This invention generally relates to current sensors which use magnetic field transducers to sense current in a conductor. In particular, the invention includes a magnetic field transducer placed between folding sections of a soft ferromagnetic core to sense current in a conductor.
As is known in the art, conventional current sensors may use a magnetic field transducer (for example, a Hall effect element) in proximity to an electrical conductor. The magnetic field transducer produces an output signal having a magnitude proportional to the magnetic field induced by an electric current in the electrical conductor.
Conventional current sensors may include a toroidal ferromagnetic body to concentrate magnetic flux produced by current in a proximate conductor. The conductor may be threaded through the toroid, which provides an increased magnetic field proximate to a magnetic field transducer, and therefore, a more sensitive device. The magnetic field transducer produces an output signal proportional to the current in the conductor.
One type of current sensor described in pending U.S. Pat. No. 7,358,724 of William P. Taylor et al., integrates a magnetic flux concentrator and a magnetic field transducer into a packaged integrated circuit. Another type of current sensor described in U.S. Pat. No. 7,265,531 to Stauth et al. includes a conductor with a notch for receiving a magnetic field transducer. Still another current sensor described in U.S. Pat. No. 6,005,383 to Savary et al. includes a magnetic circuit having a winding wound around the magnetic circuit. The magnetic circuit has an opening for a magnetic field detector which senses current through the winding.
Some current sensors sever the conductor to form an electrical connection for sensing current. For example, U.S. Pat. No. 6,177,884 to Hunt et al. describes an apparatus for severing a conductor. Other conventional current sensors, such as the current sensor described in U.S. Pat. No. 6,005,383 to Savary et al., require complicated threading or winding operations to couple the conductor to the current sensor.
In accordance with the present invention, a current sensor includes a soft ferromagnetic body forming a lumen to receive an electrical conductor, the soft ferromagnetic body having first and second folding portions to enclose the conductor within the lumen and a magnetic field detector having at least a portion disposed within the first and second folding portions.
In one aspect, the invention provides a current sensor including an outer body having a first folding portion and a second folding portion coupled to the first folding portion. The current sensor also includes a soft ferromagnetic body disposed within the outer body comprising a first core element and a second core element. The first and second core elements form a lumen when the first and second folding portions are folded. The lumen is configured to receive a conductor. The current sensor also includes a magnetic field detector to sense a current in the conductor. The magnetic field detector is at least partially disposed between the folded first and second core elements.
In another aspect, the invention provides a current sensor for sensing current in at least one loop of a conductor. The current sensor includes an outer body having a first folding portion and a second folding portion, the first and second folding portions being rotatably coupled by at least one rotator element. The current sensor also includes a first core element disposed in the first folding portion of the outer body and a second core element disposed in the second folding portion of the outer body. When the first and second folding portions are folded at the rotator element, the first and second core elements form a lumen to receive the at least one loop of the conductor. The current sensor also includes a magnetic field detector disposed at least partially within the folded first and second folding portions. The magnetic field detector may be further disposed at least partially between first and second extensions of the first and second core elements, respectively, to concentrate a magnetic flux.
In another aspect, the invention includes a method comprising providing a current sensor comprising a soft ferromagnetic body having first and second folding portions, and a magnetic field detector. The method also includes folding the first and second folding portions of the soft ferromagnetic body to form a lumen to receive a conductor carrying a current and to dispose a portion of the magnetic field detector within the first and second folding portions of the soft ferromagnetic body, and sensing the current carried in the conductor.
With described arrangements, a current sensor is provided for sensing a current in a conductor. The current sensor is folded over the conductor such that the current can be sensed in the conductor without the need to sever the conductor or thread the conductor through the current sensor. The current sensor of the invention can be easily installed to sense currents in existing devices in the field by, for example, manually folding the current sensor over the device conductor. For example, an automobile mechanic or technician can fold the current sensor over a battery wire to sense the current flowing to an automobile battery.
The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following description of the drawings in which:
Referring to
As used herein, the term “folding” means rotating or pivoting coupled first and second folding portions 110, 112 toward each other. In use, the soft ferromagnetic body 102 is initially in an unfolded position, as shown in
The above-described folding of the folding portions 110, 112 is in contrast to a clamping arrangement, for example, a clamp having two clamped arms held in tight engagement by a spring such that a significant force is required to counteract the spring (such as that applied by a user's thumb and fore fingers) in order to position the conductor within the lumen. Furthermore, the significant counteracting force is applied to portions of the two clamped arms extending on a side of the spring opposite of the lumen. Also, the clamped arms are not substantially parallel when held together, instead forming a wedge.
The current sensor 100 includes a magnetic field detector 150 disposed at least partially within the first and second folding portions 110, 112. Preferably, the magnetic field detector is disposed at least partially within a side 155a of the soft ferromagnetic body opposite to the rotatably coupled side of the soft ferromagnetic body 155b. The magnetic field detector may be coupled to one of the first and second folding portions by, for example, an adhesive, solder, tape. The magnetic field detector 150 may be disposed within a gap 160 formed between the folded first and second folding portions 110, 112.
The gap 160 may include a number of various configurations depending on the current sensing application. For example, the gap 160 may extend across a longitudinal length 162 of the folded soft ferromagnetic body 102.
As shown in
In an alternative configuration shown in
In still another configuration shown in
A further alternate configuration is shown in
In another configuration shown in
In the illustrative embodiment of
Preferably, the soft ferromagnetic body 102 comprises a soft ferromagnetic material including, but not limited to, a ferrite material, steel, iron alloy, NiFeMo, Supermalloy, a nickel alloy, a cobalt alloy, and Permalloy. In embodiments in which the soft ferromagnetic body 102 is comprised of ferrite, the body may alternatively be referred to as a ferrite core.
Additionally, the soft ferromagnetic body 102 may have a variety of shapes depending on the application. For example, the soft ferromagnetic body 102 may be substantially tubular, having walls defined by the first and second folding portions 110, 112 and forming the lumen 114 when folded. Alternatively, the soft ferromagnetic body 102 may have a substantially regular-shaped cross-section. Furthermore, it will be apparent that the body 102 cross-section and the lumen 114 cross-section need not be of the same shape. For example, while the body 102 cross-section and the lumen 114 cross-section in the embodiment of
The magnetic field detector 150 includes one or more leads 151 for carrying electrical signals to and from the magnetic field detector 150. Illustrative signals carried by leads 151 include power and ground signals and an output signal of the magnetic field detector that has a signal level (e.g. a voltage level) proportional to the sensed magnetic field and thus, to the current through the conductor.
With this arrangement, the current sensor 100 is configured to sense a current in a conductor positioned within the lumen 114. The current flowing through the conductor produces a magnetic field in the vicinity of the conductor and the magnetic field detector 150. The magnetic field detector 150 responds to the magnetic field and produces an output signal that is proportional to the amount of current in the conductor.
The magnetic field detector 150 includes a magnetic field transducer that may take the form of a Hall effect element, a giant magnetoresistance element, or an anisotropic magnetoresistance element. It will be apparent to one skilled in the art that the magnetic field transducer may be positioned in a variety of ways to maximize the magnetic field transducer's output response to the magnetic flux produced by the current flowing in the conductor.
In at least one embodiment of the current sensor 100, relatively small currents can be sensed by concentrating the magnetic flux with the soft ferromagnetic body 102 at the location of the magnetic field detector 150. This may be accomplished using extended and/or tapered portions of the soft ferromagnetic body 102, which direct and focus the magnetic flux at the location of the magnetic field detector 150. The extensions 111, 113 of
Referring to
In this way, the current sensor 100 can be easily installed for sensing a current 106 in the conductor 105 without the need to, for example, sever the conductor 105 or thread the conductor 105 through the current sensor 100 in a complicated fashion. For example, an automobile mechanic or technician can install the current sensor over a wire to detect currents in an automobile's electrical system. Although
Furthermore, the current sensor may be miniaturized for use with very small electrical components, such as those found in an automobile interior lighting application.
Referring now to
The outer body 301 has a first and second folding portion 310, 312. The first and second folding portions 310, 312 can be in an unfolded position (shown in
The soft ferromagnetic body 302 has a first and second core element 320, 322. The first and second core elements 320, 322 are secured to the first and second folding portions 310, 312 of the outer body 301. For example, the first and second core elements 320, 322 may be secured using an adhesive, solder, etc.
Referring to
The outer body 301 may comprise a material, for example, a plastic molded material appropriate for the current sensor application. For example, in a high temperature/high mechanical stress environment, such as an automotive environment, a high temperature molding material may be used to produce a high temperature resistant/high mechanical stress resistant outer body.
Referring again to
When the current sensor is in the folded position, the core elements 320, 322 form a lumen 314 for receiving a conductor 305. The lumen may be formed by one or more cutout longitudinal portions 314′, 314″ (shown in
The magnetic field detector 350 may be disposed in a gap 360 formed by folded first and second core elements 320, 322 of the soft ferromagnetic body 302. The gap 360 may extend across the entire longitudinal length of the folded first and second core elements 320, 322. In another embodiment, a portion of the folded first and second core elements 320, 322 contact each other on a side 355b of the soft ferromagnetic body 302 opposite to the rotatably coupled side 355a of the soft ferromagnetic body 302.
In a further embodiment of the current sensor, the magnetic field detector may be disposed in a gap formed by folded first and second folding portions 310, 312 of the outer body 301. The magnetic field detector 350 may include one or more leads 351 for coupling signals to and from the magnetic field detector 350.
Referring to
It should be noted that although
Referring now to
The current sensor includes a magnetic field detector 550 disposed at least partially within the outer body 501 and the soft ferromagnetic body 502 as further described below. The length l3 of extension 511 may be reduced to further concentrate the magnetic flux in the area of the magnetic field detector 550.
The first and second folding portions 510, 512 of the outer body 501 are rotatably-coupled by at least one rotator element 516. When in the folded position, the outer body forms a hollow area 506 for housing the soft ferromagnetic body 502 and any other current sensor components. When the current sensor 500 is folded, the first and second folding portions 510, 512 and first and second core elements 520, 522 form a lumen (not shown) for receiving the at least one loop 570 of the conductor 505. The lumen is formed by cutout portions 514 of one or both of the outer body 501 and the soft ferromagnetic body 502. The size of the lumen may depend on factors such as the wire gauge of the conductor and the desired number of loops. For example, a lower wire gauge or a higher number of loops will require a larger lumen.
The first and second core elements 520, 522 are disposed in the outer body 501. Preferably, the first core element 520 is disposed in the first folding section 510 and the second core element 522 is disposed in the second folding section 512. The first and second core elements 520, 522 preferably contact each other on one side when the current sensor 500 is fully folded. On the opposite side of the ferromagnetic body 502, the first and second core elements 520, 522 form a longitudinal gap that extends at least partially along the longitudinal length of the soft ferromagnetic body 502. Preferably, the extension 511 protrudes into the longitudinal gap such that, when the current sensor 500 is fully folded, the magnetic field detector 550 is disposed at least partially between the extension 511 and the second core element 522.
With this arrangement, a current flowing through the at least one loop 570 of the conductor 505 can produce a magnetic flux in the soft ferromagnetic body 502. The magnetic flux in the soft ferromagnetic body 502 is concentrated by the extension 511 nearby the magnetic field detector 550. The magnetic field detector 550 senses the concentrated magnetic flux and can produce an output signal proportional to the current.
In one configuration of the current sensor 500, the hollow area 506 may extend longitudinally across the outer body 501. In such a configuration, a loop of the conductor 570 may be disposed within the hollow area 506 and, more particularly, within an enclosing one of the first and second folding portions 510, 512 of the outer body 501. Further, the enclosing folding portion may further include a protrusion extending into the hollow area 506 to secure the loop of the conductor 570 to the outer body 501.
In at least one embodiment of the invention, the magnetic field detector 550 is flush-mounted with respect to the outer body 510 of the current sensor 500. Referring again to
For example, the outer body 501 of the current sensor 500 and at least one lead 551 may be coupled to a printed circuit board (PCB). Using surface-mounting technology, the outer body 501 may be surface-mounted to the PCB and at least one bend lead 551 may be soldered to the PCB. Alternatively, the outer body 501 of the current sensor 500 can be connected to a PCB by the use of through-holes or via a connector or socket mounted to the PCB.
Referring again to
Referring to
Referring to
The magnetic field detector package 600 can include two magnetic field concentrators 611 positioned in various configurations. For example, as shown in
Referring to
The magnetic field concentrator 611 in the magnetic field detector package 600 provides a level of magnetic flux concentration in addition to the soft ferromagnetic body (e.g., 102 of
Additional configurations of magnetic field concentrators incorporated within a magnetic field detector package are described in U.S. Pat. No. 7,358,724, which application is hereby incorporated herein by reference in its entirety.
Referring to
The tube 700 has first and second core elements 720, 722. Preferably, the folded first and second core elements 720, 722 are coupled by at least one rotator element 716. The tube 700 has a c-shaped cross section, such that the folded first and second core elements 720, 722 form a longitudinal gap 730. In this configuration, the magnetic field detector 750 is disposed in the longitudinal gap 730.
In a further embodiment of the current sensor shown in
In a further embodiment of the tube 700 shown in
In one aspect, the invention includes a method comprising providing a current sensor including a soft ferromagnetic body having first and second folding portions, and a magnetic field detector having at least a portion disposed within the first and second folding portions of the soft ferromagnetic body. The method also includes folding the first and second folding portions of the soft ferromagnetic body to form a lumen to receive a conductor carrying a current, and sensing the current carried in the conductor.
In a further embodiment of the method, the current sensor further comprises a rotator element to rotatably couple the first and second folding portions of the soft ferromagnetic body, wherein folding further includes rotating the first and second folding portions at the rotator element until the portion of the magnetic field detector is disposed on a side of the soft ferromagnetic body opposing the rotator element.
In another embodiment of the method, the current sensor further comprises a rotator element to rotatably couple the first and second folding portions of the soft ferromagnetic body and the current sensor is initially in an open position wherein the first and second folding portions are not held in contact on a side of the soft ferromagnetic body opposing the rotator element. In this embodiment, folding further includes rotating the first and second folding portions at the rotator element, wherein the portion of the magnetic field detector is disposed on the side of the soft ferromagnetic body opposing the rotator element.
In another embodiment, the method further comprises securing the folded first and second folding portions with a securing body. The securing body may be, for example, a band having a first and second end, wherein the band is wrapped around the folded first and second folding portions and the first and second ends are secured to each other. In one configuration, the band may be a belt comprising a buckle on one end threaded through a hole in the other end. In another configuration, the band may be a loop tie wherein one end is threaded through a loop in the other end and pulled through the loop until securely fastened to the folded first and second portion.
In another configuration of the current sensor, one of the first and second folding portions may be coupled laterally to a loop body having a lumen, wherein a band is looped through the loop body's lumen, wrapped around an adjacent conductor disposed in the lumen formed by the folded first and second folding portions, and tightened to secure the conductor to the loop body.
Having described preferred embodiments of the invention, it will now become apparent to one of ordinary skill in the art that other embodiments incorporating their concepts may be used. It is felt therefore that these embodiments should not be limited to disclosed embodiments, but rather should be limited only by the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4675255 | Pfeifer et al. | Jun 1987 | A |
5343184 | Matsui et al. | Aug 1994 | A |
5418514 | Smith et al. | May 1995 | A |
5825175 | Selcuk | Oct 1998 | A |
6005383 | Savary et al. | Dec 1999 | A |
6040688 | Strubin | Mar 2000 | A |
6177884 | Hunt et al. | Jan 2001 | B1 |
6323636 | Cattaneo et al. | Nov 2001 | B1 |
6388549 | Lenhard | May 2002 | B1 |
6544078 | Palmisano et al. | Apr 2003 | B2 |
6667685 | Wasaki et al. | Dec 2003 | B2 |
6717396 | Viola | Apr 2004 | B2 |
6756776 | Perkinson et al. | Jun 2004 | B2 |
6781359 | Stauth et al. | Aug 2004 | B2 |
7265531 | Stauth et al. | Sep 2007 | B2 |
7501808 | Ishihara et al. | Mar 2009 | B2 |
20030227285 | Marasch et al. | Dec 2003 | A1 |
20040263151 | Zein et al. | Dec 2004 | A1 |
20050045359 | Doogue et al. | Mar 2005 | A1 |
20060152210 | Mangtani et al. | Jul 2006 | A1 |
20060175674 | Taylor et al. | Aug 2006 | A1 |
20060181263 | Doogue et al. | Aug 2006 | A1 |
20060219436 | Taylor et al. | Oct 2006 | A1 |
20060255797 | Taylor et al. | Nov 2006 | A1 |
20070247146 | Stauth et al. | Oct 2007 | A1 |
20070252577 | Preusse | Nov 2007 | A1 |
20080048643 | Delevoye et al. | Feb 2008 | A1 |
20080094162 | Schaerrer et al. | Apr 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100001715 A1 | Jan 2010 | US |