The invention relates to a folding roller for folding signatures in a folding apparatus, wherein the folding roller comprises a cylindrical folding roller element comprising a jacket surface, wherein the jacket surface at least partially has an elastic coating.
The invention furthermore relates to a folding apparatus for forming a fold at a signature to be folded, wherein in the case of the folding apparatus, a signature to be folded is pressed by means of a folding blade into an incoming nip of a counter-rotating folding roller pair in order to form a gap.
The invention moreover relates to a method for operating a folding apparatus, wherein, in order to form a fold at a signature to be folded, the latter is pressed by means of a folding blade into an incoming nip of a counter-rotating folding roller pair, which is spaced apart from one another at an axial distance a, comprising two rollers, each having a roller radius r, wherein at least one of the rollers of the folding roller pair is designed as the above-mentioned folding roller.
A large variety of folding apparatuses, such as, for example, blade folding or knife folding apparatuses, are known for forming folds at printed or plain signatures, for example in offset, gravure, or inkjet printing presses. Folding apparatuses of this type can either be integrated into a printing press, or they are used to fold the signatures outside of the printing press.
In the case of many folding units, which operate with folding rollers arranged relative to one another in pairs, the folding principle is thereby essentially comparable. In the case of buckle folding units, the leading signature edge essentially runs against a stop, until the signature accumulates, and the resulting curvature is thus seized by a nip and is conveyed transversely to the transport direction of the signature by means of the folding roller pair in order to form a fold.
So-called blade folding or knife folding devices generally consist of a folding table comprising a recess, on which the sheet to be folded comes to rest. To form the fold, the sheet is pressed by a folding blade through the recess of the folding table into the inlet gap of two counter-rotating folding rollers. With their jacket surfaces, the folding rollers seize the sheet and convey the latter into a belt conveyor by forming a fold, which runs parallel to the axis of rotation of the folding rollers. This belt conveyor usually consists of several conveyor belts, which are arranged next to one another at a certain distance and which either wrap around at least one folding roller or are designed independently of the folding rollers.
Folding rollers, which are used in the case of folding devices of this type, are likewise known from the prior art. For instance, DE 38 36 342 A1 discloses a so-called clocked folding roller, which, for example, does not have a continuous cylindrical jacket surface. A folding roller, which has a friction layer on certain portions of the surface, is disclosed in DE 103 04 534 A1.
The folding rollers known from the prior art have a more or less easy-to-grip jacket surface for seizing and for transporting the signature through the nip, even though the jacket surface of the folding rollers is relatively hard for the most part.
However, jacket surfaces, which are so hard, of folding rollers have the disadvantage that the nip has to be adapted to the thickness of the substrate of the signature as well as to the page number, the thickness of the signature to be folded, etc.
Setting processes of this type take place manually for the most part, require corresponding experience of the operating personnel, and, in addition to an additional time expenditure, also represent an additional error source. In the case of a nip, which is set too narrowly, the signature to be folded can thus either no longer be conveyed through the counter-rotating folding roller pair and causes a stopper, or the folded product is crimped too much and is damaged thereby. In contrast, a nip, which is set too widely, between the folding rollers, can also lead to a stopper or to a carelessly executed fold.
It should furthermore be noted that due to the fluctuating substrate thicknesses during the production run printing or during a production, the setting of the nip can also be required during the ongoing production, which increases the risk of stoppers and/or of additionally arising paper waste.
In particular in the case of signatures, which are relatively thick and/or which already have at least one fold, the folding rollers known from the prior art do not mandatorily have to be set parallel to one another, on the contrary, the two axes of rotation have to have a suitable angle relative to one another in order to form a clean fold on the one hand and in order to avoid crimped folds on the other hand.
The invention is thus based on the object of creating a solution, by means of which different folded products and/or folded products of different thicknesses can be produced without a change of the nip between the folding roller pair with consistent folding quality, and an adjustment of the nip is thus also not required during the production run printing or the ongoing production.
This object is solved by means of a folding roller according to the invention as shown and described herein. The folding roller comprises a coating, in the case of which an elastic coating is compressible.
The invention further comprises a folding apparatus, in the case of which at least one roller of a counter-rotating folding roller pair is embodied as a folding roller comprising an elastic and compressible coating.
The invention furthermore comprises a method for operating a folding apparatus, wherein, the two rollers of the folding roller pair are placed against one another in such a way that the axial distance a is set to be identical to or smaller than the sum of the roller radii r.
Based on a folding roller comprising an elastic and compressible coating, embodiments of this type have the advantage that the effective nip adapts to the respective printing product, independently of the substrate thickness and/or page number thereof, by means of the elastic and simultaneously compressible coating, so that the distance of the folding rollers relative to one another, and thus the nip does not or does not mandatorily need to be changed prior to a new production as well as during a production.
However, should a change of the nip be required nonetheless due to the production of signatures to be folded, which have very different thicknesses, for example due to highly varying page numbers and/or highly varying substrate thicknesses, the setting of the nip can take place within a large tolerance range and is thus much less critical, because changes to the signature thickness can be compensated to a high degree due to the elastic and compressible coating of at least one folding roller.
Thickness fluctuations within the signature, usually caused by already existing folds of the signature, which is to be folded once again, can further also be compensated by means of the compressibility of the coating, whereby, for example, the setting of a suitable angle between the axes of rotation of the folding rollers is avoided.
The compressibility of the coating is thereby significant, because, compared to elastic and incompressible coatings, the formation of a bead at the nip is thereby ruled out. Beads of this type make it more difficult or prevent that the signature is seized by the nip and is pulled into the nip in a secure manner. In the case of an elastic and incompressible coating, an uneven speed profile within the nip is moreover created due to the bead formation, whereby damages to the signature to be folded are created or—in the case of multi-layer signatures to be folded—the individual layers can be shifted relative to one another, which leads to an unsatisfactory product quality as a whole.
According to an advantageous embodiment of the invention, the coating consists of foamed polyurethane. Polyurethane has a very high fatigue strength and wear resistance, and thus ensures a long service life of the coating.
In a further advantageous embodiment of the invention, the coating consists of microcellular polyurethane, because the latter has even higher strength and damping properties.
Preferred further embodiments of the invention follow from the following description. Various exemplary embodiments of the invention will be described in more detail based on the drawings, without being limited thereto.
The present invention relates to a folding roller for folding signatures in a folding apparatus, wherein the folding roller comprises a cylindrical folding roller element comprising a jacket surface, wherein the jacket surface at least partially has an elastic coating.
The general setup of a folding roller 1 according to the invention is shown in
The jacket surface of the folding roller element 3 can completely have a coating 5, as illustrated, for example, in
It is also possible, however, that the coating 5 is applied to the jacket surface of the folding roller element 3 only in certain areas in the circumferential direction, for example only in the areas in the circumferential direction comparable to clocked folding rollers 1, by means of which the signature to be folded is seized from the jacket surface and is folded away.
In an advantageous embodiment of the invention, the elastic, compressible coating 5 of the jacket surface of the folding roller element 3 consists of foamed polyurethane or of microcellular polyurethane. As elastic polymer, polyurethane is suitable for fields of application of this type due to its high strength and resistance, the compressibility of the coating 5 is ensured by means of the design of the coating 5 as foamed or microcellular polyurethane in order to avoid a bead formation in the nip 15 (
In the case of the example illustrated in
Due to the design of the folding roller element 3 as a plurality of segments 6, which can be joined together, it is thus possible to replace the segments 6, which are at least partially coated with the coating 5, and thus the coating 5, in the case of wear, without the folding roller 1 as a whole and thus the roller journals 4 having to be disassembled from the non-illustrated support.
In the case of the folding rollers 1 illustrated in FIG. and
The coating 5 further consists of an elastic, compressible material with a Shore hardness of about 20 Shore D to about 80 Shore D, wherein, in a particularly advantageous embodiment, the hardness of the coating 5 preferably lies in a range of about 40 Shore D to about 70 Shore D.
The signature to be folded is usually transported on the folding table 13 in the direction perpendicular to the drawing plane into the folding apparatus 10, and is slowed down at least by means of a sheet stop (likewise not shown for purposes of clarity), and is thus positioned in a defined position on the folding table 13.
The folding apparatus 10 further comprises a folding roller pair 14 of counter-rotating rollers, wherein at least one roller of the counter-rotating folding roller pair 14 is formed as a folding roller 1 according to the invention. In an advantageous embodiment, both rollers of the folding roller pair 14 are embodied as folding roller 1 according to the invention comprising an elastic and compressible coating 5. If only one roller of the folding roller pair 14 is embodied as folding roller 1 according to the invention, the other roller is embodied with a hard folding roller element 3.
The two counter-rotating rollers of the folding roller pair 14 form a nip 15, into which the signature to be folded is drawn due to the direction of rotation.
The folding apparatus 10 furthermore comprises a folding blade 11, which performs a direction of movement 12 essentially perpendicular to the plane spanned by the folding table 13, at least at the point in time at which the folding blade 11 presses the signature to be folded into the nip 15. The folding blade 11 can either be embodied as a rocker, can be arranged in a rotating folding drum, or can be driven by means of other mechanisms, such as, for example, a crank drive.
By pressing the signature to be folded into the nip 15, the signature is seized by the folding roller pair 14 and is pulled through the nip 15 for the formation of or by forming a fold, respectively.
The signature folded by means of the folding roller pair 14 is further transported by means of the direction of rotation of the folding roller pair 14 and is guided into a belt conveyor 16, so that the signature is guided out of the folding apparatus 10 in the transport direction 17 by means of the belt conveyor 16.
At the locations where the belt conveyor 16 wraps around the folding rollers 1, the compressible coating 5 can either have a groove, or no coating 5 is applied to the jacket surface of the folding roller element 3 at these areas.
Although not illustrated in the figures, a combination of the alternative embodiments illustrated in
As can be seen from
In the normal state, when not under compressive stress, the first roller of the folding roller pair 14 has a first roller radius r1. In the normal state, when not under compressive stress, the second roller of the folding roller pair likewise has a second roller radius r2. The first roller diameter d1 of the first roller is twice the first roller radius r1, the second roller diameter d2 of the second roller is twice the second roller radius r2.
In the case of the folding roller pairs 14 known from the prior art comprising a relatively hard jacket surface of the folding roller element 3, a gap remains between the first and the second roller of the folding roller pair 14 in the case of a setting, which is suitable for the production, to avoid stoppers or product damages, such as crimped folds, etc., so that in the case of folding roller pairs 14, which are known from the prior art, the distance of the two axes of rotation 2 is larger than the sum of the first roller radius r1 and of the second roller radius r2.
Due to the elastic and compressible coating 5 according to the invention of at least one folding roller 1 of the folding roller pair 14, however, it is also possible to set the two rollers of the folding roller pair 14 relative to one another in such a way that an axial distance a, that is, the distance between the two axes of rotation 2 of the two rollers of the folding roller pair 14, is identical to or smaller than the sum of the first roller radius r1 and of the second roller radius r2, and thus identical to or smaller than the sum of the roller radii r1, r2.
A setting is illustrated in
In the case of a setting of this type, a nip 15 is thus created, into which a signature to be folded is drawn in any case, which means a high operational safety. Signatures to be folded of different thicknesses can be compensated by means of the compressibility of the coating 5.
In a particularly preferred embodiment, the axial distance a of the folding roller pair 14 can be set in such a way that the axial distance a is about 0.1 millimeter to about 5 millimeters smaller than the sum of the roller radii r1, r2. In the case of this setting, a constant compression between the rollers of the folding roller pair 14 is ensured, without creating an excessive compression, and so as to thus be able to seize and to fold signatures to be folded of a smaller or larger thickness therewith.
Regardless of whether the axial distance a is identical to or smaller than the sum of the roller radii r1, r2, the axial distance a can be kept constant in the case of a changing signature thickness due to the compressibility of the coating 5 of a folding roller 1 according to the invention. On the one hand, this applies for set-up processes, which are thus no longer required, in response to a production change as well as, on the other hand, for changes to the folding roller setting, which are thus no longer required, during an ongoing production.
Number | Name | Date | Kind |
---|---|---|---|
1831250 | Ibell | Nov 1931 | A |
3467009 | Ross | Sep 1969 | A |
3767185 | Newsome | Oct 1973 | A |
3773315 | Tsien | Nov 1973 | A |
3788638 | Lehmann | Jan 1974 | A |
3796423 | Shuster | Mar 1974 | A |
4192497 | Perun | Mar 1980 | A |
4374212 | Martellock | Feb 1983 | A |
4375971 | Moll | Mar 1983 | A |
4481309 | Straehle | Nov 1984 | A |
5007891 | von Hein | Apr 1991 | A |
5076556 | Mandel | Dec 1991 | A |
5129876 | Brabant | Jul 1992 | A |
9181385 | Gramellini | Nov 2015 | B2 |
9682840 | Echerer | Jun 2017 | B2 |
20040087754 | Foley | May 2004 | A1 |
20040157716 | Echerer et al. | Aug 2004 | A1 |
20150183949 | Xu | Jul 2015 | A1 |
20150336764 | Echerer | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
13 00 023 | Jul 1969 | DE |
21 04 166 | Aug 1972 | DE |
29 05 548 | Sep 1980 | DE |
39 24 970 | Feb 1990 | DE |
38 36 342 | Apr 1990 | DE |
103 04 534 | Aug 2004 | DE |
10 2014 007 495 | Nov 2015 | DE |
20 2019 101 582 | Apr 2019 | DE |
0 469 867 | Feb 1992 | EP |
1040378 | Aug 1966 | GB |
S64-34848 | Feb 1989 | JP |
Entry |
---|
Search Report [German Patent Office (GPO)], English Language Translation, dated Jan. 14, 2021 [Jan. 14, 2021], 5 Pages, Munchen, Germany (DE). |
Deutsches Patent—Und Markenamt [German Patent Office (GPO)], Recherchebericht [Search Report], dated Jan. 18, 2021 [Jan. 18, 2021], 10 Pages, Munchen, Germany (DE). |
Europäisches Patentamt [European Patent Office (EPO)], Europäischer Recherchenbericht [European Serach Report], dated Sep. 23, 2021 (Sep. 23, 2021), 11 Pages, Munchen, Germany (DE). |
Kopeliovich D, Shore (Durometer) hardness test, Nov. 21, 2009 (Nov. 21, 2009) [Internet Dec. 3, 2010), 2 Pages, SubsTech Substances & Technologies XP-002572960 www.substech.com. |
Number | Date | Country | |
---|---|---|---|
20210331223 A1 | Oct 2021 | US |