This patent application is the U.S. national phase, under 35 USC 371, of PCT/EP2005/051634, filed Apr. 13, 2005; published as WO 2005/102889 A1 on Nov. 3, 2005 and claiming priority to DE 10 2004 020 305.9, filed Apr. 26, 2004, the disclosures of which are expressly incorporated herein by reference.
The present invention is directed to a folding apparatus. The folding apparatus includes at least one folding blade cylinder that has at least one group of tools on its periphery. A cam disk and a cover disk are usable to control movement of the at least one group of tools.
A folding apparatus of the general type to which the subject invention is directed comprises a cylinder characterized as a folding blade cylinder or a collect cylinder, which cylinder supports a multitude of holding tools around its periphery that are usable for securing a printed product that is fed to the cylinder and is to be folded. A plurality of folding blades, which extend outward from the interior of the cylinder, engage a printed product, which is held against the cylinder. These folding blades engage the printed product along a predetermined fold line for the printed product, and thereby press it into a folding jaw of a folding jaw cylinder that functions in coordination with the folding blade or collect cylinder. In non-collect operation, each time a printed product passes through the gap between the folding blade cylinder and the folding jaw cylinder, the printed product is released by its holding tool and the subsequent folding blade is extended. During collect operation, a printed product that is held on the folding cylinder passes through the gap at least 2 or n times. During each revolution of the folding cylinder, another printed product is collected on the same peripheral segment of the folding cylinder. Ultimately, printed products, which are collected n times, are pushed together onto the folding jaw cylinder and are thereby folded.
The movement of the holding tools and of the folding blades is generally determined by a control cam, the contour of which control cam is traced by a multitude of cam follower rolls, each of which is coupled to one of the holding tools or to the folding blade.
In a first type of folding apparatus, the control cam is formed by two disks that are mounted coaxially relative to the cylinder, and which are characterized as a cam disk and as a cover disk, which cam disk and cover disk are traced simultaneously by the cam and cover disk follower rolls. The cam disk, which is typically stationary, is equipped with a recessed area, into which a follower roll can dip. When this occurs, the tool that is controlled by the follower roll executes a working movement. In the case of a holding tool, this movement may be, for example, the release of a printed product, or in the case of a folding blade, the working movement may be an extension of the blade.
The cover disk is also equipped with at least one recessed area. This at least one recessed area is positioned during non-collect operation of the folding blade cylinder such that it overlaps the recessed area of the cam disk and thus does not prevent the follower roll from dipping into it. The cover disk can be stationary or can rotate. During collect operation of the folding blade cylinder, the cover disk rotates at a speed that is different from the rotational speed of the cylinder. The recessed areas of the two disks overlap, and the working movement is executed only with every nth revolution of the cylinder. The result is that n collected printed products are then transferred and are folded at the same time.
To achieve the greatest possible flexibility in production, it is desirable to be able to adjust any random value for n, up to an upper limit of nmax. Since, in order to vary n, in general only the phase position between the cam disk and the cover disk can be adjusted, both nmax and the number of possible values for n are relatively small.
To achieve greater variability for collect operation, a folding apparatus has been proposed in DE 38 28 372 A1, in which the cover disk is replaced by a multitude of radially adjustable covering cams. These covering cams make it possible, to a certain extent, to form a cover disk having a circumferential shape that can be adjusted based upon the desired value for n.
With this previously known folding apparatus, eight covering cams are provided, which eight covering cams form two diametrically opposite groups of four each, and which are distributed over an angular interval of 90°. Within a group, the angular distances between the covering cams amount to 30°, 15° and 45°, in sequence. The folding cylinder is comprised of seven parts. With two different rotational speeds for the covering cams relative to the cylinder, production modes in which n=1, 2, 3, 4, or in other words, non-collect, single-collect, double-collect and triple-collect production modes can be realized.
The object of the present invention is directed to providing a folding apparatus.
The object is attained according to the invention with the provision of a folding apparatus with a folding blade cylinder that has at least one group of identical tools distributed on its periphery. A cam disk is provided for the working movement of the at least one group of tools. The cam disk is traced by a control arm. A cover disk is comprised of a plurality of cover cams which can be rotated with the folding blade cylinder. These cover cams can be moved between active and inactive positions. In the inactive position the cover cams allow movement of the tools. In the active position, they prevent such movement.
The number of tools on the folding blade cylinder of the folding apparatus is only five, rather than the seven tools which is typical of the known folding apparatus. It is possible, while keeping the side length of the product to be processed the same, to decrease the diameter of the folding blade cylinder to five-sevenths of its conventional size. A division of the covering cams into two groups, in which, in the first group, the covering cams have an angular distance from one another of either 60° or 120°, and in the second group the angular distance between the covering cams amounts to 90° or 180°, also enables all modes of production from non-collect to triple-collect.
The folding blade cylinder is preferably equipped with two groups or types of tools, each having equal numbers of tools. One group of tools are holding tools, such as especially sheet end grippers or pin strips, and one group of tools are folding blades.
Each group of tools is expediently assigned its own cam disk and cover disk. Cam disks and cover disks of the different groups can each be arranged on opposite end surfaces of the folding blade cylinder, or alternatively can both be arranged on the same end surface of the folding blade cylinder. With a folding blade cylinder of very wide width, each group of tools can also be assigned to two cam disks and to two cover disks, one of each disks being located on each end surface of the folding blade cylinder.
To enable an adjustment of the folding blade cylinder, to accommodate different numbers of pages of the printed products to be folded, the tools of the first group should have their own cam disks and cover disks on the periphery of the cylinder, which first group cam disks and cover disks are separate from those of the second group.
The number of covering cams in the first group preferably is precisely four, and the angular distance between them amounts alternatingly to 60° or to 120°, in a working position. When all four of these covering cams are active, and with a rotational speed of the cover disk that is 5/6 the rotational speed of the folding blade cylinder, double-collect operation is enabled. During every two cylinder revolutions, the control lever of a particular tool traces an active covering cam, and during the third revolution, it traces the 120° intermediate space between two covering cams of the first group. When two diametrically opposite covering cams of the four covering cams of the first group are active, and the others are inactive, and with a rotational speed of the cover disk that is 5/4 of the rotational speed of the cylinder, single-collect operation is possible, following a phase adjustment, since the covering cam now rotates faster than the folding blade cylinder.
The second group of covering cams preferably comprises precisely three covering cams, which three covering cams accordingly must be arranged at distances of 90°, 90° and 180°, in their working position from one another. When all of these covering cams are active, and with 5/4 the rotational speed of the cover disks relative to the folding blade cylinder, triple-collect operation is possible. When only the two diametrically opposite covering cams of the second group are active, they also enable single-collect operation.
When the second group of covering cams is used, the difference in speed between the cover disk and the folding blade cylinder is greater than it is for the covering cams of the first group. The circumferential length of the covering cams of the second group is also preferably greater than that of the first. Furthermore, with the use of this second group of covering cams, the cover disk system can be adjusted in relation to the folding blade cylinder to accomplish a phase adjustment. With a cover disk speed of 5/6 , the speed of the covering cam is slower than the speed of the folding blade cylinder. However, at a cover disk speed of 5/4 , the speed of the covering cam is faster than that of the folding blade cylinder. This phase adjustment occurs because the cover disk system is rotated, using a differential transmission in the drive train of the cover disk, with respect to the position of the folding blade cylinder for a production shift.
Preferred embodiments of the present invention are represented in the accompanying set of drawings, and will be described in greater detail below.
The drawings show:
A circumferential surface of the folding blade cylinder 01 is formed by two groups of five segments each. The segments of the first group each carry a tool 02, such as, for example, a gripper 02 only one of which is partially illustrated in
The movement of each of the grippers 02 is controlled by a control arm or a control lever 04, which carries a cam follower roll 06 at an end of the control lever 04 that faces away from the gripper 02. The cam follower roll 06 is impinged upon by a spring and is forced, by that spring, against the circumference of a stationary cam disk 07, which in
The stationary cam disk 07 has an essentially circular circumference, as can be seen in
The cover disk 08 is comprised of an inner cam ring 09, first and second groups of covering cams 11; 12, respectively, and a frame, which for purposes of clarity is not illustrated here, in which frame the covering cams 11; 12 are held, spring-mounted, with each covering cam being pivotable around an axis 13 and maintained against the outer circumferential surface of the inner cam ring 09. The inner cam ring 09 is capable of rotating relative to the frame, and relative to the covering cams 11; 12, in order to accomplish various configurations for the covering cams 11; 12, in which various configurations, certain ones of the covering cams rest on a cam surface 14 of the inner cam ring 09 or engage the cam ring 09 between two spaced cams or cam surfaces 14. The covering cams 11; 12 each have an arc-shaped outer surface 18, which covering surfaces 18, when a respective covering cam 11; 12 is in its active state, lie at the level of the outer periphery of the stationary cam disk 07, and can thus prevent a follower roll 06 from entering into a recessed area 16; 17 of the cam disk 07.
In
Pairs of circles, each connected by a double arrow, and depicted on the periphery of the cam disk 07, illustrate the movement play of the follower rolls 06 on the periphery of the cylinder 01 for the purpose of adjustment for different lengths of the printed products to be folded.
In each case, the inner cam ring 09, based upon the indicated 0° direction which is shown in
In the configuration which is shown in
In the configuration shown in
The folding blade cylinder 01 rotates counterclockwise, so that the follower rolls 06 rotate counterclockwise on the stationary cam disk 07. The rotational speed of the cover disk 08 amounts to 5/6 of the rotational speed of the folding blade cylinder 01, so that with each complete revolution of the folding blade cylinder 01, the cover disk 08 falls back or lags the folding blade cylinder 01 by an additional 60°. In the configuration which is shown in
In the configuration which is shown in
In the configuration which is shown in
An alternative preferred embodiment for controlling the various modes of collect operation of the folding blade cylinder 01 is represented in
In
In
The construction for the cover disk 08, comprising adjustable covering cams 11; 12, as described above for the control of the grippers 02, can also be used if pin strips are used as the gripping tools. In this case, the construction is simplified slightly, as a cam disk for use in controlling pin strips requires only one release recess 17, and no gripping recess 16.
The same applies to the control of the extension of folding blades from the slits 03 in the folding blade cylinder 01. Here again, the stationary cam disk has only a single recessed area.
Furthermore, this principle can also be used to control a trailing gripper on a folding jaw cylinder 01.
In place of the five grippers 02 or of the pin strips with pins, the folding blades or the folding jaws, the cylinder 01 can also have three or seven sections. In other words the cylinder 01 can have three, five or seven groups of tools 02, especially groups of grippers 02 or of pin strips with pins, or of folding blades or of folding jaws.
In the above-described embodiments, only the grippers 02 are viewed as examples of tools 02 that are mounted on the cylinder 01 and which are periodically actuated. The invention can also be used in the same manner as described above with other periodically moved tools 02, such as folding blades, pin strips with pins, folding jaws, and the like.
While preferred embodiments of a folding apparatus for collect operation, in accordance with the present invention, have been set forth fully and completely hereinabove, it will be apparent to one of skill in the art that various changes in, for example, the overall structure of the printing press, the drive assembly for the folding blade cylinder, and the like could be made without departing from the true spirit and scope of the present invention, which is accordingly to be limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 020 305 | Apr 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/051634 | 4/13/2005 | WO | 00 | 10/20/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/102889 | 11/3/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4094499 | Thomas | Jun 1978 | A |
4381106 | Loebach | Apr 1983 | A |
4892036 | Lange | Jan 1990 | A |
5000433 | Prum et al. | Mar 1991 | A |
5287805 | Fischer et al. | Feb 1994 | A |
5305993 | Staeb | Apr 1994 | A |
5697881 | Nishihara | Dec 1997 | A |
6895858 | Kostiza et al. | May 2005 | B2 |
20030130103 | Fujinuma | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
38 28 372 | Feb 1990 | DE |
0 098 415 | Jan 1984 | EP |
Number | Date | Country | |
---|---|---|---|
20070167306 A1 | Jul 2007 | US |