1. Field of the Invention
The invention relates to a folding device for sheets of paper, plastic and the like, comprising at least one folding pocket and at least one deflection strip for the sheet to be folded.
2. Description of the Related Art
In known folding devices, the folding action of the sheet is carried out by means of a folding pocket into which the sheet is transported by means of rollers. However, if it is desired not to fold a sheet while passing through the machine, a deflection strip is substituted for the folding pocket and the sheet, without being folded, is guided by the deflection strip to further transport rollers. The folding pocket and the deflection strip must be manually removed from the folding device and manually inserted, respectively, depending on whether the sheet is to be folded or not. Such an operation is cumbersome and time-consuming.
It is an object of the present invention to configure the folding device of the aforementioned kind such that the sheets can be folded in a simple way or can be transported without being folded to the next transport rollers.
In accordance with the present invention, this is achieved in that the folding pocket and the deflection strip are secured on a common holder.
In the folding device according to the invention, the folding pocket and the deflection strip are arranged on the common holder. Accordingly, the two units must not be manually removed and inserted, respectively, in a cumbersome way so that the sheets passing through the machine can be folded as required or can be transported farther without being folded.
In another embodiment of the invention, the folding pocket and the deflection strip are configured such that they can be moved relative to one another in opposite directions. When the folding pocket is moved into its operating position, the deflection strip is returned from its operating position into a rest position. This enables a very simple adjustment of the folding device.
As a result of the configuration according to the invention, an automated operation is ensured so that the use of the folding device enables a very high output.
In the drawing:
The folding device serves for folding a sheet of paper, plastic, or the like by means of a folding pocket 1.
The folding device has two parallel extending sidewalls 9, 10 which are formed by a U-shaped profiled member (FIG. 4), respectively. These two profiled walls 9, 10 are open to the exterior and receive a drive spindle 11, 12, respectively. By means of the drive spindles 11, 12 the folding pocket 1 as well as the deflection strip 13 are moveable from a retracted rest position into an operating or working position (
The two sidewalls 9, 10 are connected with one another at one end by a transverse wall 14. The U-shaped cross-sectional configuration of the sidewalls 9, 10 results in high stiffness of these sidewalls. The two drive spindle 11, 12 are arranged in a protected manner between the parallel extending legs 16 and 15, 17 of the sidewalls 9, 10. In order to drive the folding pocket 1 and the deflection strip 13 in opposite directions, the drive spindle 11, 12 have two threaded sections 18, 19 and 20, 21, respectively. The threaded sections 18 and 19 as well as 20 and 21 have opposite pitch. For example, the threaded sections 18 and 20 have a right-hand thread while the threaded sections 19 and 21 have a left-hand thread.
In the shown embodiment, the two drive spindles 11, 12 are comprised of two spindle parts which are connected fixedly with one another by a coupling member 22, 23. They are positioned between the legs 15, 16, 17 of the sidewalls 9, 10. Since the drive spindles 11, 12 are comprised of two spindle parts, differently oriented threads can be produced easily thereon.
A driver 24, 25 is positioned on the threaded sections 18, 20, respectively, and is connected to the folding pocket 1. The folding pocket 1 is provided at its end facing away from the insertion end 26 for the sheets 2 with transversely projecting bolts 27, 28 which project perpendicularly from the edges of the folding pocket 1 positioned adjacent to the sidewalls 9, 10. The bolts 27, 28 are aligned with one another and engage a connecting link 29 in the sidewalls 9, 10 in a positive-locking way, respectively, so as to form sliding blocks of the connecting link 29. As illustrated in
In the same way, near the insertion opening 26 additional bolts 33, 34 are provided on the longitudinal sides of the folding pocket 1 and project transversely from the folding pocket 1. In contrast to the bolts 27, 28, they are not connected with a driver. The bolts 33, 34 engage further connecting links 35 which are provided in the sidewalls 9, 10 and form sliding blocks of the connecting links 35. The connecting links 35 are of the same configuration as the connecting links 29 and have also two guide sections 36, 37 positioned at different levels which are connected to one another by a slantedly positioned intermediate guide section 38. In the retracted rest position of the folding pocket 1, the bolts 33, 34 are positioned in the guide section 36 which is positioned at a minimal spacing from the top leg 16 of the sidewalls 9 and 10.
Since the folding pocket 1 is guided by two bolts 27, 28; 33, 34 on both longitudinal edges in a positive-locking way in the connecting links 29, 35, the folding pocket 1 can be moved in a direction of displacement reliably from the retracted rest position (FIG. 2), in which it does not project past the sidewalls 9, 10, into the working position or operating position according to
The deflection strip 13 is fastened on the underside of a flat support 39 which is secured, in turn, on the underside of the folding pocket 1. As illustrated in
Near the free ends of the legs 41, 42, bolts 47, 48 project perpendicularly from the legs 41, 42 of the support 39 and are aligned with one another. They engage the guide 49, 50 extending perpendicularly to the movement direction. The guide 49, 50 is provided on a driver 51, 52, respectively. The drivers 51, 52 are positioned on the threaded sections 19 and 21 of the drive spindles 11, 12. The guides 49, 50 of the drivers 51, 52 extend between the two legs 16, 17; 16, 15 of the sidewalls 9, 10, respectively.
The two drive spindles 11, 12 are rotatably supported with their ends, leading in the direction of extension of the folding pocket 1, in bearings 53, 54 arranged in the sidewalls 9, 10. The trailing ends of the drive spindles 11, 12 in the direction of extension of the folding pocket 1 project past the transverse wall 14. They are rotatably supported in bearings 55, 56 in the transverse wall 14. On the projecting end of the drive spindles 11, 12, gear wheels 57, 58 are fixedly positioned. The gear wheel 58 engages a gear wheel 60 fixedly positioned on the motor shaft 59 while the gear wheel 57 meshes with a gear wheel 61 that is fixedly connected on the shaft 62 of an encoder 63.
Both drive spindles 11, 12 are connected to one another by a belt drive 64 which comprises the two pulleys 65, 66 seated fixedly on the drive spindles and connected with one another by a belt 67, preferably, a toothed belt. An electric motor 68 is fastened on an end of the transverse wall 14 projecting past the sidewall 9.
In order to move the folding pocket 1 from the rest position into its operating position and back, the electric motor 68 is switched on. Via the gear system 58, 61 it drives the drive spindle 11 in rotation. By means of the belt drive 64 the drive spindle 12 is also driven in rotation. Depending on the rotational direction of the drive spindles 11, 12, the drivers 24, 25; 51, 52 are moved in opposite directions relative to one another as a result of the oppositely oriented threads of the drive spindles 11, 12. When the folding pocket 1 is in the rest position illustrated in
The deflection strip 13 is connected by means of the support 39 with the folding pocket 1; the support 39 is moved together with the folding pocket 1 by a translatory movement transversely to the legs 15, 16, 17 of the sidewalls 9, 10. At the same time, it is retracted by means of the two drivers 51, 52. As a result of the longitudinal slots 45, 46 in the legs 41, 42, the support 39 can be moved back relative to the folding pocket 1 counter to the extension direction (direction of displacement) of the folding pocket 1. Since the support 39 engages the guides 49, 50 of the drivers 51, 52 by means of bolts 47, 48 perpendicularly to the displacement direction, the support 39 can follow the movement of the folding pocket 1 transverse to the extension direction. By means of the guides 49, 50 and the longitudinal slots 45, 46, it is thus ensured that the support 39 and also the deflection strip 13 connected thereto can be moved not only in the extension direction but also perpendicularly thereto in the vertical direction.
The extension movement of the folding pocket 1 into the working or operating position is advantageously terminated when the bolts 27, 28; 33, 34 impact on the ends of the guide sections 31, 37 of the connecting links 29, 35.
The displacement movement is measured by the encoder 63 with which the adjustments relative to the displacement path of the folding pocket 1 and the deflection strip 13 can be stored in a memory device.
When the folding pocket 1 is extended into its working position and the deflection strip 13 is retracted into its rest position (FIGS. 6 and 7), the drivers 24, 25; 51, 52 on the working spindles 11, 12 have the smallest spacing relative to one another (FIGS. 6 and 8). In the rest position, the deflection strip 13 projects slightly past the sidewalls 9, 10 and is covered by the folding pocket 1 (FIG. 7).
The drivers 24, 25; 51, 52, as illustrated in
In order to be able to adjust the folding edge, the stop means with the stop 5 (
The end of the shaft 75 adjacent to the sidewall 10 also supports fixedly a gear wheel 79 which meshes with a gear wheel 80 that is fixedly mounted on a shaft 81 of an encoder 82. The encoder 82 is fastened on the side of the transverse wall 14 facing the folding pocket 1. The shaft 75 supports on this end fixedly a pulley 83 which is in driving connection by means of a belt 84 with a belt pulley 85. The shaft 75 and the pulley 85 are supported on an additional support 86 which is connected by screws 87 with a neighboring longitudinal edge of the folding pocket 1. The support 86 is positioned parallel to the support 70. The belt drive 83 to 85 and the gear system 79, 80 are positioned in the area between the sidewall 10 and the folding pocket 1. In order to be able to adjust the stop 5, the motor 69 is switched on. The shaft 75 is rotated in the desired direction via the gear system. By means of the encoder 82, the adjusting path can be reliably detected or measured and stored in a memory so that the precise adjustment position of the stop 5 can be reached with high precision at any time. The stop 5, which extends perpendicularly to the sidewalls 9, 10 and is positioned in the feed path of the sheet 2 within the folding pocket 1, is connected with the belts 72, 84 so that the stop 5 can be adjusted in the desired position relative to the folding pocket 1 via the described drive connection. The stop 5 is advantageously sheet-or plate-shaped and provided at the end facing the insertion opening 26 of the folding pocket 1 with an advantageously rectangularly positioned stop member 88 (
However, when the supplied sheet 2 is to be folded, the folding pocket 1 is moved from its rest position into the operating position in the way described above. It is lowered and at the same time advanced into this operating position by means of the connecting links 29, 35. Simultaneously, the deflection strip 13 is retracted by means of the drivers 51, 52 into the rest position illustrated in
The folding pocket 1 and the stop 5 are of a configuration known in the art so that these parts of the folding device need not be explained in further detail.
The folding device enables automated operation. Depending on the folding process, the folding device is advantageously controlled by a computer which moves the folding pocket 1 or the deflection strip 13 into the working position, respectively. This movement can be carried out fully automated and within a very short period of time so that a great output can be achieved with the folding device according to the invention. The folding pocket 1 and the deflection strip 13 are secured on a common frame which is formed by the sidewalls 9, 10 and the transverse wall 14 connecting the sidewalls 9, 10. The folding device is of a small size and requires only minimal space for its installation. Since the folding pocket 1 and the deflection strip 13 can be moved simultaneously and in opposite directions, the position change of these two components is easy to carry out and can be performed within a short period of time. The folding device can be configured to be very small and is suitable particularly for machines in which the rollers 3, 4, 8 have a very small diameter which can be, for example, within the magnitude of only 20 to 25 mm. Despite the small roller diameter, the folding device exhibits a high stiffness of the folding pocket 1 and of the deflection strip 13. Since the adjusting position of the stop 5 is detected by an encoder 82, the stop 5 can also be automatically adjusted; the respective position of the stop 5 can be stored in a memory so that the desired position of the stop 5 can be reached at any time with great precision. In this way, it is no longer necessary to perform trial runs in order to determine the correct position of the fold within the sheet 2.
In a simple configuration of the inventive folding device, a manual drive can be provided instead of the drive motor(s) 68 and/or 69, for example, in the form of a crank drive where the respective gear wheel 60, 73 is manually rotated by means of a crank.
While specific embodiments of the invention have been shown and described in detail to illustrate the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
101 32 910 | Jun 2001 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3975009 | Brown | Aug 1976 | A |
4585219 | Lehmann et al. | Apr 1986 | A |
4995600 | Kovac et al. | Feb 1991 | A |
5125633 | Fecker et al. | Jun 1992 | A |
5242364 | Lehmann | Sep 1993 | A |
5322498 | Lehmann et al. | Jun 1994 | A |
5871433 | Lehmann et al. | Feb 1999 | A |
6224530 | Okelmann et al. | May 2001 | B1 |
6511408 | Miki et al. | Jan 2003 | B2 |
20010044367 | Belmann et al. | Nov 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20030001325 A1 | Jan 2003 | US |