The present disclosure generally relates to shields suitable for shielding components on a printed circuit board from electromagnetic interference (EMI)/radio frequency interference (RFI).
This section provides background information related to the present disclosure which is not necessarily prior art.
Electronic equipment often generates electromagnetic signals in one portion of the electronic equipment that may radiate to and interfere with another portion of the electronic equipment. This electromagnetic interference (EMI) can cause degradation or complete loss of important signals, thereby rendering the electronic equipment inefficient or inoperable. To reduce the adverse effects of EMI, electrically conducting (and sometimes magnetically conducting) material is interposed between the two portions of the electronic circuitry for absorbing and/or reflecting EMI energy. This shielding may take the form of a wall or a complete enclosure and may be placed around the portion of the electronic circuit generating the electromagnetic signal and/or may be placed around the portion of the electronic circuit that is susceptible to the electromagnetic signal. For example, electronic circuits or components of a printed circuit board (PCB) are often enclosed with shields to localize EMI within its source, and to insulate other devices proximal to the EMI source.
As used herein, the term electromagnetic interference (EMI) should be considered to generally include and refer to both electromagnetic interference (EMI) and radio frequency interference (RFI) emissions, and the term “electromagnetic” should be considered to generally include and refer to both electromagnetic and radio frequency from external sources and internal sources. Accordingly, the term shielding (as used herein) generally includes and refers to both EMI shielding and RFI shielding, for example, to prevent (or at least reduce) ingress and egress of EMI and RFI relative to a housing or other enclosure in which electronic equipment is disposed.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
Disclosed herein are exemplary embodiments of frames for EMI shielding apparatus and methods for making such frames. Other aspects of the present disclosure relate to EMI shielding apparatus that include such frames and covers or lids attachable thereto, where the EMI shielding apparatus may be used for providing electromagnetic interference (EMI) shielding for one or more components on a substrate. Further aspects of the present disclosure relate to methods of providing EMI shielding.
In an example embodiment, a method generally includes forming a frame to have at least a first frame portion, a second frame portion, and a common sidewall including at least a portion shared by and connecting the first and second frame portions. The second frame portion is repositioned from being disposed within a footprint of the first frame portion to outside the footprint of the first frame portion.
Another exemplary embodiment includes a method relating to providing electromagnetic interference (EMI) shielding for one or more components on a substrate. In this example, the method generally includes forming a piece of material having a first frame portion and a second frame portion initially disposed within a footprint of the first frame portion with a common sidewall portion shared by and connecting the first and second frame portions. The second frame portion is repositioned outside the footprint of the first frame portion. The method may also include attaching at least one cover to at least one of the first and second frame portions.
Another exemplary embodiment includes a frame for an EMI shielding apparatus for use in providing EMI shielding for one or more components on a substrate. In this exemplary embodiment, the frame generally includes first and second frame portions. The first frame portion has a plurality of sidewalls that at least partially surround an interior region of the first frame portion. The second frame portion is of a size sufficient to fit within the interior region defined by the first frame portion. The second frame portion has a plurality of sidewalls. The first and second frame portions share at least a portion of a common sidewall having a bendable hinge portion that connects the second frame portion to the first frame portion.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
After recognizing that the conventional method for making a frame has a relatively low material utilization rate, the inventors hereof developed and disclose herein new methods of making frames that have increased material utilization rates (e.g., up to 75%, etc) and reduced the amount of scrap material generated. Accordingly, the inventors' methods allow for reductions in the amount of material needed for making a frame and costs associated therewith. This is accomplished in the exemplary embodiments by using the material inside an interior region or footprint of the first frame portion (which is normally scrapped in conventional methods of manufacturing frames) for one or more other frame portions. For example, the inventors have been able to achieve 45.8% material savings for a 57.3 millimeter×30 mm×1.5 mm frame in one exemplary embodiment.
According to one aspect of the present disclosure, various embodiments of a method are provided for making a frame for an electromagnetic (EMI) shielding apparatus for providing EMI shielding of one or more components. The method includes forming a frame to have a first frame portion, at least a second frame portion that is initially disposed within a footprint of the first frame portion, and at least a portion of a common sidewall shared by and connecting the first frame portion and second frame portion. In the various method embodiments, the second frame portion is repositioned (e.g., formed, folded, bent, rotated, etc.) from its initial position within the footprint of the first frame portion to a second position outside the footprint of the first frame portion. In an exemplary embodiment, the method of forming the frame may include forming the common sidewall to have a bendable hinge portion that connects the second frame portion to the first frame portion, where the hinge portion is bendable to permit the second frame portion to be repositioned outside the footprint of the first frame portion.
According to another aspect of the present disclosure, various embodiments are provided of frames for electromagnetic (EMI) shielding apparatus for providing EMI shielding of one or more components on a substrate. For example, an exemplary embodiment of a frame includes a first frame portion and a second frame portion. The first frame portion has a plurality of sidewalls that at least partially surround an interior region of the first frame portion. The second frame portion is of a size sufficient to fit within the interior region of the first frame portion. The second frame portion also has a plurality of sidewalls. The first and second frame portions share at least a portion of a common sidewall having a bendable hinge portion that connects the first and second frame portions. Exemplary embodiments of frames and methods related thereto are described below.
Referring now to the drawings,
The frame 400 further includes a second frame portion 430 of a size sufficient to fit within the interior region 420 of the first frame portion 410. The second frame portion 430 also has a plurality of sidewalls 432, 434, and 436, which have a height h that may be the same as or different from the height H of the sidewalls 412, 414, and 416.
The first and second frame portions 410, 430 share at least a portion of a common sidewall 418 having at least one bendable hinge portion 428 that connects the first and second frame portions 410, 430. The bendable hinge portion 428 permits the second frame portion 430 to be repositioned from an initial, first position within the interior region 420 of the first frame portion 410 to a final, second position outside the footprint of the first frame portion 410. The hinge portion 428 is bendable between a generally straight configuration and a bent configuration, and may be formed in accordance with the methods described below.
Referring to
The method of forming includes forming at least a portion of a common sidewall 518 shared by and connecting the first frame portion 510 and second frame portion 530. The portion of the common sidewall 518 permits the second frame portion 530 to be repositioned outside the footprint (or interior region 520) of the first frame portion 510. Specifically, the method of forming frame 500 preferably includes forming the common sidewall 518 to include a bendable hinge portion 528 that connects the second frame portion 530 to the first frame portion 510. The hinge portion 528 is bendable to permit the second frame portion 530 to be repositioned outside the footprint of the first frame portion 510, as explained below.
Referring back to
Referring to
Referring back to
The method of forming the frame 500 accordingly comprises forming or folding the second frame portion 530 of the frame profile generally outwardly approximately 180 degrees in a telescopic folding process, to thereby form a second frame portion 530 that is disposed outside of the footprint of the first frame portion 510. The method of forming comprises forming the frame profile to form folded sidewalls 512, 514, 516, 532, 534, and 536, which are generally perpendicular to the upper surface 504 of the frame 500. The method further includes stamping to remove the remaining material connecting the frame 500 to the carrying web of metal material 502.
Referring to
As shown in
In another aspect of the present disclosure, various embodiments are provided of a frame for an EMI shielding apparatus. Referring to
The frame 600 includes a second frame portion 630 of a size sufficient to fit within the interior region 620 defined by the first frame portion 610. In this example, the second frame portion 630 has a footprint of a size sufficient to fit within the interior region 620 of the first frame portion 610. The second frame portion 630 has a plurality of sidewalls 632, 634, and 636. The first and second frame portions 610, 630 share at least a portion of a common sidewall 618 having a bendable hinge portion 628 that connects the second frame portion 630 to the first frame portion 610.
With further reference to
Referring to
The frame 700 includes a second frame portion 730 of a size sufficient to fit within the interior region 720 defined by the first frame portion 710. In this example, the second frame portion 730 has a footprint of a size sufficient to fit within the interior region 720 of the first frame portion 710. The second frame portion 730 has a plurality of sidewalls 732, 734, and 736.
The first and second frame portions 710, 730 share at least a portion of a common sidewall 718 having a bendable hinge portion 728 that connects the second frame portion 730 to the first frame portion 710. The sidewalls 732, 734 and 736 of the second frame portion 730 have a height h that may be different from (or the same as) the height H of the sidewalls 712, 714 and 716 of the first frame portion 710. The profile for the frame 700 shown in
In another aspect of the present disclosure, methods relating to providing electromagnetic interference (EMI) shielding for one or more components on a substrate are provided. Referring to
This example method for providing electromagnetic interference (EMI) shielding further includes attaching at least one cover 890 to the frame 800. When the at least one cover 890 is attached to the frame 800, the cover 890, first frame portion 810, and second frame portion 830 cooperatively define first and second EMI shielding compartment 844, 846 depending from and on opposite sides of the shared common sidewall 818. The common sidewall 818 may formed to include a bendable hinge portion 828.
As shown in
The cover 890 can be removably attached to the frame 800. As shown in
The cover 890 includes edge portions 889 extending downwardly from the top of the cover 890. The edge portions 889 include detents, protrusions, dimples, etc. 888 configured to be engagingly received in the openings 886 in the frame's sidewalls. In this embodiment, the cover 890 can have more or less than two dimples 888 (and in some cases no dimples) on each of the cover's edge portions 889, and each cover edge portion 889 does not need to include the same number of dimples 888 as the cover's other edge portions 889. The cover's edge portions 889 may flex outwardly and/or the frame's sidewalls 812, 814, 816, 832, 834, and 836 may flex inwardly as the dimples 888 are slid over the corresponding sidewalls of the frame for engaging the openings 886. In this exemplary manner, the cover 890 can thus be releasably retained to the frame 800 by the engagement of the dimples 888 within the openings 886 in the frame's sidewalls 812, 814, 816, 832, 834, and 836. This, in turn, provides an EMI shield apparatus having a cover 890 that may be readily removed from the frame 800, for example, to allow access to components under the cover 890. The cover 890 may subsequently be reattached to the frame 800, or a new cover may be assembled onto the frame 800. Accordingly, various embodiments of the present disclosure can help avoid the access problems associated with soldered shields by providing shields that can be readily opened when repair work is necessary or desired.
With continued reference to
A non-exhaustive list will now be provided of exemplary materials from which a frame for an EMI shielding apparatus may be made according to the present disclosure. Exemplary materials include cold rolled steel, nickel-silver alloys, copper-nickel alloys, stainless steel, tin-plated cold rolled steel, tin-plated copper alloys, carbon steel, brass, copper, aluminum, copper-beryllium alloys, phosphor bronze, steel, alloys thereof, or any other suitable electrically-conductive and/or magnetic materials. In one exemplary embodiment, a frame for an EMI shielding apparatus is from a sheet of nickel-silver alloy having a thickness of about 0.20 millimeters. The materials and dimensions provided herein are for purposes of illustration only, as a frame for an EMI shielding apparatus may be configured from different materials and/or have different dimensions depending, for example, on the particular application, such as the components to be shielded, space considerations within the overall device, EMI shielding and heat dissipation needs, and other factors.
Numerical dimensions and values are provided herein for illustrative purposes only. The particular dimensions and values provided are not intended to limit the scope of the present disclosure.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The disclosure herein of particular values and particular ranges of values for given parameters are not exclusive of other values and ranges of values that may be useful in one or more of the examples disclosed herein. Moreover, it is envisioned that any two particular values for a specific parameter stated herein may define the endpoints of a range of values that may be suitable for the given parameter. The disclosure of a first value and a second value for a given parameter can be interpreted as disclosing that any value between the first and second values could also be employed for the given parameter. Similarly, it is envisioned that disclosure of two or more ranges of values for a parameter (whether such ranges are nested, overlapping or distinct) subsume all possible combination of ranges for the value that might be claimed using endpoints of the disclosed ranges.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.