1. Field of the Invention
The present disclosure relates generally to a folding knife, and particularly to a folding knife with a locking mechanism.
2. Description of the Related Art
Folding knives enjoy wide popularity, particularly among sportsmen, campers, hikers, and many others engaged in outdoor activities. Common elements to folding knives include a handle and a blade pivotally connected to an end of the handle so that the blade pivots with respect to the handle between an open position in which the blade is extended away from the handle, and a closed position in which the blade is at least partially received within the handle. Many folding knives also include a locking mechanism to maintain the blade in the open position and/or the closed position.
Examples of folding knives, including folding knives with locking mechanisms, may be found in U.S. Pat. Nos. 1,454,665; 1,743,022; 4,040,081; 4,173,068; 4,404,748; 4,451,982; 4,502,221; 4,612,706; 4,719,700; 4,776,094; 4,805,303; 4,811,486; 4,837,932; 4,893,409; 4,974,323; 4,979,301; 5,044,079; 5,060,379; 5,095,624; 5,111,581; 5,293,690; 5,325,588; 5,331,741; 5,425,175; 5,426,855; 5,502,895; 5,515,610; 5,537,750; 5,546,662; 5,596,808; 5,615,484; 5,685,079; 5,689,885; 5,692,304; 5,737,841; 5,755,035; 5,802,722; 5,815,927; 5,822,866; 5,826,340; 5,887,347; 5,964,036; 6,079,106; 6,154,965; 6,338,431; 6,378,214; 6,427,335; 6,438,848; 6,490,797; 6,594,906; D348,599, and D373,296; and U.S. Patent Application Nos. 2002/0157260; 2003/0070299; and 2004/0031155, the entire disclosures of which are herein incorporated by reference for all purposes.
In the following description and the accompanying figures, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details.
Embodiments of the present invention relate generally to folding knives. For the purpose of this disclosure, the portion of a knife handle into which the blade is received while folded, generally including a slot or channel, will be referred to as the top or front, while the portion opposite will be referred to as the back or bottom of the handle or knife. Where practical, depictions of knives will be oriented in the figures accordingly, to avoid confusion. These and other terms that logically follow, such as side and end, are used for convenience and clarity, and do not limit the scope of the invention. Likewise, directional terms, such as force vectors and rotational directions, are to be understood with reference to the structure as shown in the accompanying figures, and are not intended to limit the scope of the invention.
From the open position, the blade 22 may be folded towards the handle 24, pivoting about pivot axis P, into the closed position. In the closed position, blade 22 extends along handle 24. Rotation of the blade toward the closed position may also be limited by any of a variety of methods, one of which is described below.
While the blade 22 may be any suitable shape, in the pictured embodiment, the blade 22 includes an aperture 30. The blade 22 also includes a gate element 32 configured to provide access to the aperture 30. The gate element 32 is coupled at a first end 33 thereof to the blade 22 and configured to pivot or flex such that a second end 35 is movable between a closed and an open position. The gate element 32 is configured such that it is free to move when the blade 22 is in the closed position. However, when the blade 22 is moved to the open position, the second end 35 of the gate element 32 comes to bear against an engagement surface 25 of the handle 24 such that the gate element 32 is fixed in its closed position. Additionally, in the present embodiment, contact of the gate element 32 with the engagement surface 25 serves to limit travel of the blade 22 toward the open position. Accordingly, the open position of the blade 22 can be defined as the point in rotation of the blade 22 at which the gate element 32 contacts the engagement surface.
The aperture 30 and gate element 32 may be used to serve any suitable purpose. For example, the aperture 30 and gate element 32 may provide means for storing the knife by hanging the knife on rings, cords, etc. Additionally, or alternatively, gate element 32 may allow the user to pivot blade 22 to the open position by applying an opening force Fo on the gate element and/or to pivot blade 22 to the closed position by applying a closing force Fc on the gate element 32. While the blade 22 is in the open position, the gate element 32 provides a stable platform against which a user may place a thumb to apply pressure against the blade during a cutting operation.
Although gate element 32 is shown to be in the form of a pivoting closure, any suitable structure configured to provide access to one or more apertures may be used, such as a leaf spring, sliding gate, etc. Additionally, although knife 20 is shown to include one aperture 30 and one gate element 32, any suitable combination of apertures and gate elements may be used, including no apertures and/or no gate elements.
Handle 24 includes a handle element 21 and a locking mechanism 28. The combined handle element 21 and locking mechanism 28 form a skeletal type handle through which the cutting edge of the blade 22 may be visible, but is nevertheless protected from inadvertent contact by the cooperation of the handle element 21 with the locking mechanism 28. The handle element 21 forms a back portion of the handle 24 and is provided with a contoured shape to cooperate ergonomically with a user's hand while in use. The locking mechanism 28 forms a front portion of the handle 24. Components of the locking mechanism 28 are contoured to comfortably receive a user's fingers wrapped therearound while in use, as shown in
Handle element 21 includes first and second ends 27, 29. Tang 23 of blade 22 is pivotally connected to handle element 21 at the first end 27. Handle element 21 includes a receiving notch 31, shaped and configured to receive a part of the locking mechanism 28, as further described below.
The locking mechanism 28 includes short toggles 36 and 37 and long toggles 38 and 39. It may be seen, with reference to
For the purposes of this description, the structure and operation of the knife 20 will largely be described with reference to
Referring now to
Rotation points such as pivot points 44, 46, and 48, as well as pivot axis P, define points at which various components of the knife 20 are rotatably coupled such that the components so coupled are rotatable with respect to each other. The coupling at these points may be effected by the use of rivets, nuts and bolts, pins, bushings, bearings, or any other type of fastener that fulfills the functional requirements.
The first and second pivot points 44, 46 traverse the knife 20 such that, in the case of the first pivot point 44, both short toggles 36 and 37 are coupled to the handle by a single fastener, and, in the case of the second pivot point 46, both long toggles 38 and 39 are coupled to the blade by a single fastener. Third pivot point 48 comprises two separate fasteners, a first fastener coupling the long and short toggles 36 and 38 on the first side of the knife 20, and a second fastener coupling the long and short toggles 37 and 39 on the second side of the knife, as shown in
Also shown in
A first line 47 is defined by the short toggle 36 between the first and third pivot points 44, 48, while a second line 49 is defined by the long toggle 38 between the second and third pivot points 46, 48. A toggle angle T is defined by the angle of the first line 47 with respect to the second line 49.
While the blade 22 is in the closed position, as shown in
When the blade 22 is moved toward the open position, the pivot point 46 follows an arcuate path around the pivot axis P of the blade 22. As it does so, the long toggle 38 rotates about second pivot point 46 with respect to the blade 22, and moves, first, toward the second end 29 of the handle element 21 as the blade 22 approaches a mid-point of travel, and, as the blade passes the mid-point of travel toward the open position, moves away from the second end 29 of the handle element 21. As a result of the movement of the long toggle 38, the third pivot point 48 also moves relative to the handle 22. Because the short toggle 36 is coupled to the handle element 21 at first pivot point 44, movement of the third pivot point 48 causes the short toggle 36 to rotate with respect to the handle element 21 about the first pivot point 44, and with respect to the long toggle 38 about third pivot point 48.
While the blade 22 is in the closed position, as shown in
The shape of the second end 42 of the long toggle is selected such that the second end 42 contacts the handle element 21 when the blade 22 is in the open position. Accordingly, the short toggle 36 cannot rotate in a counterclockwise direction beyond the position achieved when the blade 22 is in the open position. Therefore, in order for the blade to be moved back toward the closed position, the short toggle 36 must rotate in a clockwise direction, and the third pivot point must rotate away from the handle 22.
Because the torsion spring 52 applies a counterclockwise rotational bias to the short toggle 36, the spring resists movement of the blade 22 away from the closed position while the blade is in the closed position. When the blade is rotated beyond the midpoint of travel toward the open position, the bias of the spring 52 urges the blade 22 toward the open position and resists movement of the blade away from the open position while the blade is in that position.
It will be recognized that, while the toggle angle T is equal to or greater than 180°, no amount of force on the blade 22 toward the closed position will cause the short toggle 36 to spontaneously rotate in the clockwise direction. Thus, the blade 22 is automatically locked in the open position by the toggle action of the locking mechanism 28 and the bias of the spring 52. On the other hand, pressure on a heel 50 of the short toggle 36 sufficient to overcome the spring bias will cause the short toggle 36 to rotate away from its locked position and allow the blade 22 to freely rotate to the closed position.
According to one embodiment, the locking mechanism moves easily into the locked position when the blade 22 is rotated to the open position. According to an alternate embodiment, the blade 22 reaches the open position before the locking mechanism 28 reaches the locked position. That is to say that the blade 22 contacts the handle element 21 or other limiting feature while the toggle angle is just shy of 180°. At this point, the user applies downward pressure at the third pivot point 48, thereby loading all the rotation points of the knife 20, and forcing the locking mechanism 28 into the locked position. In this way, constant tension is maintained on the locking mechanism while the blade 22 is in the open position, which eliminates movement and play from the blade, and further discourages spontaneous release of the locking mechanism 28.
According to an embodiment of the invention, the fastener at the first pivot point 44 is provided with an eccentric boss and threaded end. Accordingly, by rotating the fastener relative to the handle element 21, the precise position of the first pivot point 44 can be adjusted, thereby adjusting the operation of the locking mechanism 28. To accomplish this, a nut affixed to the threaded end of the fastener is loosened and the fastener is rotated to adjust the position of the first pivot point 44. The nut is then tightened to lock the fastener in place.
The safety lock 160 includes a cam-wheel 162, and a locking rod 164 coupled at a first end 168 to the handle element 121. The locking rod 164 has a downward bias and bears against the cam-wheel 162. A second end 170 of the locking rod extends toward the tang 123 of the blade 122. The tang 123 includes a locking notch 166 positioned to receive the second end 170 of the locking rod 164 while in the locked position.
To lock or unlock the safety lock, a user merely moves the cam-wheel 162 with a thumb or finger. While the cam-wheel 162 is in the unlocked position, as shown in
Though not shown in the figures, the cam-wheel may be provided with a détente to stop rotation of the cam-wheel at the position shown in
Although various embodiment of the invention have been described here to illustrate the principles of the invention, those skilled in the art will recognize that various changes in form and detail may be made. Embodiments of the invention may not include all of the features disclosed here with reference to a particular embodiment. Additionally, features disclosed here may be combined with known structures of devices. such combinations also fall within the scope of the invention.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application is a divisional application of U.S. patent application Ser. No. 11/374,289, filed Sep. 16, 2005, now pending, which application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11374289 | Sep 2005 | US |
Child | 12699573 | US |