This application claims priority to Chinese Patent Application Serial No. 02263076.7, filed on Jul. 10, 2002, and entitled “A Folding Table,” which application is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to folding tables. In particular, the present invention relates to a folding table having a novel collapse and locking system to provide compact folding of the table for better storage, mobility and/or transportability.
2. Background
In order to increase the practical utility of existing furniture, whether household furniture or office furniture, there are continually increasing demands on their function. For example, tables are known to support all types of activity such as reading, writing, drawing, crafts, projects, holding and storing items, and the like. However, when not in use, a table can become inconvenient, especially in locations where the space is needed for other activities. For this reason, folding tables have developed. By providing a folding mechanism, tables can be collapsed for easier transportation and storage. Advantageously, this allows tables to be stored vertically or horizontally and placed in, for example, a storage closet or against a wall.
Various mechanisms for folding a table have been developed. For example,
There are many situations where it would be desirable to have a table of a size comparable to the table shown in
Furthermore, there are limited spaces in a persons' house or property where they can store a conventional folding table, even in its folded state. Often, a person must store the table upright against a wall, which can sometimes be dangerous. If the table is stored horizontally, the table takes up space which might be used for other objects. It would thus be an advantage to provide a folding table which provides the table top size comparable to a conventional folding table, but which requires less space for storage.
In addition, a conventional folding table is generally unwieldy for a single person to transport, even in its folded state. Transporting a large folding table can sometimes be dangerous if the person is too small to lift the table by themselves. It would thus be an advantage to provide a folding table which, in its most folded state, provides a structure which is easily lifted and carried by a single person.
Additionally, when a conventional folding table is in a folded position, the folded legs structures are exposed which may catch on other objects or cause potential injury to a person who may come in contact with the exposed structures.
Thus, it would be an advantage to provide a table which has a large enough table top to provide the area needed for most activities, but which provides a compact structure which is easily lifted and transported.
The objective of the present invention is to provide a folding table, the table top of which can be compactly folded so that space can be effectively saved after it has been folded. The folding tables include a table top, a support assembly to hold the table top upright, and a hinge assembly configured to allow the table top to fold.
The folding tables of the present invention generally include a rectangular table top. The table top may be configured in any suitable shape desired for the particular uses of the table, including, but not limited to, circular, square, oblong, and the like. The table top has a first end and a second end. The table top further includes a top surface and an opposing bottom surface extending between the first end and the second end.
The table top is divided into a first planar portion and a second planar portion. That is, an imaginary transverse plane intersects the table top at a point between the first end and the second end to divide the table top into the first planar portion and second planar portion. Each of the planar portions has an interior edge which faces the other. Each planar portion also has an outer edge extending around the periphery thereof. The interior edges of the planar portions are configured to matingly engage so that the seam formed between the planar portions when the table top is unfolded is as minimal as possible. A lip may extend downwardly from the outer edges of the planar portions. The lip may be configured to attach to portions of the support assembly and also to hide portions of the support assembly.
The table top is selectively positionable between a working position and a storage position. In the working position, the interior edges of each planar portion are positioned so that they interface with each other and are not exposed to the exterior. In the storage position, in contrast, the interior edges of the planar portions do not interface such that they are exposed to the exterior similar to the outer edges.
The support assembly includes two pairs of spaced-apart side rails connected to the first and second planar portions, a leg coupled to each of the pair of side rails, and a support brace coupled to each leg to assist in maintaining each leg in the extended position.
In more detail, the first planar portion includes a pair of spaced-apart side rails coupled thereto. The second planar portion also has a pair of spaced-apart side rails coupled thereto. Each side rail has an interior end and an exterior end. The side rails have one or more apertures formed transversely through the exterior end thereof. The side rails are configured to connect to the legs of the support assembly at the exterior ends. At the interior end of the side rails, is disposed a channel or aperture or other structure for coupling the side rails to the hinge assembly.
In one embodiment, each leg includes two leg members, a cross bar disposed at the proximal end of the leg members, and a cross bar transversely disposed between and joining the leg members at a point along the length thereof. The proximal end of the legs is pivotally coupled to the planar portions. In one embodiment, the crossbars located at the proximal ends of the legs are pivotally coupled to apertures located at the exterior ends of the side rails. As such, the legs are able to be selectively positioned between an extended position and a folded position.
A first support brace is connected to the first leg, and a second support brace is connected to the second leg. Each brace includes a V-shaped swivel portion, an extension portion and a base portion. In one embodiment, the base portion is coupled to the hinge assembly. The swivel portion is coupled to the legs. Each swivel portion includes a first swivel arm and a second swivel arm. A bracing ring may be slidably disposed over the extension portion to rest over the joint of the swivel arms and the extension portion. The swivel portion of the support brace allows that portion of the support brace to fully extend when the leg is fully extended, and to rotate inward to fold back onto the extension portion into a compact structure when the leg is folded. As such, the support brace is selectively positionable between an extended position and a folded position simultaneously with the operation of the legs.
The hinge assembly is configured to allow a user to selectively position and maintain the table top between a working position and a storage position. The hinge assembly is disposed between the first planar portion and the second planar portion of the table top. In one embodiment, one hinge assembly is placed at each end of the interface between the first planar position and the second planar portion. At least one hinge assembly has a locking mechanism which allows the table top to be locked in a working position.
The hinge assembly includes a hinge pin which is disposed under the bottom surface of the table top in the imaginary transverse plane dissecting the table top. The longitudinal axis of the hinge pin forms a hinge axis about which the table top folds between the working and the storage positions. In one embodiment, the hinge pin for both of the hinge assemblies on either side of the table top may be the same structure.
The hinge assembly also includes a first hinge connector and a second hinge connector. The first hinge connector includes a body and a connector portion. The body is configured to couple to a side rail or other structure of the first planar portion. The connector portion of the first hinge connector includes one or more webs extending from the body. Each web has a substantially circular configuration. One or both webs include a hook or cam portion at the end thereof. Along the length of the connector portion is one or more apertures configured to receive the end of a structure of a support brace. The web(s) of the connector portion also include one or more apertures configured to receive an end of the hinge pin.
The second hinge connector includes a body and a connector portion. The body is configured to couple to a side rail or other structure on the second planar portion. The body has substantially the same configuration as the body of the first hinge connector. The connector portion of the second hinge connector includes one or more webs extending from the body. Each web has a substantial circular configuration. The connector portion of the second hinge connector has one or more apertures configured to receive an end of a structure of a support brace. In addition, the connector portion includes one or more apertures configured to receive an end of the hinge pin. The connector portion of the second hinge connector also includes one or more elongate locking slots configured to receive a locking pin.
The locking pin and locking slots cooperate with the cam portion of the first hinge connector to form the locking mechanism. In operation, the first hinge connector and second hinge connector are pivotally disposed about the hinge pin in opposing directions. The locking pin is disposed through the locking slot(s). The selective positioning of the locking pin within the locking slot(s) dictates the status of the locking mechanism.
In the locked position, the locking pin is displaced in the locking slot(s) closest to the hinge axis. When the locking pin is in the locked position, the cam portion of the first hinge connector abuts against the locking pin. Thus, the first hinge connector is unable to rotate with respect to the hinge axis. This prevents the table top from folding together. In the unlocked position, the locking pin is placed in the locking slot(s) in the position farthest away from the hinge axis. In this position, the cam portion is not impeded by the locking pin such that the first hinge connector can freely rotate about the hinge axis. The table top is thus rotatable such that it may be folded from the working position to a storage position. The table top is only impeded in its rotation by the limit created when the interior edges of the first and second planar portions meet.
In one embodiment, the selective positioning of the locking pin between the locked and unlocked position can be performed manually. In another embodiment, a lock actuating mechanism is employed. The lock actuating mechanism may comprise a lever which has a connector portion rotatably disposed about the hinge axis and a handle portion at the opposing end. The lock actuating mechanism may also include an anchoring portion. The lock actuating mechanism includes a displacement slot which is disposed at an offset angle with respect to the locking slot(s) when the lock actuating mechanism is included as part of the hinge assembly.
The displacement slot of the lock actuating mechanism functions to move the locking pin within the locking slot(s). That is, the movement of the handle of the lock actuating mechanism displaces the locking pin within the locking slot(s) from the locked position to the unlocked position. This is due to the offset angles of the displacement slot and the locking slot(s).
The lock actuating mechanism also includes an anchoring portion which is an elongate structure that extends outwardly from the handle. The anchoring portion includes a first groove and a second groove. The grooves are shaped to substantially conform to the outer surface of a structure of a support brace to engage the support brace in the two different groove positions. In the locked position, the second groove engages the support brace. In the unlocked position, the first groove engages the support brace. As such, the lock actuating mechanism is reinforced such that it assists to maintain or anchor the locking pin in the locking slot(s).
In view of the foregoing, the folding tables of the present invention employ a two-stage folding process to provide an enhanced compact folding structure. That is, the folding table can be collapsed from a fully working structure to a folded, compact structure. In the first stage, a folding table begins in an upright position in which the support assembly maintains the table top in an upright fashion. In this position, the first and second planar portions are substantially aligned with each other to provide a working surface. The table is turned upside down to provide greater access to the support assembly. The legs and support braces are folded from an extended position to a folded position.
In the second stage, the hinge assembly is manually or otherwise unlocked such that the cam portion of the first hinge connector does not contact the locking pin. The first planar portion and second planar portion of the table top are thus able to rotate about the hinge axis to fold the table top. In the second stage, the support assembly also folds in half to be disposed within the halves of the table top. As such, a highly compact structure is provided which provides ease of storage.
The folded tables of the present invention may be stored in storage spaces which were not suitable for conventional folding tables, such as closets, trunks of cars or backseats of cars. The folded table provides a more compact structure which is easier for a person to carry and transport. In addition, the folded table allows a table which has the size of a conventional folding table to be used in activities which has not heretofore been possible. Finally, the folded table protects users when in its folded state by housing structures of the support assembly so that they are not exposed.
Those skilled in the art will recognize that the embodiments of the present invention are not limited to the embodiments disclosed in this summary. These and other objects and features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
I. Introduction
The present invention is directed to folding tables. In particular, the folding tables of the present invention have a two-stage folding mechanism which results in a highly compact structure. With reference to
Generally, to go from the configuration of
As used herein, the terms “extended,” “folded,” “working” and “storage” are used to refer to specific folding configurations of table 100 and not to particular uses of the table. For example, the term “working” when used to indicate that table top 102 is unfolded does not infer that portions of table top 102 cannot be used when in the “storage” position. In fact, in the “storage” position, table 100 may actually be useful for various purposes such as to provide a hard work surface upon which to write, to provide a surface on which to store other objects, and the like.
Accordingly, the present invention provides for a compact structure that takes up less space than a conventional folding table. In the embodiment of
II. Foldable Table Top
With reference to
As shown in
In the embodiment of
Interior edges 118A, 118B of planar portions 106, 108 are configured to matingly engage so that the seam formed between planar portions 106, 108 when table top 102 is unfolded is as minimal as possible. In one embodiment, interior edges 118A, 118B are flat so that the surfaces thereof matingly engage. In another embodiment, illustrated in
Planar portions 106, 108 include lips 122A, 122B extending downwardly from the outer edges 120A, 120B thereof. Portions of support assembly 104 may be attached to downwardly extending lips 122A, 122B. For example, portions of support assembly 104 may be attached to an inner surface of the downwardly extending lips 122A, 122B by one or more fasteners. It will be understood that other suitable means or methods for attaching the support assembly 104 to the table top 102 may be employed, including, but not limited to, rivets, screws, bolts, glues, epoxies, or other bonding materials. The height of the inner surface of the lips 122A, 122B is preferably generally equal to or greater than the height of side rails of the support assembly 104 (discussed below) so that the side rails are generally hidden from view when the table 100 is viewed from a plane generally aligned with the upper surface 114 of table top 102. Advantageously, because portions of support assembly 104 may be completely or generally hidden from view, portions of support assembly 104 do not have to be finished and may contain visible imperfections or flaws. In addition, because portions of support assembly 104 may be completely or generally hidden from view by lips 122A, 122B, a more aesthetically pleasing table 100 may be created. It will be appreciated, however, that lips 122A, 122B do not have to hide portions of support assembly 104.
Table top 102 can be constructed of any material which provides sufficient strength for the purposes for which table 100 is intended. Table top 102 may also be constructed from a lightweight material which allows the table 100 to be easily transported. In one embodiment, table top 102 can be constructed out of plastic such as, but not limited to, blow molded plastic or injection molded plastic. Other suitable materials include, but are not limited to wood and metal.
As discussed above, table top 102 is selectively positionable between a working position (
III. Foldable Support Assembly
Turning now to
In more detail, first planar portion 106 includes a pair of spaced apart side rails 140A, 142A. Second planar portion 108 has a pair of spaced apart side rails 140B, 142B. Side rails 140, 142 have an interior end 152 and an exterior end 154. Side rails 140, 142 have one or more apertures 156 formed transversely through the exterior end 152 thereof. Side rails 140, 142 are configured to connect to legs 144A, 144B at the exterior ends 154 via apertures 156.
In one embodiment, side rails 140, 142 are preferably hollow members. For example, as shown in
In one embodiment, side rails 140, 142 may be formed integrally with first and second planar portions 106, 108 of table top 102. For example, side rails 140, 142 may be formed integrally with their respective planar portions 106, 108 during an injection molding process. Appropriate apertures or channels may be formed during or after the manufacturing process in order to couple portions of support assembly 104 thereto.
In the embodiment of
First leg 144A is pivotally coupled to first planar portion 106 and second leg 144B is pivotally coupled to second planar portion 108. In the embodiment of
In another embodiment, cross bars 162 could be rigidly connected to side rails 140, 142 while legs 144A, 144B are pivotally connected to cross bars 162. In still another embodiment, legs 144A, 144B might not have cross bars 162 and have only the leg members 160 pivotally coupled to side rails 140, 142. In yet another embodiment, side rails 140, 142 might not be present and legs 144A, 144B might be pivotablly coupled directly to planar portions 106, 108. Importantly, legs 144A, 144B are able to be selectively positioned between an extended position (
A first support brace 146A is connected to first leg 144A and a second support brace 146B is connected to second leg 144B. In more detail, first support brace 146A includes a V-shaped swivel portion 170A and a base portion 172A. An extension portion 174A is disposed between swivel portion 170A and base portion 172A. Base portion 172A is a V-shaped member, the ends thereof being coupled to hinge assembly 200. In another embodiment, base portion 172A could be coupled to side rails 140A, 142A. In yet another embodiment, base portion 172A could be coupled directly to first planar portion 106. In still another embodiment, base portion 172A could be eliminated and extension portion 174A elongated and pivotally coupled to side rails 140A, 142A or planar portion 106.
Swivel portion 170A includes a first swivel arm (not shown, but otherwise referred to herein as first swivel arm 176A) and a second swivel arm 178A. Swivel arms 176A, 178A have one end pivotally coupled to extension portion 174A and a second end pivotally coupled to a leg member 160 of leg 144A. A bracing ring 180A may be slidably disposed over extension portion 174A.
As such, support brace 146A is selectively positionable between an extended position (
Second support brace 146B is configured substantially similarly to first support brace 146A so corresponding elements are referred to with like reference numbers, substituting “A” for “B” because these elements correspond to planar portion 108. Second support brace 146B is also able to compactly fold in a manner mirroring that of first support brace 146A, as shown in
The folding of support assembly 104 between an extended position and a storage position is considered as the first stage of the folding mechanism of the present invention. The support assembly 104 is also able to fold as part of the second stage of the folding mechanism. As shown in
IV. Hinge Assembly
Turning now to
In the embodiment of
Hinge assembly 200 includes a hinge pin 201. Hinge pin 201 is disposed under bottom surface 116 of table top 102 and in the imaginary transverse plane dissecting table top 102. The longitudinal axis of hinge pin 201 thus forms a hinge axis 203 about which table top 102 folds between the working and storage positions. Hinge pin 201 preferably has a structure and composition which is able to withstand the torque forces experienced by hinge assembly 200 during folding of table top 102. In some embodiment, hinge pin 201 may be a solid, cylindrical member. In other embodiments, hinge pin 201 may be hollow provided that it has sufficient strength to withstand such forces. In some embodiment, lips 122A, 122B include one or more grooves or apertures configured to receive the ends of hinge pin 201 to cover the ends thereof. While hinge pin 201 is shown as a single elongate member, hinge pin 201 may be divided so that a hinge pin 201 corresponds to each hinge assembly 200.
As shown in
First hinge connector 202 includes a body 207 and a connector portion 208. Body 207 is configured to couple with side rail 140A. In the embodiment of
Connector portion 208 of first hinge connector 202 includes two parallel wings or webs 210 extending from body 207. Each web 210 has a substantially circular configuration. However, one or both webs 210 also include a hook or cam portion 212 at the end thereof. Along the length of connector portion 208 is a pair of apertures 214 configured to receive an end of support brace 146A. Apertures 214 allow support brace 146A to be pivotally disposed therethrough. In one embodiment, only a single aperture 214 may be provided to allow support brace 146A to be coupled to first hinge connector 202. As discussed above, apertures 214 are not necessary where support brace 146A connects directly to side rails 140, 142 or where the side rails are integrally formed with table top 102 and support brace 146A is configured to directly connect thereto. However, apertures 214 may be provided in first hinge connector 202 where it is more convenient to form connecting structures in the separate structural component provided by first hinge connector 202. In addition, as shown best in
The structure of second hinge connector 204 is similar to that of first hinge connector 202. Second hinge connector 204 includes a body 218 and a connector portion 220. Body 218 is configured to couple with side rail 140B. Body 218 has substantially the same configuration as body 207 of first hinge connector 202. Connector portion 220 of second hinge connector 204 includes two parallel wings or webs 222 extending from body 218. Each web 222 has a substantially circular configuration. However, webs 222 may be configured with a cam portion similar to that of first hinge connector 202 if desired for ease of manufacturing purposes. That way, only one manufacturing mold need be developed.
Connector portion 220 has a pair of apertures 224 configured to receive an end of support brace 146B. As discussed above, apertures 224 are not necessary where support brace 146B connects directly to side rails 140, 142 or where siderails are integrally formed with table top 102 and support brace 146B is configured to directly connect thereto. In addition, connector portion 220 includes a pair of apertures 226 configured to receive an end of hinge pin 201. Preferably, apertures 224, 226 are circular in cross-section to allow corresponding circular cross-sectioned structures of support brace 146B and hinge pin 201 to pivot therein. Furthermore, connector portion includes a pair of elongate locking slots 228 configured to receive a locking pin 230, which will be discussed in more detail below. Locking slots 228 are preferably substantially parallel to table top 102.
Dual webs 210 and 222 on the first hinge connector 202 and second hinge connector 204 are not required in every embodiment. First hinge connector 202 and second hinge connector 204 could be constructed having single webs 210, 222. In the embodiment where first hinge connector 202 and second hinge connector 204 have single webs 210, 222, it will be appreciated that single apertures 214, 216, 224, 226 and locking slot 228 are provided. Desirably, webs 210, 222 are placed having a tight clearance fit on hinge pin 201.
However, dual, symmetrical webs 210, 222 may be a preferred mode when desired to distribute the torque force along hinge pin 201 so that hinge pin 201 does not experience undue force at a single point. In addition, dual webs 222 having dual locking slots 228 provide a more stable pin configuration. Where dual webs 210, 222 are employed, they preferably have a tight clearance fit when assembled on hinge pin 201.
One way of achieving this is to make webs 210 of first hinge connector 202 spaced apart slightly greater than webs 222 of second hinge connector 204. When assembled on hinge pin 201, webs 222 of second hinge connector 204 will nest within webs 210 of first hinge connector 202 such that there is a close interface between first and second hinge connectors 202, 204.
Another way to achieve this is to have webs 210 of first hinge connector and webs 222 of second hinge connector 204 spaced evenly apart but offset by a few millimeters either to the left or right. When assembled on hinge pin 201, both webs 210 will be disposed on the same side of each of webs 222. This embodiment may be advantageous since substantially the same design can be used for both first and second hinge connectors 202, 204. This embodiment would only require an additional locking slot 228 to be stamped or formed in one of the hinge connectors to distinguish it as the second hinge connector.
Hinge assembly 200 further includes a locking pin 230 which is configured to be disposed in locking slots 228 of second hinge connector 204. Because locking slots 228 are elongate, locking pin 230 is able to slide within locking slots 228. Locking pin 230 and locking slots 228 cooperate with cam portion 212 of first hinge connector 202 to form the locking mechanism which will now be described.
Assembly of hinge assembly 200 includes connecting first hinge connector 202 and second hinge connector 204 to side rails 140A and 140B and/or otherwise connecting first and second hinge connectors 202, 204 to structures of first and second planar portions 106, 108. Apertures 216, 226 of first and second hinge connectors 202, 204 are aligned and an end of hinge pin 201 disposed therethrough. Thus, first and second hinge connectors 202, 204 are disposed about hinge pin 201 in opposing directions. Finally, locking pin 230 is disposed through locking slot 228. Structures of support braces 146A, 146B may also be disposed in apertures 214, 224 of first and second hinge connectors 202, 204.
In operation, the selective positioning of locking pin 230 within locking slots 228 dictates the status of the locking function, i.e., whether the table top 102 is locked or unlocked in the working position. When reference to
With reference to
With reference to
In one embodiment, the operation of locking pin 230 can be performed manually. However, because the locking pin 230 is usually small and the space around hinge assembly 200 tight and may present the possibility of pinching fingers, a lock actuating mechanism may be used. An embodiment of lock actuating mechanism 206 is illustrated in
In one embodiment, lock actuating mechanism 206 comprises a lever 232. As shown in
The anchoring portion 238 is an elongate structure that extends outwardly from handle portion 236. Anchoring portion 238 includes a first groove 244 and a second groove 246. Grooves 244, 246 are shaped to substantially conform to the outer surface of base portion 172B of support brace 146B.
As shown in
During assembly, lock actuating mechanism 206 may be located within dual webs 210, 222 of first and second hinge connectors 202, 204. In other embodiments where single webs are used, lock actuating mechanism 206 may be placed on either side of the webs so long as locking pin 230 is able to be disposed within locking slots 228 and/or displacement slots 242.
In operation, the displacement slot of 242 of lever 232 functions to move locking pin 230 within locking slot 228, which would otherwise have to be done manually. With reference to
In the reverse direction, i.e., to go from the unlock to locked position, the handle portion 236 of lever 232 is moved in the clockwise direction. The movement of handle 236 and the offset angles of displacement slot 242 and locking slot 228 causes locking pin 230 to slide within locking slot 228 to the locked position.
In addition, when hinge assembly 200 is locked, means are provided for anchoring the lock actuating mechanism 206 so that the lock position is maintained. When the hinge assembly 200 is in the unlocked position (
Hinge assembly 200 may be constructed from any suitable material which provides sufficient strength to the hinge and locking structures. Specifically, first and second hinge connectors 202, 204 are preferably constructed from a high strength metal or plastic. The shapes and apertures required for connectors 202, 204 are easily formed through known manufacturing processes for metals and plastics. Lever 232 is preferably constructed of a high strength metal or plastic through known molding, or injection processes. In particular, anchoring portion 238 of lever 232 is preferably formed from a slightly resilient material which allows anchoring portion 238 to smoothly transition from engaging base portion 172B of support brace 146B in grooves 244 and 246. Depending on the material, the angle of anchoring portion 238 on lever 232 may provide the resilience needed. Locking pin 230 is preferably constructed of a high strength metal or plastic.
V. Two-Stage Folding Mechanism
The operation of the two-stage folding mechanism of table 100 will now be described in detail.
The first stage of folding involves folding support assembly 104 from an extended position to a folded position. As shown in
The second stage of the folding mechanism involves folding table top 102 from a working position to a storage position. The second stage also involves simultaneously folding support assembly 104 so that it compactly fits within table top 102. In the second stage, hinge assembly 200 is placed in the unlocked position (
As shown in
Advantageously, when the table 100 is folded in its most compact position, hinge pin 203 is exposed so as to provide a handle for carrying the folded table. This increases the transportability of the folding tables of the present invention. Other handle mechanisms may be provided.
Another advantage of the compact folding mechanism of table 100 is that the structures of support assembly 104 are kept entirely within the periphery of portions 106, 108 of table top 102. In this manner, the structures of support assembly 104 are shielded by table top 102 so that they do not present any possibility of catching on other objects or passersby.
To reverse the process, i.e., to unfold table 100 from its compact storage state shown in
Leg 144A, 144B and support braces 146A, 146B can be unfolded to the extended position as shown in
Although this invention has been described in terms of certain preferred embodiments, other embodiments apparent to those of ordinary skill in the art are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
429458 | Kraemer | Jun 1890 | A |
493441 | Munz | Mar 1893 | A |
643511 | Lloyd | Feb 1900 | A |
1614187 | Coggins | Jan 1927 | A |
1639367 | Seward | Aug 1927 | A |
1765766 | Lyon | Jun 1930 | A |
1907111 | Holland et al. | May 1933 | A |
1976140 | Paul | Oct 1934 | A |
2542394 | Cohen et al. | Feb 1951 | A |
2619394 | Mahr | Nov 1952 | A |
2730418 | Blink | Jan 1956 | A |
2747957 | Lencioni | May 1956 | A |
2871076 | Mell | Jan 1959 | A |
2872259 | Thorpe | Feb 1959 | A |
3143982 | Blink et al. | Aug 1964 | A |
3368504 | Cohen | Feb 1968 | A |
3415208 | Thoresen et al. | Dec 1968 | A |
3656439 | Domin | Apr 1972 | A |
3731971 | Sjogren | May 1973 | A |
3823938 | Unno | Jul 1974 | A |
3866913 | Zimmers et al. | Feb 1975 | A |
4005898 | Way | Feb 1977 | A |
D247080 | Robinson | Jan 1978 | S |
4089522 | Rock | May 1978 | A |
4133271 | Carlson | Jan 1979 | A |
4489661 | Fitzgerald | Dec 1984 | A |
4567835 | Reese et al. | Feb 1986 | A |
4653804 | Yoo et al. | Mar 1987 | A |
4841877 | Virtue | Jun 1989 | A |
4883314 | Sakong | Nov 1989 | A |
4911085 | Pencoske | Mar 1990 | A |
5009170 | Spehar | Apr 1991 | A |
5154441 | White et al. | Oct 1992 | A |
5357872 | Wilmore | Oct 1994 | A |
5377601 | Cashen | Jan 1995 | A |
5421272 | Wilmore | Jun 1995 | A |
5501157 | Westerburgen | Mar 1996 | A |
5730066 | Auten et al. | Mar 1998 | A |
D414626 | Collins et al. | Oct 1999 | S |
5983807 | Tarnay et al. | Nov 1999 | A |
6000345 | Gillotti | Dec 1999 | A |
D420527 | Pinch | Feb 2000 | S |
6032585 | Pinch | Mar 2000 | A |
6058853 | Pinch | May 2000 | A |
6112674 | Stanford | Sep 2000 | A |
6454357 | Foulger | Sep 2002 | B1 |
D468135 | Ashby et al. | Jan 2003 | S |
D479778 | Haney et al. | Sep 2003 | S |
D489557 | Strong et al. | May 2004 | S |
6905166 | Zhurong et al. | Jun 2005 | B2 |
7063025 | Ashby et al. | Jun 2006 | B2 |
7278361 | Zhurong et al. | Oct 2007 | B2 |
7299753 | Strong | Nov 2007 | B2 |
20020092445 | Glover et al. | Jul 2002 | A1 |
20040094076 | Jin | May 2004 | A1 |
20040187749 | Zhurong et al. | Sep 2004 | A1 |
20050241550 | Neunzert et al. | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20040094076 A1 | May 2004 | US |