The following pertains to a folding exercise rack. In particular, it pertains to a folding squat rack.
Squat racks are used in gym environments for a variety of different exercises. In particular they can be used to support barbells to allow a user to set up for exercises such as front squats, back squats, bench press, overhead press, deadlifts, barbell bent over rows, and barbell lunges. Squat racks also typically include an overhead bar which can be used for pullups, chin-ups, hanging leg raises and the like.
Traditional free-standing squat racks (often referred to as a power rack or full racks) include 4 upright posts arranged in a box formation coupled at the base thereof with at least 3 horizontal supports to complete a base of support. Generally, the uprights are also coupled together at a top end thereof, with two adjustable bar catches or cups for support the barbell at different vertical heights.
Another type of rack is a squat stand (also referred to as a half rack) which includes only two uprights on a 3 sided based of support. The uprights are typically coupled together at a top end thereof for stability.
Furthermore, squat racks can be wall-mounted such that support beams are mounted to a wall with at least two horizontal support bars extending outwardly from the wall-mounted support beams. Each horizonal support bar is coupled to an upright, which are further coupled by a horizonal support bar at the top end thereof.
While squat racks are a valuable apparatus in a gym setting, many users are reluctant to include them in their own home gym or use them anywhere outside of a commercial gym setting. Traditional squat racks take up a substantial amount of space, are very heavy, are unsightly and can not be easily assembled or disassembled as they typically require special tools. Furthermore, they are difficult to move or transport.
Squat racks which fold are known. Typically, folding squat racks are wall mounted racks which are permanently fixed to the wall. In these embodiments, the top horizontal support between the uprights is detached and the horizonal support beams along with an upright pivot outwardly from a position parallel with the wall when stored, to a position perpendicular to the wall when in use. Free standing squat racks of a similar design are also known. In these designs, the squat rack is comprised of a rear support frame having a base and two rear uprights. Similarly, to the wall-mounted folding squat rack, a pair of horizonal support extend perpendicularly from each of the rear uprights and are coupled at a second end thereof to a front upright. To fold into a storage position, each horizonal support and associated upright pivot around the rear upright to lie in a parallel plane to the plane formed between the two rear uprights.
All of these folding designs allow for the squat rack to be converted to a storage position that occupies less space, however they are still somewhat permanent or semi-permanent fixtures in a room, which can not be easily moved without disassembly. Furthermore, they only fold to reduce the footprint in one direction. Particularly, in the storage position the length of the rack is reduced compared to the operating position, but the width of the rack remains the same.
There remains a need for folding and/or transportable squat rack that is easy to assemble and disassemble and move or transport on a regular basis.
In one aspect, there is provided an exercise rack comprising two frames, each frame having a rack leg coupled at one end thereof to a support leg. The rack legs are adapted to be coupled with at least one support cup for a supporting a barbell. The exercise rack is movable between an operating position wherein the two frames are spaced from each other and a storage position wherein said two frames are in closer proximity to each other. The operating position has a width direction and a length direction, and the storage position has a width direction and length direction. The width direction and the length direction of the exercise rack in the storage position is substantially reduced compared to the width direction and length direction of the exercise rack in the operating position.
The features of certain embodiments will become more apparent in the following detailed description in which reference is made to the appended figures wherein:
The description pertains to a squat rack 2 that is movable between an operating position, and example of which is shown in
Figure one depicts a first embodiment of a folding squat rack 2 shown in the open position. The squat rack 2 comprises two frames 3a and 3b each comprising a rack leg 4a and 4b coupled at a top end thereof to a support leg 6a and 6b, respectively. The support legs, 6a and 6b are coupled by a set of cross bars 8a and 8b which provide stability of the folding squat rack in a width direction of the squat rack (also referred to as, and shown in the figures as, the x direction). The x-direction, or width direction is defined as the vector between the two support legs, while the y-direction or length direction is defined by the vector between a rear support leg and the corresponding rack leg. These directions are also depicted on
While the braces 10a and 10b are shown in a preferred embodiment of being located generally centrally along the length of the support legs 6a and 6b and the rack legs 4a and 4b respectively, it can be appreciated that the position of the braces could be varied. For example, in an alternative embodiment shown in
In the preferred embodiment shown in the figures, the rack legs 4a and 4b are coupled to the corresponding support legs 6a and 6b via a pivot connection 16a and 16b, respectively. This allows the rack leg to move closer to and towards parallel to, the corresponding support leg when moved from the operating position to the storage position. While a pivot connection is shown in the figures, it can be appreciated by a person skilled in the art, that other suitable connections such as, but not limited to, a sliding connection, a removable pin and slot connection, or any other suitable connection. In the preferred embodiment shown in
Each of the rack legs 4a and 4b and the support legs 6a and 6b preferably have a foot 20 affixed to the end thereof. These feet provide an enlarged contact area with the ground compared to the size of the rack legs or support lets and provide increased stability to the squat rack. In the preferred embodiment shown in
In another preferred embodiment, the feet can be fitted with wheels 24 mounted such that when the squat rack is tipped, it can be supported on the wheels 24 and moved with relative ease and without requiring lifting of the entire apparatus. In a preferred embodiment, shown in
The rack legs 4a and 4b include a series of cup like projections, commonly called J-cups 18 spaced longitudinally along the length of the rack leg. In the preferred embodiment shown in the figures, the j-cups are formed having a base portion 19 with upwardly projecting j-cups extending outwardly therefrom. However, as would be know to a person skilled in the art, the j-cups could also be formed by a detachable cup with a pin connection to be inserted into one of a series of holes in a rack leg, simple pins to be inserted into one of a series of holes in each rack leg and extending outwardly therefrom to support a barbell, or could include individual projections coupled to the rack leg at various intervals along the length thereof (as shown in
As an optional feature, the support legs extend above the pivot connections 16a and 16b and are configured to allow for the mounting of a chin up bar 24 therebetween. A person skilled in the art would appreciate that there are various methods for coupling the chin up bar 24 between the support legs 6a and 6b, however in the preferred embodiment shown in
In the preferred embodiment shown in the figures, the chin up bar could include internal threading and a bolt with external threading could be rotated into engagement with the chin up bar. The head of the bolt would be of a diameter which would prevent the bolt head from slipping through the hole. The head of the bolt would further be configured to be easily attached and removed with out the need for tools, as shown in
While the chin up bar shown in the figures is mounted on the support legs, it can be appreciated that it would be possible to mount the chin up bar on the rack legs.
When not in use, a support leg 6b can be fitted with a retaining mechanism to retain the chin up bay 24 in a position generally parallel to the support leg 6b. While there are various mechanisms that could be used to secure the chin up bar to the squat rack, in a preferred embodiment, the support leg 6b is out fitted with a cup 42 sized to receive one end of the chin up bar and a c-shaped spring clip to contain the bar at a position part way along the length of said bar. This preferred embodiment is shown in
The cross bars 8a and 8b allow for a scissor action that allows the first support leg 6a and second support leg 6b to move in the x-direction or width direction. The cross bars, 8a and 8b are pivotably coupled at the midpoint thereof to facilitate the scissor action, as shown in
A detail view of the slidable engagement is shown in
In one embodiment, the sliding mechanism has a plurality of positions where the sliding foot 54 could be locked in position within the slot 56. This embodiment allows for the user to choose from a variety of distances between the two support legs 6a and 6b and adjust the width of the squat rack in the x-direction. While any distance between the two legs could be used, a preferred embodiment allows for locking at predetermined positions, and particularly at positions such that the distance between the rack legs would be sized to accommodate a 4 ft, 5 ft, 6 ft and full sized 7 ft Olympic bar.
When transitioning the squat rack from the operating position, as shown in
While the cross bar arrangement is one embodiment of showing an example mechanism to allow for the squat rack to be reduced in the width direction or x-direction, other mechanisms could be used to achieve this result. For example, a telescoping horizontal brace between the support legs could also be used. Alternatively, a horizontal bar could be positioned and removably coupled between the two support legs when in the operating position and stored in a similar manner to the chin up bar in the storage position. In this embodiment the two sides of the squat rack could be strapped together in the storage position. Alternatively, at least one or more split rail horizontal bars could be mounted between the two support legs. These bar would be hinged in the middle thereof, such that in the storage position, the two halves of the at least one or more horizontal bars would be in a bent position relative to each other and in the operating position, the two halves of the at least one or more horizontal bars would be straight or aligned. In yet a further alternative embodiment, a cable bracing mechanism with a central cylinder is used to brace the support legs. One example of a cable bracing mechanism is found in “Theoretical Assessment of the Behavior of Cable Bracing System with Central Steel Cylinder” (Fanaie, N. Aghajani, S., Dizaj, E. A. (2016) Theoretical Assessment of the Behavior of Cable Bracing System with Central Steel Cylinder. Advances in Structural Engineering 19(3): 463-472. DOI: 10.1177/1369433216630052), the contents of which are incorporated by reference herein. Other mechanisms would be known to a person skilled in the art.
In a preferred embodiment, the squat rack 2 is reduced by at least 60 percent in the width direction when it is moved from the operating position to the storage position. Similarly, it is reduced by at least 70 percent in the length direction when it is moved from the operating position to the storage position. In a further preferred embodiment, the squat rack 2 is reduced by at least 90 percent in the width direction when it is moved from the operating position to the storage position. Similarly, it is reduced by at least 90 percent in the length direction when it is moved from the operating position to the storage position. In yet a further preferred embodiment, the width direction is reduced by 87 percent and the length direction is reduced by 78 percent. This reduction ratio has been found to be compact and show stability and strength when in the operating position.
The substantial reduction in width and length when moved from the operating position to the storage position allows for the squat rack to be easily moved and stored. This allows for the squat rack 2 to be set up in the operating position temporarily a user can remove the squat rack from a space after their exercise session. Thus, it is not required that a user have a dedicated semi-permanent space for their squat rack. The reduction in width and length also allows for the squat rack to be easily stored, for example, in a closet, without taking up a large volume of space and with a relatively small footprint compared to the operating footprint. It also allows for the relatively easy transport of the squat rack from one location to another, for example, while traveling, as complete disassembly is not necessary to achieve this reduction in the length and width directions.
The support legs and rack legs could be made to varying specifications, however in a preferred embodiment, of aluminum to reduce weight. In a further preferred embodiment, they are made of 3×3 gage steel.
The squat rack disclosed herewith has is particularly advantageous to people who prefer work outs at home, in the outdoors, or in smaller private settings. A squat rack which can move be easily collapsed or folded into a smaller, portable configuration provides a convenient and mobile option to utilize the benefits of a traditional stationary squat rack in a flexible range of indoor and outdoor environments.
Furthermore, the folding exercise rack can be used effectively by sports teams or personal trainers, coaches, and physiotherapist as they can set it up at their training facility, their client’s home, or in a local park, or at any facility or location that is convenient to their team or clients.
Although the invention has been described with reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the spirit and scope of the invention as outlined in the claims appended hereto.
The terms “comprise”, “comprises”, “comprised” or “comprising” may be used in the present description. As used herein (including the specification and/or the claims), these terms are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not as precluding the presence of one or more other feature, integer, step, component or a group thereof as would be apparent to persons having ordinary skill in the relevant art. Thus, the term “comprising” as used in this specification means “consisting at least in part of. When interpreting statements in this specification that include that term, the features, prefaced by that term in each statement, all need to be present but other features can also be present. Related terms such as “comprise” and “comprised” are to be interpreted in the same manner.
The term “and/or” can mean “and” or “or”.
Unless stated otherwise herein, the article “a” when used to identify any element is not intended to constitute a limitation of just one and will, instead, be understood to mean “at least one” or “one or more”
Although the above description includes reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art. Any examples provided herein are included solely for the purpose of illustration and are not intended to be limiting in any way. Any drawings provided herein are solely for the purpose of illustrating various aspects of the description and are not intended to be drawn to scale or to be limiting in any way. The scope of the claims appended hereto should not be limited by the preferred embodiments set forth in the above description but should be given the broadest interpretation consistent with the present specification as a whole.
The present application is a continuation of International PCT Application No. PCT/CA2021/051072 filed Jul. 30, 2021, which claims priority from U.S. Provisional Application No. 63/059,770 filed Jul. 31, 2020 both incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
63059770 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CA2021/051072 | Jul 2021 | WO |
Child | 18162400 | US |