1. Field of the Invention
The present invention relates to an imaging apparatus, and, more particularly, to a folding edge guide assembly for an imaging apparatus.
2. Description of the Related Art
An imaging apparatus may be in the form of a printer, or a multifunction machine, also known as an all-in-one (AIO) machine, which includes scanning and copying capabilities in addition to printing.
The print engine of the printer or the AIO may include, for example, an ink jet print engine that typically forms an image on a sheet of print media by ejecting ink from at least one ink jet printhead to place ink dots on the sheet of print media. Such an ink jet print engine typically includes a reciprocating printhead carrier. Mounted to the carrier is one or more printhead cartridges, each including an ink supply and at least one printhead. The carrier transports the ink jet printheads across the sheet of print media along a bi-directional scanning path defining a print zone of the print engine. The bidirectional scanning path is oriented parallel to a main scan direction, also commonly referred to as the horizontal direction.
Typically, a sheet of print media is picked from a stack of print media supported in a media tray, and transported by a feed roller to the print zone for printing. An indexing mechanism drives the feed roller to incrementally advance the sheet of print media in a sheet feed direction, also commonly referred to as a sub-scan direction, through the print zone between scans in the main scan direction, or after all data intended to be printed on the sheet of print media at a particular stationary position has been completed.
Some imaging apparatus include a foldable media support. The foldable media support serves as an extension of a stationary base media support formed in the housing of the imaging apparatus. When the foldable media support is folded out to an operating position, a stack of print media may be accommodated. While it may be desirable to provide a media edge guide near to the middle of the stack height of the stack of print media, the location of the axis of rotation of the foldable media support has limited the placement of the media edge guide. In one such imaging apparatus utilizing such a configuration of the media support, for example, the media edge guide is mounted to the stationary base media support, and in turn, provides edge support only near the bottom of the stack of print media in the print media feed direction.
The invention, in one form thereof, is directed to a media edge guide assembly for use in an imaging apparatus having a media supply source. The media edge guide assembly includes a first edge guide portion and a second edge guide portion. The first edge guide portion and the second edge guide portion are arranged to have an axis of rotation passing through the first edge guide portion and the second edge guide portion. The first edge guide portion and the second edge guide portion are laterally interconnected to facilitate movement as a unit in a lateral direction along the axis of rotation, and the first edge guide portion and the second edge guide portion are configured to be rotationally disconnected with respect to the axis of rotation to permit the first edge guide portion to rotate around the axis of rotation independent of the second edge guide portion.
The invention, in another form thereof, is directed to an imaging apparatus including a media supply source for feeding a sheet of media in a media feed direction. The imaging apparatus includes a base including a stationary media support. A movable media support is pivotably connected to the base to pivot around an axis of rotation. The axis of rotation is substantially orthogonal to the media feed direction. The movable media support has a stowed position and an operating position, wherein when the movable media support is in the operating position, the stationary media support and the movable media support cooperate to hold a supply of print media. A first edge guide portion is mounted to the movable media support. The first edge guide portion is movable in a lateral direction along the axis of rotation. A second edge guide portion operates as an extension of the first edge guide portion. The first edge guide portion and the second edge guide portion are laterally interconnected to move as a unit in the lateral direction along the axis of rotation to adjust to a width of the supply of print media. In addition, the first edge guide portion and the second edge guide portion are configured to be rotationally disconnected with respect to the axis of rotation to permit the first edge guide portion to rotate around the axis of rotation in conjunction with the movable media support independent of the second edge guide portion.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings and particularly to
Imaging apparatus 12 may be configured to communicate with host 14 via a standard communication protocol, such as for example, universal serial bus (USB) or Ethernet. As used herein, the term “communications link” is used to generally refer to structure that facilitates electronic communication between two components, and may operate using wired or wireless technology. Communications link 16 may be established, for example, by a direct cable connection, wireless connection or by a network connection such as for example an Ethernet local area network (LAN).
Alternatively, imaging apparatus 12 may be a standalone unit that is not communicatively linked to a host, such as host 14. For example, imaging apparatus 12 may take the form of a multifunction machine, e.g., an all-in-one (AIO) device, which includes standalone copying and facsimile capabilities, in addition to optionally serving as a printer when attached to a host, such as host 14. Imaging apparatus 12 includes, for example, a controller 18, a print engine 20, a scanner 22 and a user interface 24.
Controller 18 includes a processor unit and associated memory, such as memory 25, and may be formed as an Application Specific Integrated Circuit (ASIC). Controller 18 communicates with print engine 20 via a communications link 26. Controller 18 communicates with scanner 22 via a communications link 28. Controller 18 communicates with user interface 24 via a communications link 30. Communications links 26, 28 and 30 may be established, for example, by using standard electrical cabling or bus structures, or by wireless connection.
In the context of the examples for imaging apparatus 12 given above, print engine 20 may be, for example, an ink jet print engine configured for forming an image on a sheet of print media 32, such as a sheet of paper, transparency or fabric. As an ink jet print engine, for example, print engine 20 operates one or more printing cartridges and/or printheads to eject ink droplets onto the sheet of print media 32 in order to reproduce text and/or images.
Host 14 may be, for example, a personal computer including an input/output (I/O) device 34, such as a keyboard and display monitor. Host 14 further includes a processor, input/output (I/O) interfaces, memory, such as RAM, ROM, NVRAM, and a mass data storage device, such as a hard drive, CD-ROM and/or DVD units. During operation, host 14 includes in its memory a software program including program instructions that function as an imaging driver 36, e.g., printer driver software for imaging apparatus 12. Imaging driver 36 is in communication with controller 18 of imaging apparatus 12 via communications link 16. Imaging driver 36 facilitates communication between imaging apparatus 12 and host 14, and may provide formatted print data to imaging apparatus 12, and more particularly, to print engine 20.
Alternatively, however, all or a portion of imaging driver 36 may be located in controller 18 of imaging apparatus 12. For example, where imaging apparatus 12 is a multifunction machine having standalone capabilities, controller 18 of imaging apparatus 12 may include an imaging driver configured to support a scanning and/or copying function using scanner 22, and/or a fax-print function, and may be further configured to support a printer function. Scanner 22 may be, for example, a bed type scanner with a movable scan bar, or a scanner that transports paper under a stationary scan bar. In one embodiment, for example, the imaging driver facilitates communication of formatted print data, as determined by a selected print mode, to print engine 20, and facilitates communication of scanned image data to controller 18.
Print engine 20 may include, for example, a reciprocating printhead carrier 38, a color ink jet printhead 40, a monochrome ink jet printhead 42 and (optionally) a reflectance sensor 44. Controller 18 serves to process print data and to operate print engine 20 during printing, as well as to operate scanner 22, process image data obtained via scanner 22, and process printhead alignment data obtained by scanner 22 or reflectance sensor 44. In order for print data from host 14 to be properly printed by print engine 20, the RGB data generated by host 14 is converted into data compatible with print engine 20 and ink jet printheads 40, 42. Likewise, in order for scanner data from scanner 22 to be properly printed by print engine 20, the RGB data generated by scanner 22 is converted into data compatible with print engine 20 and ink jet printheads 40, 42.
Printhead carrier 38 transports ink jet printheads 40, 42 and reflectance sensor 44 in a reciprocation manner along a bidirectional main scan path 46 over an image surface of the sheet of print media 32 during printing and/or sensing operations. Printhead carrier 38 may be mechanically and electrically configured to mount, carry and facilitate one or more of each of a color printhead cartridge 48 and a monochrome printhead cartridge 50. Each color printhead cartridge 48 may include, for example, an ink reservoir containing a supply of ink, to which at least one respective color ink jet printhead 40 is attached. Each monochrome printhead cartridge 50 may include, for example, an ink reservoir containing a supply of ink, to which at least one respective monochrome ink jet printhead 42 is attached. Alternatively, monochrome ink jet printhead 42 may be replaced by another color printhead, such as a photo printhead for jetting diluted color and mono inks.
Referring now to
In the exemplary embodiment shown in
A first media edge guide 67 includes a first edge guide portion 68 and a second edge guide portion 72. First edge guide portion 68 is mounted to movable media support 56. First edge guide portion 68 is movable in a lateral direction 70 along axis of rotation 64. Second edge guide portion 72 operates as an extension of first edge guide portion 68. First edge guide portion 68 and second edge guide portion 72 are laterally interconnected to move as a unit in lateral direction 70 along axis of rotation 64 to adjust to a width of the supply of print media. In addition, first edge guide portion 68 and second edge guide portion 72 are configured to be rotationally disconnected with respect to axis of rotation 64 to permit first edge guide portion 68 to rotate around axis of rotation 64 in conjunction with movable media support 56 independent of second edge guide portion 72.
In the embodiment shown in
Referring to
In the exemplary embodiment shown, second edge guide portion 72 includes a substantially U-shaped member 86 and an elongate member 88 extending from U-shaped member 86. U-shaped member 86 is defined by a first arm 86a and a second arm 86b, wherein second arm 86b is spaced apart from first arm 86a. First edge guide portion 68 includes a body 90 received in U-shaped member 86 between first arm 86a and second arm 86b. As shown in
Alternatively, in other embodiments, second edge guide portion 72 may be designed to have another shape other than a U-shape, if desired. For example, second edge guide portion 72 may have a single arm, thereby having a substantially L-shape configuration.
In the present embodiment, referring to
In an alternative embodiment, shown in
In the exemplary embodiment shown, second edge guide portion 102 includes a substantially U-shaped member 104 and an elongate member 106 extending from U-shaped member 104. U-shaped member 104 is defined by a first arm 104a and a second arm 104b, wherein second arm 104b is spaced apart from first arm 104a. First edge guide portion 100 includes a body 108 received in U-shaped member 104 between first arm 104a and second arm 104b. Rod 96, and in turn axis of rotation 64, passes through first arm 104a of second edge guide portion 102, body 108 of first edge guide portion 100, and second arm 104b of second edge guide portion 102.
While this invention has been described with respect to embodiments of the invention, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4714243 | Staniszewski | Dec 1987 | A |
4729683 | Staniszewski | Mar 1988 | A |
4838535 | Yokoi et al. | Jun 1989 | A |
5054759 | Lohrmann et al. | Oct 1991 | A |
5651623 | Stodder et al. | Jul 1997 | A |
5918873 | Saito et al. | Jul 1999 | A |
5927702 | Ishii et al. | Jul 1999 | A |
5971390 | Caspar et al. | Oct 1999 | A |
5984300 | Nishiberi | Nov 1999 | A |
6428000 | Hara et al. | Aug 2002 | B1 |
6469811 | Tamura | Oct 2002 | B1 |
6698744 | Yamada et al. | Mar 2004 | B2 |
6793425 | Yoshikawa et al. | Sep 2004 | B2 |
6859638 | Nobe | Feb 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070003355 A1 | Jan 2007 | US |