The present invention relates generally to a folding knife and more particularly, relates to a knife having a biasing element for assisting the user in extending a blade of the knife.
A knife is a sharpened instrument typically having a handle portion and a blade. In knives which are not of the foldable or retractable type, the blade permanently extends outwardly from the handle and the knife is stored in a case or the like. Another type of knife is a foldable knife in which the position of the blade may be varied. Folding knives are an attractive option as these types of knives typically permit the blade to be conveniently and safely carried on a person's body (e.g., in a pocket of pants or a jacket) or in a member that is carried by the person (e.g., tackle box, backpack, toolbox, etc.) as well as permitting the knife to be safely stored at a location removed from the person (e.g., drawer, etc.). In many folding knife designs, the blade is positionable between an open position where the blade is extended and a closed position where the blade is retracted into the knife's handle.
A locking mechanism which is part of the handle permits the blade to be locked in the open position as well as the closed position so that the blade cannot freely move and extend from the handle. Folding knives with blades which automatically lock are desirable for safety purposes in that the blade is prevented from closing on the person's hand or fingers during use. However, there may be times when it is not desirable to have the blade locked in the open position, for example, when using the blade for performing a simple task, such as cutting a piece of string or tape or opening a container, like a box. In such situations, closure of the blade would not require the separate deactivation of a blade locking member, which may be the case had the blade been locked.
One of the disadvantages of conventional folding knives is that the task of opening and extending the blade can be a difficult task for some users. For example, this task can require significant pulling force to extract the blade from the folding knife housing. For some users, this is a difficult task and also presents the possibility that the user may become injured while exerting great effort in retracting the blade.
Thus, it would be desirable to provide a folding knife having means for allowing the user to readily open the blade, even when the user is wearing gloves or in situations where the user's hand is disabled to an extent which limits the mobility of the user's fingers in grasping and extracting a conventional blade from a folding knife.
A folding knife is provided and includes (a) a handle defining a blade cavity; (b) a blade having a first end which is pivotably coupled to the handle about a pivot; and (c) a biasing element disposed within the blade cavity of the handle.
The blade pivots about the pivot between a retracted position where the blade is substantially within the blade cavity and an extended position where the blade is substantially outside of the blade cavity. The blade has a detent formed therein on a lower edge thereof proximate to the pivot. The biasing element is disposed within the blade cavity of the handle. The biasing element has a fixed first end and an opposing free second end which has a rounded ball member formed thereat. As the blade is closed towards the retracted position, the blade contacts and deflects the second end of the biasing element until the rounded ball member of the second end engages the blade detent, resulting in the blade being held in the retracted position due to a contact force being generated between the rounded ball member and at least one surface of the detent. As the blade is pivotably opened, the rounded ball member of the second end slides out of engagement with the detent and energy stored in the deflected biasing element is released and directed into a biasing force against the blade causing the blade to pivot towards the extended position, thereby assisting a user in opening the blade.
Other features and advantages of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings.
The foregoing and other features of the present invention will be more readily apparent from the following detailed description and drawings of illustrative embodiments of the invention in which:
Referring first to
The handle portion 20 is formed of several components including a first outer handle member 22 and an opposing second outer handle member 24, which preferably are mirror images of one another. The first and second handle members 22, 24 can be formed from any number of suitable materials, including plastics (e.g., fiber reinforced plastics), metals, etc. The handle portion 20 also includes a first inner handle support plate 100 adjacent the first handle member 22, an opposing second inner handle support plate 110 adjacent the second handle member 24 and a handle core 120 disposed between the first and second handle plates 100, 110, which are all preferably formed of metal.
When these handle components are attached to one another, a blade cavity 26 is defined between the first and second inner handle plates 100, 110 and above the handle core 120. The blade cavity 26 is configured to carry the blade 60. The first handle member 22 includes a first end 28 and an opposite second end 30. At the first end 28, an opening 32 is formed for receiving a pin 40 about which the blade 60 pivots as will be described in greater detail hereinafter.
The first handle member 22 also includes a number of openings 34 formed therein which receive fasteners 36 for securely connecting the handle components. For example, screws 36 can be inserted into the openings 34 and used to attach the various handle component to one another. At the second end 30, an opening (bore) 38 is formed in the first handle member 22. The opening 38 can be used to receive a cord or the like to permit the folding knife 10 to be easily worn or hung.
The first inner handle plate 100 is attached to first handle member 22 and preferably is similarly or identically shaped thereto. The first handle plate 100 includes a first end 112 which aligns with the first end 28 and a second end 114 which aligns with the second end 30. A notch 71 is formed at the first end 112. The first inner handle plate 100 receives the fasteners 36, thus securely attaching the first handle member 22 to the first inner handle plate 100 and also receives the pin 40 for permitting the pivoting movement of the blade 60. The first handle plate 100 defines an upper side wall of the blade cavity 26.
The second handle member 24 is preferably a mirror image of the first handle member 22. The second handle member 24 includes a first end 42 and an opposing second end 44 with the first end 42 being spaced from first end 28 and the second end 44 being spaced from the second end 30. At the first end 42, an opening 46 is formed and is axially aligned with the opening 32 so that the pin 40 extends across the handle components with the blade 60 pivoting about the pin 40. The second handle member 24 also contains openings to receive fasteners 36 so as to attach the second handle member 24 to the second inner handle plate 110 as well as other handle components. An opening 38 is formed at the second end 44 for forming the bore that extends through the second ends 30, 44 as well as through the first and second inner handle plates 100, 110 and the core 120.
The second handle plate 110 is disposed adjacent the second handle member 24 and includes a first end 112 which aligns with the first end 42 and a second end 114 which aligns with the second end 44. The first end 112 has a notch 71 formed therein.
The core 120 is preferably a metal core member that extends substantially the length of the folding knife 10. As best shown in
Each of the first and second handle members 22, 24 includes a contoured upper edge 52 and an opposing contoured bottom edge 54. An outer surface of each of the first and second handle members 22, 24 can contain a roughened portion 56 which serves as a gripping portion to assist the user in grasping and holding the folding knife 10. This is particularly helpful when the folding knife 10 is used in less than ideal conditions, such as wet conditions due to rain or the knife 10 being used near a wet environment.
The blade 60 includes a first end portion 62 and a second, tipped portion 64 substantially opposite the first end portion 62. A sharpened cutting edge 66 is provided on blade 60 as part of a lower surface 63 thereof. Opposite the lower surface 63 is an upper surface 65 which includes ridges 68 formed at the first end portion 62. Preferably, the ridges 68 are formed on a curved portion of the upper surface 65 that extends from the first end to a location close to the first end. The ridges 68 act as a thumb engaging portion to which the user applies a force using his/her thumb to cause the blade 60 to close from the extended position. The blade 60 also has a pair of opposing pins 67 that are formed near the inner section of the ridges 68 and protrude outwardly from planar surfaces of the blade 60. The pins 67 are preferably axially aligned with one another and are circular members. Optionally, the pins 67 include a roughened peripheral surface to facilitate a gripping action between the user and the pins 67.
The pins 67 also serve as stoppers that limit the range of the extension of the blade 60, as shown in
When the blade 60 is fully retracted, the pins 67 are disposed above the upper edges 52 of the first and second handle members 22, 24. Preferably, the section of each upper edge 52 that is generally below each pin 67 when the blade 60 is fully retracted has a curved profile so as to permit the user to insert his/her fingers under the pins 67, thereby permitting the user to exert pressure on the pins 67 and push the blade 60 into an open position, as will be described in greater detail later. In the fully retracted position, a length of the upper surface 65 of the blade 60 will likely extend above the upper edges 52 of the first and second handle members 22, 24.
The biasing element 90 of the folding knife 10 is disposed in the blade cavity 26 between the first and second handle plates 100, 110. The biasing element 90 has a first end 92 and an opposing second end 94. The second end 94 is fixed in place as by a fastener or the like which attaches to at least the first and second handle plates 100, 110 (
According to the illustrated exemplary embodiment, the lower surface 63 of the blade 60 contains a detent 69 formed therein near one end of the sharpened cutting edge 66. The detent 69 is in the form of a notch cut into the blade 60. The exemplary detent 69 has a generally semi-circular shape. In other words, the shape of the detent 69 is complementary to the shape of the first end 92 of the biasing element 90 and therefore, according to the exemplary embodiment, the semi-circular detent 69 is sized and shaped to receive the arcuate ridge that defines the first end 92.
For purpose of simplicity only,
The blade 60 pivots about the pin 40 as shown by the arrow 41 in
Because the first end 92 is in the form of an arcuate ridge, the first end 92 can effectively roll against an opposing surface, such as the detent 69 and/or the planar surface 63. Another advantage of forming the first end 92 to have arcuate features which complement the arcuate features of the detent 69 is that the first end 92 is permitted to move within the detent 69 and slide into and out of the detent 69 with some ease. Conversely, if the first end 92 and detent 69 had sharp edges, such movement would not be possible and once the first end 92 aligned with the detent 69, the first end 92 would fall into and engage the detent 69 but would not easily become disengaged therefrom.
As the blade 60 is opened, there comes a point where the first end 92 of the biasing element 90 becomes removed from contact with the planar surface 63 due to a number of factors, including the length of the biasing element 90, the angle of the blade 60 relative to the lower surface 77, the location of the pivot point (pin 40) of the blade 60 relative to the biasing element 90, etc. Once the first end 92 is no longer in contact, the biasing element 90 assumes its rest position, where any stored energy has been released (as best shown in FIG. 7). The blade 60 continues to pivot about pin 40 until the blade assumes the fully extended position shown in FIG. 7. As will be described later, the locking feature 80 engages the first end 62 of the blade 60 to effectively releasably lock the blade 60 in the fully extended position. In this fully extended position, the first end 92 of the biasing element 90 and the first end 62 of the blade 60 are spaced from one another.
The blade 60 is shown in a further closed position in FIG. 10. In this position, the biasing element 90 is further deflected (resulting in more energy being stored therein) at the first end 92 and the arcuate ridge formed at the first end 92 remains in contact with the surface 63. As one will appreciate the straight-line distance between the ends 92, 94 of the biasing element is greater in the condition of the biasing element in
Thus, the slope of the detent 69 relative to the degree of curvature of the first end 92 is such that, in the fully retracted position, the biasing element 90 generates a contact force on the blade 60 that acts generally horizontal, as indicated by the arrow 53, and this causes a moment (torque) where the blade 60 is urged in a counter-clockwise direction. At the same time, the biasing element 90 has an upward force component; however, this upward force component is overcome by the generally horizontal contact force generated between the biasing element 90 and the blade 60. This results in the blade 60 remaining in the closed, fully retracted position. The location of the detent 69 and the length of the biasing element 90 should be selected so that in the fully retracted position, the upward deflection force of the first end 92 is overcome by a counterforce, thereby permitting the first end 92 to seat against the blade 60 without causing a clockwise, opening motion by the blade 60. The location of the detent 69 relative to the pivot point (i.e., pin 40) of the blade 60 is also carefully selected such that the above-described forces result and the blade 60 remains in the closed position.
In order for the upward force component of the biasing element 90 to overcome the generally horizontal force component, the length of the biasing element 90 must decrease; however, the seating position of the first end 92 within the detent 69 does not permit such length reduction. However, once the user lifts the blade 60 slightly and begins to pull the blade 60 in a clockwise direction, the first end 92 is freed from its static position within the detent 69 and is free to move within the detent 69. Accordingly, the length of the biasing element 90 can now decrease and as it decreases, the first end 92 tracks along the sloped surface of the detent 69. As the first end 92 moves along the detent 69, the horizontal force component is reduced or eliminated, thereby resulting in the upward force component being the predominant force component generated by the biasing element 90. This upward deflection force continues as the first end 92 clears and is free from the detent 69 and contacts the surface 63. In other words, once the first end 92 is removed from the position where the upward deflection force is the inferior force and is placed in a position where the upward deflection force is the superior force, the natural deflection of the biasing element 90 acts against the blade 60 to cause a clockwise rotation of the blade 60 about the pivot 40.
In one exemplary embodiment, the biasing element 90 comprises a an elongated spring element; however, it will be understood that a number of different springs having different configurations can be used, e.g., a leaf spring, so long as the spring functions in the manner described hereinbefore.
The biasing element 90 is thus configured to assist the user in opening the blade 60 by applying a force (in the clockwise direction) to the blade 60. The biasing element 90 thus provides a very simple yet effective mechanism for assisting the user in opening the blade 60. This overcomes the disadvantage of conventional folding knives in which a significant amount of force is needed to pull the blade from the fully retracted position to a fully extended position. For some individuals, the opening of the blade can be a difficult task and thus, the present arrangement provides a folding knife which can be used easily by a larger number of the consumers.
Referring to
The locking feature 80 is constructed so that it is a biased member (e.g., a tongue like member) that is formed as part of the second handle plate 110 with the locking feature 80 being positionable between a lock position and an unlock position. Because the locking feature 80 is formed as part of the second inner handle plate 110, the locking feature 80 extends a length of the blade cavity 26 and as shown in the Figures, and the locking feature 80 extends along the blade cavity 26 on one side of the biasing element 90.
The locking feature 80 is formed by altering the construction of the second inner handle plate 110 so as to create a biased tongue that flexes inwardly and outwardly near the first end 62 of the blade 60 depending upon the position of the blade 60. For example, the locking feature 80 (biased tongue) can be formed by forming one or more openings 81 and one or more slots 83, to create the biasing characteristics of the locking feature 80. The locking feature 80 has a locking surface 82 that preferably has a complementary surface profile as the first end 62 of the blade 60 (as shown in
The locking feature 80 is constructed so that in the normal rest position, the locking feature 80 assumes a deflected position where the locking surface 82 flexes inwardly into the blade cavity 26 and into a position where the aforementioned interference is created between the locking surface 82 and the blade 60. In other words, the locking feature 80 is naturally biased so that it assumes a position with the locking feature 80 (and locking surface 82) being inwardly deflected unless some interference is created to prevent the locking feature 80 from assuming this deflected position. When the blade 60 is in the retracted position (
The locking feature 80 has a roughened surface profile 87 at an upper edge thereof near the locking surface 82 to assist the user in disengaging the locking feature 80 from its locked position and thereby free the blade 60 for pivoting movement. To move the locking feature 80 from the locked position to the unlocked position, the user simply contacts the profile 87 and applies a force in the direction towards the second handle member 24, thus causing the locking feature 80 to flex outwardly. In other words, the user overcomes the biasing force by applying a greater force in an opposite direction as the direction of the biasing force. The locking surface 82 disengages from the first end 62 of the blade 60, thereby permitting the blade 60 to pivotally rotate about 40 and into the blade cavity 26. Once the locking feature 80 is removed from the axis of rotation of the blade 60, the blade 60 can freely pivot into the cavity 26 where it then makes contact with the biasing element 90 as previously described. Once the first end 62 of the blade 60 is pivoted a predetermined amount, it becomes disposed within the cavity 26 so as to prevent the locking feature 80 from flexing inwardly and therefore, the user can remove the applied force to the locking feature 80. The locking feature 80 will likely flex slightly inward once the applied force is removed; however, the locking feature 80 will encounter the first end 62 of the blade 60, which prevents its further inward flexing, while permitting the blade 60 to continue to pivotally rotate.
The present folding knives thus provide reliable, easy to use folding knives that each includes a biased blade to assist the user in opening the blade and also a locking feature that is biased such that it automatically locks the blade when the blade is opened.
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
551052 | Shonnard et al. | Dec 1895 | A |
552928 | Russel | Jan 1896 | A |
616689 | Ruettgers | Dec 1898 | A |
1603914 | Hermann | Oct 1926 | A |
1701027 | Brown | Feb 1929 | A |
2263415 | Berg et al. | Nov 1941 | A |
2407897 | Newman | Sep 1946 | A |
3868774 | Miori | Mar 1975 | A |
4451982 | Collins | Jun 1984 | A |
4604803 | Sawby | Aug 1986 | A |
4612706 | Yunes | Sep 1986 | A |
4802279 | Rowe | Feb 1989 | A |
5095624 | Ennis | Mar 1992 | A |
5111581 | Collins | May 1992 | A |
5131149 | Thompson et al. | Jul 1992 | A |
D336602 | Thompson et al. | Jun 1993 | S |
5802722 | Maxey et al. | Sep 1998 | A |
5815927 | Collins | Oct 1998 | A |
6079106 | Vallotton | Jun 2000 | A |
6145202 | Onion | Nov 2000 | A |
6490797 | Lake et al. | Dec 2002 | B1 |
6591504 | Onion | Jul 2003 | B1 |
6651344 | Cheng | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
28765 | Jan 1884 | DE |
29469 | Jun 1884 | DE |
493741 | Dec 1918 | FR |
1069862 | Jan 1953 | FR |
1171740 | Apr 1957 | FR |
Number | Date | Country | |
---|---|---|---|
20040020058 A1 | Feb 2004 | US |