, wherein the mobile device is a tablet.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation from U.S. patent application Ser. No. 17/104,744, filed Nov. 25, 2020 (now allowed), which claims priority from U.S. Provisional Patent Application No. 62/939,943 filed Nov. 25, 2019, which is incorporated herein by reference in its entirety.

US Referenced Citations (221)
Number Name Date Kind
2106752 Land Feb 1938 A
2354503 Arthur Jul 1944 A
2378170 Aklin Jun 1945 A
2441093 Aklin May 1948 A
3388956 Eggert et al. Jun 1968 A
3524700 Eggert et al. Aug 1970 A
3558218 Grey Jan 1971 A
3864027 Harada Feb 1975 A
3942876 Betensky Mar 1976 A
4134645 Sugiyama et al. Jan 1979 A
4338001 Matsui Jul 1982 A
4465345 Yazawa Aug 1984 A
4792822 Akiyama et al. Dec 1988 A
5000551 Shibayama Mar 1991 A
5327291 Baker et al. Jul 1994 A
5331465 Miyano Jul 1994 A
5969869 Hirai et al. Oct 1999 A
6014266 Obama et al. Jan 2000 A
6035136 Hayashi et al. Mar 2000 A
6147702 Smith Nov 2000 A
6169636 Kreitzer Jan 2001 B1
6654180 Ori Nov 2003 B2
7187504 Horiuchi Mar 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7515351 Chen et al. Apr 2009 B2
7564635 Tang Jul 2009 B1
7643225 Tsai Jan 2010 B1
7660049 Tang Feb 2010 B2
7684128 Tang Mar 2010 B2
7688523 Sano Mar 2010 B2
7692877 Tang et al. Apr 2010 B2
7697220 Iyama Apr 2010 B2
7738186 Chen et al. Jun 2010 B2
7777972 Chen et al. Aug 2010 B1
7813057 Lin Oct 2010 B2
7821724 Tang et al. Oct 2010 B2
7826149 Tang et al. Nov 2010 B2
7826151 Tsai Nov 2010 B2
7869142 Chen et al. Jan 2011 B2
7898747 Tang Mar 2011 B2
7916401 Chen et al. Mar 2011 B2
7918398 Li et al. Apr 2011 B2
7957075 Tang Jun 2011 B2
7957076 Tang Jun 2011 B2
7957079 Tang Jun 2011 B2
7961406 Tang et al. Jun 2011 B2
8000031 Tsai Aug 2011 B1
8004777 Souma Aug 2011 B2
8077400 Tang Dec 2011 B2
8149523 Ozaki Apr 2012 B2
8218253 Tang Jul 2012 B2
8228622 Tang Jul 2012 B2
8233224 Chen Jul 2012 B2
8253843 Lin Aug 2012 B2
8279537 Sato Oct 2012 B2
8363337 Tang et al. Jan 2013 B2
8395851 Tang et al. Mar 2013 B2
8400717 Chen et al. Mar 2013 B2
8451549 Yamanaka et al. May 2013 B2
8503107 Chen et al. Aug 2013 B2
8514502 Chen Aug 2013 B2
8570668 Takakubo et al. Oct 2013 B2
8718458 Okuda May 2014 B2
8780465 Chae Jul 2014 B2
8810923 Shinohara Aug 2014 B2
8854745 Chen Oct 2014 B1
8958164 Kwon et al. Feb 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9229194 Yoneyama et al. Jan 2016 B2
9235036 Kato et al. Jan 2016 B2
9279957 Kanda et al. Mar 2016 B2
9438792 Nakada et al. Sep 2016 B2
9488802 Chen et al. Nov 2016 B2
9568712 Dror et al. Feb 2017 B2
9678310 Iwasaki et al. Jun 2017 B2
9817213 Mercado Nov 2017 B2
20020118471 Imoto Aug 2002 A1
20030048542 Enomoto Mar 2003 A1
20040169772 Matsui Sep 2004 A1
20050041300 Oshima et al. Feb 2005 A1
20050062346 Sasaki Mar 2005 A1
20050128604 Kuba Jun 2005 A1
20050141103 Nishina Jun 2005 A1
20050168840 Kobayashi et al. Aug 2005 A1
20050270667 Gurevich et al. Dec 2005 A1
20060238902 Nakashima et al. Oct 2006 A1
20060275025 Labaziewicz et al. Dec 2006 A1
20070229983 Saori Oct 2007 A1
20070247726 Sudoh Oct 2007 A1
20070253689 Nagai et al. Nov 2007 A1
20080056698 Lee et al. Mar 2008 A1
20080094730 Toma et al. Apr 2008 A1
20080094738 Lee Apr 2008 A1
20080291531 Heimer Nov 2008 A1
20080304161 Souma Dec 2008 A1
20090002839 Sato Jan 2009 A1
20090067063 Asami et al. Mar 2009 A1
20090122423 Park et al. May 2009 A1
20090141365 Jannard et al. Jun 2009 A1
20090147368 Oh et al. Jun 2009 A1
20090225438 Kubota Sep 2009 A1
20090279191 Yu Nov 2009 A1
20090303620 Abe et al. Dec 2009 A1
20100033844 Katano Feb 2010 A1
20100060995 Yumiki et al. Mar 2010 A1
20100165476 Eguchi Jul 2010 A1
20100214664 Chia Aug 2010 A1
20100277813 Ito Nov 2010 A1
20110001838 Lee Jan 2011 A1
20110032409 Rossi et al. Feb 2011 A1
20110080655 Mori Apr 2011 A1
20110102911 Iwasaki May 2011 A1
20110115965 Engelhardt et al. May 2011 A1
20110149119 Matsui Jun 2011 A1
20110157430 Hosoya et al. Jun 2011 A1
20110188121 Goring et al. Aug 2011 A1
20110249347 Kubota Oct 2011 A1
20110292274 Takeuchi Dec 2011 A1
20120044582 Murakami Feb 2012 A1
20120062783 Tang et al. Mar 2012 A1
20120069455 Lin et al. Mar 2012 A1
20120092777 Tochigi et al. Apr 2012 A1
20120105708 Hagiwara May 2012 A1
20120147489 Matsuoka Jun 2012 A1
20120154929 Tsai et al. Jun 2012 A1
20120194923 Um Aug 2012 A1
20120229920 Otsu et al. Sep 2012 A1
20120262806 Huang Oct 2012 A1
20130057971 Zhao et al. Mar 2013 A1
20130088788 You Apr 2013 A1
20130208178 Park Aug 2013 A1
20130271852 Schuster Oct 2013 A1
20130279032 Suigetsu et al. Oct 2013 A1
20130286488 Chae Oct 2013 A1
20140022436 Kim et al. Jan 2014 A1
20140063616 Okano et al. Mar 2014 A1
20140092487 Chen et al. Apr 2014 A1
20140139719 Fukaya et al. May 2014 A1
20140146216 Okumura May 2014 A1
20140160581 Cho et al. Jun 2014 A1
20140204480 Jo et al. Jul 2014 A1
20140240853 Kubota et al. Aug 2014 A1
20140285907 Tang et al. Sep 2014 A1
20140293453 Ogino et al. Oct 2014 A1
20140362274 Christie et al. Dec 2014 A1
20150022896 Cho et al. Jan 2015 A1
20150029601 Dror et al. Jan 2015 A1
20150116569 Mercado Apr 2015 A1
20150138431 Shin et al. May 2015 A1
20150153548 Kim et al. Jun 2015 A1
20150168667 Kudoh Jun 2015 A1
20150205068 Sasaki Jul 2015 A1
20150244942 Shabtay et al. Aug 2015 A1
20150253532 Lin Sep 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150323757 Bone Nov 2015 A1
20150373252 Georgiev Dec 2015 A1
20150373263 Georgiev et al. Dec 2015 A1
20160033742 Huang Feb 2016 A1
20160044250 Shabtay et al. Feb 2016 A1
20160062084 Chen et al. Mar 2016 A1
20160062136 Nomura et al. Mar 2016 A1
20160070088 Koguchi Mar 2016 A1
20160085089 Hillis et al. Mar 2016 A1
20160105616 Shabtay et al. Apr 2016 A1
20160187631 Choi et al. Jun 2016 A1
20160202455 Aschwanden et al. Jul 2016 A1
20160212333 Liege et al. Jul 2016 A1
20160241756 Chen Aug 2016 A1
20160291295 Shabtay Oct 2016 A1
20160306161 Harada et al. Oct 2016 A1
20160313537 Mercado Oct 2016 A1
20160341931 Liu et al. Nov 2016 A1
20160349504 Hun-Kim et al. Dec 2016 A1
20160353008 Osborne Dec 2016 A1
20170023778 Inoue Jan 2017 A1
20170094187 Sharma et al. Mar 2017 A1
20170102522 Jo Apr 2017 A1
20170115471 Shinohara Apr 2017 A1
20170153422 Tang et al. Jun 2017 A1
20170160511 Kim et al. Jun 2017 A1
20170199360 Chang Jul 2017 A1
20170276911 Huang Sep 2017 A1
20170310952 Adomat et al. Oct 2017 A1
20170329108 Hashimoto Nov 2017 A1
20170337703 Wu et al. Nov 2017 A1
20170359566 Goma Dec 2017 A1
20180024319 Lai et al. Jan 2018 A1
20180059365 Bone et al. Mar 2018 A1
20180059376 Lin et al. Mar 2018 A1
20180081149 Bae et al. Mar 2018 A1
20180120674 Avivi et al. May 2018 A1
20180149835 Park May 2018 A1
20180196236 Ohashi et al. Jul 2018 A1
20180196238 Goldenberg et al. Jul 2018 A1
20180217475 Goldenberg et al. Aug 2018 A1
20180218224 Olmstead et al. Aug 2018 A1
20180224630 Lee et al. Aug 2018 A1
20180268226 Shashua et al. Sep 2018 A1
20190025549 Hsueh et al. Jan 2019 A1
20190025554 Son Jan 2019 A1
20190075284 Ono Mar 2019 A1
20190086638 Lee Mar 2019 A1
20190107651 Sade Apr 2019 A1
20190121216 Shabtay et al. Apr 2019 A1
20190170965 Shabtay et al. Jun 2019 A1
20190215440 Rivard et al. Jul 2019 A1
20190353874 Yeh et al. Nov 2019 A1
20200084358 Nadamoto Mar 2020 A1
20200150695 Huang May 2020 A1
20200192069 Makeev et al. Jun 2020 A1
20200221026 Fridman et al. Jul 2020 A1
20200333691 Shabtay et al. Oct 2020 A1
20210263276 Huang et al. Aug 2021 A1
20210364746 Chen Nov 2021 A1
20210396974 Kuo Dec 2021 A1
20220046151 Shabtay et al. Feb 2022 A1
20220066168 Shi Mar 2022 A1
20220113511 Chen Apr 2022 A1
20220232167 Shabtay et al. Jul 2022 A1
Foreign Referenced Citations (59)
Number Date Country
101634738 Jan 2010 CN
102147519 Aug 2011 CN
102193162 Sep 2011 CN
102466865 May 2012 CN
102466867 May 2012 CN
102147519 Jan 2013 CN
103576290 Feb 2014 CN
103698876 Apr 2014 CN
104297906 Jan 2015 CN
104407432 Mar 2015 CN
105467563 Apr 2016 CN
105657290 Jun 2016 CN
106680974 May 2017 CN
104570280 Jun 2017 CN
S54157620 Dec 1979 JP
S59121015 Jul 1984 JP
6165212 Apr 1986 JP
S6370211 Mar 1988 JP
406059195 Mar 1994 JP
H07325246 Dec 1995 JP
H07333505 Dec 1995 JP
H09211326 Aug 1997 JP
H11223771 Aug 1999 JP
3210242 Sep 2001 JP
2004334185 Nov 2004 JP
2006195139 Jul 2006 JP
2007133096 May 2007 JP
2007164065 Jun 2007 JP
2007219199 Aug 2007 JP
2007306282 Nov 2007 JP
2008111876 May 2008 JP
2008191423 Aug 2008 JP
2010032936 Feb 2010 JP
2010164841 Jul 2010 JP
2011145315 Jul 2011 JP
2012203234 Oct 2012 JP
2013003317 Jan 2013 JP
2013003754 Jan 2013 JP
2013101213 May 2013 JP
2013105049 May 2013 JP
2013106289 May 2013 JP
2013148823 Aug 2013 JP
2014142542 Aug 2014 JP
2017116679 Jun 2017 JP
2018059969 Apr 2018 JP
2019113878 Jul 2019 JP
20090019525 Feb 2009 KR
20090131805 Dec 2009 KR
20110058094 Jun 2011 KR
20120068177 Jun 2012 KR
20140135909 May 2013 KR
20140023552 Feb 2014 KR
20160000759 Jan 2016 KR
101632168 Jun 2016 KR
20160115359 Oct 2016 KR
M602642 Oct 2020 TW
2013058111 Apr 2013 WO
2013063097 May 2013 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (8)
Entry
A compact and cost effective design for cell phone zoom lens, Chang et al., Sep. 2007, 8 pages.
Consumer Electronic Optics: How small a lens can be? The case of panomorph lenses, Thibault et al., Sep. 2014, 7 pages.
Optical design of camera optics for mobile phones, Steinich et al., 2012, pp. 51-58 (8 pages).
The Optics of Miniature Digital Camera Modules, Bareau et al., 2006, 11 pages.
Modeling and measuring liquid crystal tunable lenses, Peter P. Clark, 2014, 7 pages.
Mobile Platform Optical Design, Peter P. Clark, 2014, 7 pages.
Boye et al., “Ultrathin Optics for Low-Profile Innocuous Imager”, Sandia Report, 2009, pp. 56-56.
“Cheat sheet: how to understand f-stops”, Internet article, Digital Camera World, 2017.
Related Publications (1)
Number Date Country
20230251554 A1 Aug 2023 US
Provisional Applications (1)
Number Date Country
62939943 Nov 2019 US
Continuations (1)
Number Date Country
Parent 17104744 Nov 2020 US
Child 18301438 US