The disclosure relates generally to folding mechanisms for use in adjustable devices, such as, for example, a folding mechanism for a head restraint that accommodates original equipment manufacturer (OEM) packaging and provides rear visibility.
The size of head restraints in vehicle seats have increased due to stricter global safety requirements. Therefore, it is desirable to enable the head restraints to have folding mechanisms in order to maximize rear visibility when no occupant is in the seat.
According to one embodiment of the present invention, a folding mechanism for a head restraint may include a support member and a latch. The support member may have a first axis and a projection that projects outward from the support member. The latch may be attached to the head restraint and rotatable around the first axis and may have a notch that can receive the projection. The latch may be flexed to pivot a portion of the latch around a second axis in order to move between an unlocked position where the projection is not received in the notch such that the head restraint is rotatable around the support member, and a locked position where the projection is received in the notch such that the head restraint is not rotatable around the support member.
According to another embodiment of the present invention, a head restraint assembly movable with respect to a seat may include a head restraint, at least one head restraint tube extending from the seat, a support member and a latch. The support member may be attached to the at least one head restraint tube and may have a first axis. A projection may project outward from the support member. The latch may be attached to the head restraint and rotatable around the first axis and may have a notch that can receive the projection. The latch may be flexed to pivot a portion of the latch around a second axis in order to move between an unlocked position where the projection is not received in the notch such that the head restraint is rotatable around the support member, and a locked position where the projection is received in the notch such that the head restraint is not rotatable around the support member.
According to yet another embodiment of the present invention, a method of manufacturing a folding mechanism for adjusting a head restraint relative to a seat may include attaching a top portion of the latch to the head restraint and inserting a support member of a head restraint into a hole within a latch. The method may further include moving a projection on the support member into a notch on the latch and attaching a head restraint cover around at least the latch.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
Features, aspects, and advantages of the present invention will become apparent from the following description, appended claims, and the accompanying exemplary embodiments shown in the drawings, which are briefly described below.
Referring generally to the figures, disclosed herein is a latch mechanism or folding mechanism for a head restraint, as shown according to exemplary embodiments. The present disclosure relates generally to a folding mechanism for use in coupling a first member to a second member and allowing one member to either lock or move relative to the second member. In one exemplary embodiment, the folding mechanism may allow a head restraint to be either in a locked position or an unlocked position with respect to other components within the vehicle, such as the vehicle seat or the head restraint support tubes (which may be attached to a vehicle seat). Accordingly, while the folding mechanism is in the unlocked position (e.g. upon the release and/or unlocking of the folding mechanism), the user may selectively control the position and movement (e.g. rotation, tilt, etc.) of the head restraint and may fold or tilt the head restraint between a first position and a second position. For example, the head restraint may be moved between folded and upright positions. Alternatively or additionally, the folding mechanism may be used as a tilt mechanism to tilt the head restraint. Once the head restraint has been moved to the desired position, the folding mechanism may lock the head restraint in the desired position, such as an upright configuration, into the locked position. In the locked position, the head restraint position may be fixed.
The folding mechanism and methods described herein may be used in a variety of moving and locking applications and methods. For example, the folding mechanism may be used to move, pivot, and/or lock head restraints or vehicle seat rows. The folding direction and amount of travel may vary according to the desired configuration. The folding mechanism may also be useful in any non-vehicle application wherein it would be desirable to use a folding mechanism to control the latching of two members or elements.
The head restraint folding mechanism may allow the vehicle seat to be folded without head restraint removal and may accommodate original equipment manufacturer (OEM) packaging constraints. While a head restraint with the folding mechanism is locked in its upright position, the head restraint is fully functional and meets the targeted performance required by various OEM and global safety requirements. Further, the folding mechanism provides a lower cost and lower mass solution to allow the head restraint to be movable and lockable.
According to one embodiment of the present invention as depicted in
Referring to
The folding mechanism 26 may be used to allow the head restraint 28 to move in a variety of different ways, directions, amounts, and axes, according to the desired configuration. With each of the head restraint assemblies, the folding mechanism 26 may allow the head restraint 28 (and/or the head restraint tubes 30) to fold, move, pivot, or tilt any number of degrees. For example, with the folding mechanism 26, the head restraint 28 may be moved 180 degrees relative to either the head restraint tube 30 or the vehicle seat 22 in either a forward or rearward direction. The folding mechanism 26 may also allow the head restraint 28 (and/or the head restraint tubes 30) to be locked or secured into multiple different positions or angles, according to the desired configuration.
It may be beneficial to fold the head restraint 28 out of the way when no occupant is seated (in order to, for example, fold the vehicle seat 22 or to maximize rear visibility), as shown in
According to one embodiment, the folding mechanism 26 may allow the head restraint 28 to have a high pivot setup 36, as shown in
Alternatively or additionally, the folding mechanism 26 may allow the head restraint 28 to have a low pivot setup 40, as seen in
Alternatively or additionally, the folding mechanism 26 may allow the head restraint 28 to have a tilt setup 48, as shown in
The folding mechanism 26 may be used within the head restraint assembly of any of the embodiments shown in
As shown in
The support member 38 may hold or support the head restraint 28 and allow the head restraint 28 to move between positions. As described further herein, the support member 38 may also interact with the latch 50 to allow the head restraint 28 to be locked into different positions.
According to one embodiment as shown in
The head restraint 28 may rotate around at least a portion of the support member 38. Accordingly, the support member 38 may define a first axis 39 or pivot point for the head restraint 28 to rotate, pivot, or move around. For example, the support member 38 may extend along approximately the y-axis (the lateral direction), while the head restraint tubes 30 may extend along approximately the z-axis (the vertical direction). Accordingly, the head restraint 28 may rotate around approximately the y-axis.
The support member 38 may include at least one lock pin or projection 52 to interact with the latch 50. The projection 52 may extend or project outward from the support member 38 in the x-z plane. The projection 52 may be formed integrally with the support member 38 or it may be attached thereto. As shown in
As shown in
In order to lock and unlock the latch 50 to the support member 38 and to function as a lock spring, the latch 50 may be flexed relative to the support member 38. Accordingly, the latch 50 may be constructed out of a flexible material, including but not limited to metal (such as spring steel) or plastic. The latch 50 may be moved or temporarily deformed and may return to its original configuration and geometry.
The latch 50 may extend in a lengthwise direction and may have a first end and a second end. The first end and second end may be on opposite ends along the lengthwise direction of the latch 50.
As shown in
The latch top 60 may be statically attached to the head restraint 28, such that the latch top 60 and the head restraint 28 do not move relative to each other. However, it is anticipated that the latch top 60 may be attached to the head restraint 28 in such a way as to allow the latch top 60 to move relative to the head restraint 28. The latch top 60 may be attached or fixed to the head restraint 28 through a variety of different mechanisms, including features in the plastic covers 33 or 34, screws, or bolts. The head restraint 28 may have an inner feature or protrusion to function as a fulcrum for the latch 50 to bend or flex at least partially around, defining the second axis 62. As described further herein, as the latch 50 moves around the second axis 62, the latch 50 may be moved between the locked position 44 and the unlocked position 45.
The support member 38 may extend through a portion or hole, such as the latch cover or sides 66, along the second end of the latch 50 to allow the latch 50 to rotate about the first axis 39 within support member 38 in order to change the position of the head restraint 28. The diameter or height of the portion or hole of the latch 50 may be sufficiently larger than the diameter or height of the support member 38 to allow the second end of the latch 50 to move relative to the support member 38. As shown in
Due to the nature of the latch 50 (e.g. the flexibility of the spring steel), the latch 50 may be flexed, as shown in
In order to flex the latch 50 to lock and unlock (or release) the folding mechanism 26, a release device or mechanism 32 may be used and integrated into the head restraint 28, as shown in FIGS. 11 and 30A-30C. When the release mechanism 32 is activated to unlock the folding mechanism 26, the latch 50 may flex to unlock the folding mechanism 26 and the position of the head restraint 28 may be adjusted relative to the head restraint tube 30 or the vehicle seat 22. The release mechanism 32 may move the latch 50 by applying a force to the latch 50. When the latch 50 is pushed or pulled by this force, the latch 50 flexes or bends and moves with respect to both the head restraint 28 and the support member 38. When the latch 50 is flexed, the folding mechanism 26 may unlock to move the head restraint 28, as described further herein.
A variety of different mechanisms may be used within the release mechanism 32. For example, the release mechanism 32 may push or pull the latch 50 in order to cause the latch 50 to flex. The latch 50 may accommodate any release mechanism 32, including but not limited to a push button, a cable, a strap, or a handle.
As shown in FIGS. 11 and 30A-30C, the release mechanism 32 may an extending post attached to a push button. When the push button is pushed by the user, the release mechanism 32 may transfer the force to the latch 50 by pushing the latch 50. According to another embodiment, the release mechanism 32 may be a cable release that pulls the latch 50. Since the latch 50 is statically attached to the head restraint 28, the latch 50 will flex with the force from the release mechanism 32 and the second end of the latch 50 will move relative to the first end (the latch top 60).
As shown in
The release mechanism 32 may interact with any portion of the latch 50 and the push/pull point 64 may be located anywhere along the latch 50. For example, as shown in
In order to lock and unlock the latch 50, the latch 50 may interact with the projection 52 on the support member 38. For example, as shown in
As shown in
In order to release the projection 52 from the notch 58 so that the position of the head restraint 28 may be changed or adjusted, the release mechanism 32 may push or pull the latch 50 to flex and move the second end of the latch 50, which moves the folding mechanism 26 out of the locked position 44 and into the unlocked position 45, as shown in
When the latch 50 is flexed or bent, the latch 50 may pivot about a latch bend point or second axis 62. The second axis 62 may be approximately perpendicular to the first axis 39. For example, the first axis 39 may approximately extend along the y-axis and the second axis 62 may approximately extend along the x-axis (the longitudinal direction). Accordingly, when the latch 50 is flexed, since the latch top 60 is fixed to the head restraint 28, the second end of the latch 50 may move, as described further herein and as shown in
Due to the spring-like nature of the latch 50, the latch 50 may be pre-loaded or biased to rotate about the second axis 62 and move back toward the projection 52, thereby engaging the notch 58 and the projection 52 into the locked position 44. Accordingly, when the folding mechanism 26 is rotated such that the notch 58 and the projection 52 are close or in contact, the folding mechanism 26 may automatically move back into the locked position 44 by moving the notch 58 back around the projection 52. The bias force of the latch 50 to move toward the projection 52 eliminates the need for a separate lock spring.
As shown in
As shown in
The notches 58 and 59 may be shaped and sized similarly or differently according to the desired configuration. For example, one of the notches may have a tighter lock with the projection 52 in the locked position 44 (the primary lock) and the other of the notches may have a looser lock with the projection 52 in the locked position 44 (the secondary lock) to further prevent any looseness. Either the upper notch 58 or the lower notch 59 may optionally be used as the primary lock for the projection 52.
According to one embodiment, the upper notch 58 may optionally function as the primary lock and the lower notch 59 may optionally function as the secondary lock, providing slightly more clearance for the projection 52 when the latch 50 is locked. Accordingly, the lower notch 59 may only contact the projection 52 during significant loading or strength testing.
It is anticipated that the folding mechanism 26 may have multiple notches 58 and/or the support member 38 may have multiple projections along their circumferences. Accordingly, the folding mechanism 26 may be locked into multiple different positions around the support member 38. It is further anticipated that the projections 52 may be located on the latch 50 and the notches 58 may be located along the support member 38.
According to another embodiment as shown in
The position stop 68 may be a projection or extension along the second end of the latch 50. While the latch 50 is not flexed or in the locked position, the position stop 68 may come into contact with the projection 52 upon rotation (e.g. rotating the notch 58 away from the projection 52).
The position stop 68 may be located along a different side around the support member 38 from the notch 58. Accordingly, when the head restraint 28 is rotated a particular number of degrees (such as, approximately)90° from where the notch 58 and projection 52 may meet, the projection 52 may hit the position stop 68 to stop the head restraint 28 from rotating any further. The position stops 68 may be used instead of additional notches 58 and may prevent the folding mechanism 26 from moving any further without locking the folding mechanism 26 into place.
According to another embodiment, the folding mechanism 26 may include a return spring 54 to help rotate the folding mechanism 26 (and, therefore, the head restraint 28) in a particular direction around the support member 38. As shown in
According to another embodiment as shown in
The overmold 72 and the support plate 74 may be constructed out of a variety of materials, including but not limited to plastic or metal. According to one embodiment, the overmold 72 may be plastic and the support plate 74 may be spring steel.
The latch 70 may also fit and move around the support member 38. Accordingly, the overmold 72 and the support plate 74 may include a clearance slot 92 for the support member 38 to be located within.
As shown in
In order to attach with the overmold 72, the support plate 74 may include locating features 78. The locating features 78 may be used to locate the support plate 74 within the overmold 72 by mating with corresponding structures within the overmold 72. For example, the locating features 78 may be apertures that mate with posts in the overmold 72 and/or may be posts that mate with apertures in the overmold 72. Accordingly, the support plate 74 may support the overmold 72 and may be compatible with the plastic lock features.
As shown in
According to one embodiment, the overmold 72 may include a second notch 89 to interlock with the projection 52. The overmold 72 may also include molded position stops 68 on either side of the overmolded latch 70 to stop the folding mechanism 26 from pivoting past a certain point (such as the folded position 46) by contacting the projection 52.
According to anther embodiment as shown in
According to another embodiment and as shown in
As shown in
In order to unlock the latch 70 and move the folding mechanism 26 between the locked position 44 and the unlocked position 45, the latch 70 may be pushed or pulled (by the release mechanism 32), which flexes, bends, or pivots the latch about a pivot axis 82 and displaces the latch 70. With the displacement of the second end of the latch, the latch may release the projection 52 from the notch 88 within the overmold 72 and the projection may clear the notch 88, thereby unlocking the latch 70 and moving into the unlocked position 45, as shown in
Once the latch 70 is unlocked, the folding mechanism 26 may be rotated or pivot around the support member 38 into, for example, the folded position 46, as shown in
The folding mechanism 26 may be manufactured and assembled with a variety of different methods. According to one embodiment, the latch top 60 may be attached to an inner portion of the head restraint 28. The support member 38 may be inserted through a hole or aperture within the latch 50, such that the latch 50 may rotate around the support member 38 when in the unlocked position 45. The projection 52 may be moved or inserted into the notch 58 on the latch 50 to place the latch 50 in the locked position 44. The head restraint covers 33 and 34 may be attached together around the outside of at least the latch 50.
It is anticipated that the various embodiment and components described herein may be used in conjunction with each other and in variety of different configurations.
The embodiments disclosed herein a folding mechanism to be adjusted with a simplified folding mechanism. Besides those embodiments depicted in the figures and described in the above description, other embodiments of the present invention are also contemplated. For example, any single feature of one embodiment of the present invention may be used in any other embodiment of the present invention.
Given the disclosure of the prevent invention, one versed in the art would appreciate that there may be other embodiments and modifications within the scope and spirit of the invention. Accordingly, all modifications attainable by one versed in the art from the present invention within the scope and spirit of the present invention are to be included as further embodiments of the present invention.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/845,323, filed Jul. 11, 2013, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61845323 | Jul 2013 | US |