This application relates to methods and systems for food preparation, and more specifically to methods and systems for heating food.
In at least one aspect, a cooking system is disclosed. The cooking system is configured to prepare a selected food over a desired time period. The cooking system comprises a controller in communication with a heating apparatus and a user interface. The controller is configured to access a cooking database for the selected food and display a range of available times for the desired time period according to the cooking database. The controller is further operable to receive a selection of the desired time period from the user interface and control the heating apparatus to heat a food load to prepare the selected food to a predetermined quality in the desired time.
In at least another aspect, a method for heating a food over a desired time period is disclosed. The method comprises receiving a selected food type from a plurality of food types and receiving a desired cook time for preparation of the selected food type. The method further comprises comparing the desired cook time to a range of available cook times and controlling a heating apparatus to heat a food load corresponding to the selected food type to a predetermined quality level in the desired cook time.
In at least another aspect, a cooking system is disclosed. The cooking system is configured to prepare a selected food over a desired time period. The heating system comprises a controller a controller in communication with a heating apparatus and a user interface. The controller is configured to receive a selection of a selected food identifying a food load and receive the desired time period from the user interface. The controller is further configured to access a cooking database comprising a plurality of food types based on the selection and compare the desired time period to a range of available times indicated in the cooking database. The available times are predetermined to prepare the food load to a minimum quality level. The controller is further configured to control the heating apparatus to heat the food load and prepare the selected food to at least the minimum quality level in the desired time.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
Referring to
In some embodiments, the cooking system 10 may be configured to access and perform a programmed or automated cooking function. Such a function may correspond to a timed cooking routine configured to prepare the food load 14 to a desired or predetermined level of quality. The predetermined level of quality as discussed herein may refer to various cooking characteristics (e.g. internal temperature, moisture, browning, etc.). In some embodiments, the cooking system 10 may provide for an improved process for heating the food load 14. For example, rather than requesting a manual entry of a cook time or automatically providing a cook time for a cooking program, the cooking system 10 may be operable to prepare the food load 14 over a desired time or user requested time while ensuring that the food is prepared to the predetermined level of quality.
In some embodiments, the predetermined level of quality for a particular food type may be derived from similar food type. For example, the cooking system may comprise a database or library of experimental data describing the response characteristics of each food type. However, test results for some food types may be derived from or interpolated from experimental results measured for other, related food types. In particular, an acceptability curve, such as that later discussed in reference to
In general, cooking time for a cooking device may be associated with the amount of energy that has to be provided to a food load. Depending on the food type, portion, preparation method, desired temperature, and/or recipe, the amount of energy required and a cooking power or rate of cooking provided by one or more heat sources may vary. Accordingly, a conventional heating process may utilize a preconfigured cooking environment to prepare a selected food type and corresponding portion to a cook time that is also preconfigured. In this way, a conventional cooking device may provide a cook time for a food type. Accordingly, while a conventional cooking device may provide for an automated cooking process, there is little flexibility to adjust a time period over which a food load is prepared. In such systems a change in a time period will result in a different cooking result of the food load.
Additionally, some cooking devices may provide for delayed cooking functions. However, such functions may simply delay a cooking start time rather than adjust the cooking time. A drawback of such devices is that delayed cooking functions require food items to be left at ambient temperature waiting for the cooking process to start. Accordingly, these systems may lead to food spoilage and/or risks of foodborne poisoning. For these reasons, such systems may be of limited value.
The cooking system 10 may provide for a control scheme that utilizes a predetermined level of quality as the automated setting for preparation of the food load 14. Based on the level of quality desired for the food load 14, a controller of the cooking system 10 may calculate a range of cooking times and corresponding power levels or cooking routines to prepare the food load 14 to the desired quality level. In this way, the cooking system 10 may provide for a user or operator to select a desired time to prepare the food load 14. If the desired time is within a time range for the desired quality level, the desired time may be utilized to prepare the food load 14.
For example, when initiating a cooking operation, a user may activate a time accommodating or time modulating cooking program. The program may be activated in response to an input to the cooking system 10 via the user interface 18. In response to the activation of the program, the system 10 may prompt the user for information identifying the food load 14 on a display screen 20. The information requested may include a food category (e.g. meats, vegetables, grains, etc.), a specific food type (chicken breast, green beans, pizza, etc.), and a proportion of the food load (e.g. weight, mass, volume, quantity, etc.). The requested information may additionally indicate various properties of the food load 14 such as a starting temperature (e.g. frozen, chilled, room temperature, etc.). Though described as being input by a user, the information describing the food load 14 may also be identified by one or more sensors (e.g. imagers, light sensors, scales, pressure sensors, and a variety of transducers) that may be incorporated with the cooking system 10.
Referring now to
Referring now to
The quality parameters 48 may include various indications or designations of relative quality corresponding to each food type. The food types and corresponding quality levels may be stored in a local memory or remote server that may be accessed by a controller of the cooking system 10 to automate a preparation process for a specified food load 14. For example, the quality parameters 48 may include a first quality level 50, a second quality level 52 and third quality level 54. Each of the quality parameters 48 may be assigned to a portion of the acceptability curve 46 and may correspond to cooking results for a food type (e.g. the first food type 42) that may be considered acceptable from a sensory standpoint and a hygienic perspective. The metrics utilized to indicate that the cooking results correspond to a quality parameter 48 may include a variety of properties of each food type that may be prepared by the cooking system 10.
For example, the quality parameters 48 may be assigned based on data gathered for each of the food types that may have acceptability curves accessible to the cooking system 10. The metrics may include but are not limited to a desired temperature, moisture level, browning level or crispness, consistency, and/or various additional properties that may be identified by acceptability curves for each of the various food types. Accordingly, the metrics may be utilized to indicate the quality parameters 48 for each food type based on sensory attributes of consumers utilizing the cooking system 10. In this configuration, each of the acceptability curves may be configured to indicate a range of cooking powers 34 and cooking times 44 that may provide consistent results conforming to a desired quality level.
As illustrated in
The first quality level 50 may correspond to a good, high, and/or optimum quality level. In an exemplary embodiment, preparation of a selected food type within the cooking power 34 and cooking time 36 parameters of the first quality level 50 may provide for a resulting preparation of the first food type 42 within a predefined range of temperatures, moisture levels, crispness or browning levels, and/or various other quality measures for the first food type 42. Accordingly, the cooking system 10 may be configured to receive a first cooking time 56a or a second cooking time 56b and adjust the cooking power 34 such that the first food type 42 is prepared to the first quality level 50 over either of the cooking times 56a and 56b.
In some embodiments, the cooking system 10 may provide for a food type (e.g. the first food type 42) to be prepared at the second quality parameter 52 or the third quality parameter 54 while varying the cooking time 36 within the corresponding cooking powers 34 as illustrated in
The cooking system 10 may adjust the cooking power 34 in various ways, some of which may depend on the specific configuration of the cooking apparatus 12. Various configurations of the cooking apparatus 12 are further discussed in reference to
In some embodiments, the cooking system 10 may provide for a user to adjust a cooking time after a cooking operation has already begun. For example, if a user of the cooking system 10 wishes to adjust a selected cooking time similar to those discussed in reference to
Referring now to
As previously discussed, in some embodiments, the cooking system 10 may be configured to begin cooking a food load 14 to a specified or predetermined quality level over a user indicated cooking time 36. As an example, a first requested cooking time 64a is demonstrated in the acceptability curve 62 specifying a relatively short duration for the cooking time 36. Once the cooking operation has started, the heat transfer into the food load 14 from the cooking apparatus 12 may be partially completed. However, the cooking system 10 may allow for the user to interrupt and/or adjust the first requested cooking time 64a to a second requested cooking time 64b. In the example shown in
When adjusting the cooking operation from the first requested cooking time 64a (T1) to the second requested cooking time 64b (T2) the controller of the cooking system 10 may adjust or modulate the rate of energy transfer from the cooking apparatus 12 into the food load 14. For example, the controller may account for monitor or track a quantity of heat transferred into the food load 14 during operation and prior to the interruption. In order to accommodate the second requested cooking time 64b, the controller may calculate a completed time (TC) prior to the interruption and a remaining time after the interruption. By comparing the completed time and the remaining time, the controller may scale the reference time for the acceptability curve 62 to a proportionate amount of the completed time (TC) from the second requested cooking time 64b (T2). In this way, the cooking system 10 may determine a reference time (TR) to utilize to determine the power setting for the adjusted cooking time. The equation for the reference time (TR) is shown as Eq. 1.
TR=T2÷(1−TC/T1)
For example, if the first requested cooking time 64a (T1) is 10 minutes and 2 minutes have elapsed before the interruption, the remaining cooking time for the first cooking power 34 would be 8 minutes. However, if the second requested cooking time 64b (T2) is 20 minutes, the controller of the cooking apparatus 10 must account for the elapsed time. Based on Eq. 1, the reference time 64c (TR) may be determined to be 25 minutes. Accordingly, the controller may utilize a cooking power 34 corresponding the reference time 64c (TR) with a remaining cook time of 20 minutes to achieve the second requested cooking time 64b. In this way, the controller may adjust the cooking time based on the data of the acceptability curve 62.
Though a specific method is discussed, the determination of the reference time 64c (TR) may be accomplished via a plurality of methods. In general, the objective of the reference time and corresponding cooking power 34 may be to ensure the amount of energy delivered to the food load 14 is maintained for each of the first requested cooking time 64a and the second requested cooking time 64b. The total energy delivered to the food load may be related to the integral of the cooking power 34 over the cooking time 36. Accordingly, various methods of interpolation may be utilized to determine the reference time 64c (TR).
Additionally in some embodiments, the cooking system 10 may comprise one or more sensors configured to detect properties of the cooking results for the food load 14 in real time. For example, the cooking system 10 may monitor a temperature of the food load by utilizing a thermal sensor, a browning level or crispness by utilizing an imager, and/or a moisture level by utilizing a humidistat. Based on this information, the controller of the cooking system 10 may manipulate the acceptability curve 62 and the quality parameters 48 to predict the cooking power 34 and cooking methods. In this way, the cooking system 10 may provide for a user selected cooking time throughout a cooking operation such that the cooking process for each of a variety of food types may be adjusted.
Referring now to
Based on the selection of the food type and proportions identified for the food load 14, the controller may access a memory and/or a database to retrieve properties (e.g. an acceptability curve and quality parameters 48) for the food type indicated (76). With the properties of the food type, the controller may continue by calculating cooking data based on the proportions indicated for the food load 14 and generating the range of available cooking times to achieve the predetermined quality level (78). The method 70 may then continue by receiving a selected cook time corresponding to the range of available cooking times to achieve the predetermined quality level (80).
The method 70 may gather the user specified cooking time in a variety of ways. For example, in some embodiments the controller of the cooking system 10 may output a range of available cooking times on the display screen 20 in response to receiving the selection of the food type and proportions in step 74. In some embodiments, the controller of the cooking system 10 may simply request a desired cooking time and determine in step 82 if the desired cooking time is within the available cooking times associated with the predetermined quality level. If the desired cooking time is not within the available for a predetermined quality level, the controller of the cooking system 10 may output a prompt for an updated input of the desired time (84). If the desired cooking time is within the available cooking times, the method 70 may continue to step 86 by controlling the heating apparatus 12 to heat the food load 14 over the desired cooking time. Finally, in step 88, the cooking process may be completed when the desired cooking time has elapsed. Accordingly, the cooking system 10 may provide for preparation of the food load 14 to a desired quality level while allowing a user to specify a cooking time over which the food load 14 is to be prepared.
Referring now to
The controller 92 may be supplied electrical current by a power supply 98 and may further comprise a communication circuit 100. The communication circuit 100 may correspond to various wired and/or wireless communication devices through which the controller 92 may communicate and/or access information stored in a remote server or location. For example, the communication circuit 100 may correspond to a local area network interface and/or a wireless communication interface. The wireless communication interface may be configured to communicate through various communication protocols including but not limited to wireless 3G, 4G, Wi-Fi®, Wi-Max®, CDMA, GSM, and/or any suitable wireless communication protocol. In this configuration, the controller 92 of the cooking system 10 may be configured to access information (e.g. quality parameters 48) for a wide variety of food types.
The cooking apparatus 12 may comprise various forms of heat sources 101 including, but not limited to a browning or heating element 102, a microwave element 104, a convection fan 106, or any mechanism suitable to heat food as discussed herein. The browning or heating element 102 may correspond to a gas burner, an electrically resistive heating element, an induction heating element, a browning or ferritic heating element or any other suitable heating device. Depending on the specific parameters of a requested quality level or quality parameter 48, the controller 92 may selectively control one or more of the heat sources 101 such that the food load 14 is prepared to a desired quality level over a user specified cooking time.
As discussed herein, the cooking system 10 may provide for a novel approach to preparing a food load wherein the cooking system adjusts various parameters in order to prepare the food load 14 over a user requested or desired time period. Accordingly, the disclosure may provide for various improvements for cooking systems and methods to ensure preparation of a food load to a predetermined quality level while allowing a user to request a desired cooking time.
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/057682 | 10/19/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/075025 | 4/26/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3536129 | White | Oct 1970 | A |
3603241 | Drucker | Sep 1971 | A |
3835921 | Faris et al. | Sep 1974 | A |
4196332 | MacKay B et al. | Apr 1980 | A |
4210795 | Lentz | Jul 1980 | A |
4374319 | Guibert | Feb 1983 | A |
4481519 | Margerum | Nov 1984 | A |
4777336 | Asmussen | Oct 1988 | A |
4831239 | Ueda | May 1989 | A |
4868357 | Serikawa et al. | Sep 1989 | A |
4996403 | White | Feb 1991 | A |
5008506 | Asmussen et al. | Apr 1991 | A |
5094865 | Levinson | Mar 1992 | A |
5293019 | Lee | Mar 1994 | A |
5360965 | Ishii et al. | Nov 1994 | A |
5361681 | Hedstrom et al. | Nov 1994 | A |
5369253 | Kuwata et al. | Nov 1994 | A |
5389764 | Nishii et al. | Feb 1995 | A |
5512736 | Kang et al. | Apr 1996 | A |
5521360 | Johnson et al. | May 1996 | A |
5632921 | Risman et al. | May 1997 | A |
5648038 | Fathi et al. | Jul 1997 | A |
5681496 | Brownlow et al. | Oct 1997 | A |
5756970 | Barger et al. | May 1998 | A |
5828042 | Choi et al. | Oct 1998 | A |
5961871 | Bible et al. | Oct 1999 | A |
6034363 | Barmatz et al. | Mar 2000 | A |
6066838 | Koda et al. | May 2000 | A |
6150645 | Lewis et al. | Nov 2000 | A |
6172348 | Yoshino et al. | Jan 2001 | B1 |
6559882 | Kerchner | May 2003 | B1 |
6884979 | Torngren et al. | Apr 2005 | B1 |
7105787 | Clemen, Jr. | Sep 2006 | B2 |
7111247 | Choi et al. | Sep 2006 | B2 |
7191698 | Bond et al. | Mar 2007 | B2 |
7326888 | Chun et al. | Feb 2008 | B2 |
7461588 | Head | Dec 2008 | B2 |
7501608 | Hallgren et al. | Mar 2009 | B2 |
7923664 | Kruempelmann et al. | Apr 2011 | B2 |
7992552 | Hirano et al. | Aug 2011 | B2 |
3207479 | Ben-Shmuel et al. | Jun 2012 | A1 |
8218402 | Lewis et al. | Jul 2012 | B2 |
8283605 | Arione et al. | Oct 2012 | B2 |
8324540 | Nordh et al. | Dec 2012 | B2 |
8330085 | Ishizaki et al. | Dec 2012 | B2 |
8338763 | Nordh et al. | Dec 2012 | B2 |
8389916 | Ben-Shmuel et al. | Mar 2013 | B2 |
8610038 | Hyde et al. | Dec 2013 | B2 |
8742305 | Simunovic et al. | Jun 2014 | B2 |
8742306 | Atzmony et al. | Jun 2014 | B2 |
8839527 | Ben-Shmuel et al. | Sep 2014 | B2 |
8922969 | Sigalov et al. | Dec 2014 | B2 |
8927913 | Hyde et al. | Jan 2015 | B2 |
9035224 | Lim et al. | May 2015 | B2 |
9040879 | Libman et al. | May 2015 | B2 |
9078298 | Ben-Shmuel et al. | Jul 2015 | B2 |
9131543 | Ben-Shmuel et al. | Sep 2015 | B2 |
9132408 | Einziger et al. | Sep 2015 | B2 |
9161390 | Gelbart et al. | Oct 2015 | B2 |
9161394 | Carlsson et al. | Oct 2015 | B2 |
9167633 | Ben-Shmuel et al. | Oct 2015 | B2 |
9182126 | Cartwright et al. | Nov 2015 | B2 |
9210740 | Libman et al. | Dec 2015 | B2 |
9215756 | Bilchinsky et al. | Dec 2015 | B2 |
9301344 | Ibragimov et al. | Mar 2016 | B2 |
9307583 | Sim et al. | Apr 2016 | B2 |
9332591 | Libman et al. | May 2016 | B2 |
9351347 | Torres et al. | May 2016 | B2 |
9363852 | Carlsson et al. | Jun 2016 | B2 |
9363854 | Sim et al. | Jun 2016 | B2 |
9374852 | Bilchinsky et al. | Jun 2016 | B2 |
9398644 | Okajima | Jul 2016 | B2 |
9398646 | Nobue et al. | Jul 2016 | B2 |
9414444 | Libman et al. | Aug 2016 | B2 |
9459346 | Einziger et al. | Oct 2016 | B2 |
9462635 | Bilchinsky et al. | Oct 2016 | B2 |
9462642 | Chu et al. | Oct 2016 | B2 |
20030070799 | Mueller et al. | Apr 2003 | A1 |
20060191926 | Ray et al. | Aug 2006 | A1 |
20080105675 | Choi et al. | May 2008 | A1 |
20080297208 | Baudin et al. | Dec 2008 | A1 |
20090011101 | Doherty et al. | Jan 2009 | A1 |
20090236333 | Ben-Shmuel et al. | Sep 2009 | A1 |
20090321428 | Hyde et al. | Dec 2009 | A1 |
20100059509 | Imai et al. | Mar 2010 | A1 |
20100176121 | Nobue et al. | Jul 2010 | A1 |
20100176123 | Mihara et al. | Jul 2010 | A1 |
20100182136 | Pryor | Jul 2010 | A1 |
20100187224 | Hyde et al. | Jul 2010 | A1 |
20100231506 | Pryor | Sep 2010 | A1 |
20110139773 | Fagrell et al. | Jun 2011 | A1 |
20120067873 | Mihara et al. | Mar 2012 | A1 |
20120103972 | Okajima | May 2012 | A1 |
20120103973 | Rogers et al. | May 2012 | A1 |
20120168645 | Atzmony et al. | Jul 2012 | A1 |
20120312801 | Bilchinsky et al. | Dec 2012 | A1 |
20130048881 | Einziger et al. | Feb 2013 | A1 |
20130056460 | Ben-Shmuel et al. | Mar 2013 | A1 |
20130080098 | Hadad et al. | Mar 2013 | A1 |
20130092033 | Murphy | Apr 2013 | A1 |
20130142923 | Torres et al. | Jun 2013 | A1 |
20130146590 | Einziger et al. | Jun 2013 | A1 |
20130186887 | Hallgren et al. | Jul 2013 | A1 |
20130206752 | Moon et al. | Aug 2013 | A1 |
20130240757 | Einziger et al. | Sep 2013 | A1 |
20130334215 | Chen et al. | Dec 2013 | A1 |
20140203012 | Corona et al. | Jul 2014 | A1 |
20140287100 | Libman | Sep 2014 | A1 |
20140305934 | DeCamillis et al. | Oct 2014 | A1 |
20150070029 | Libman et al. | Mar 2015 | A1 |
20150136760 | Lima et al. | May 2015 | A1 |
20150156823 | Okajima | Jun 2015 | A1 |
20150156827 | Ibragimov et al. | Jun 2015 | A1 |
20150271877 | Johansson | Sep 2015 | A1 |
20150346335 | Einziger et al. | Dec 2015 | A1 |
20150366006 | Ben-Shmuel et al. | Dec 2015 | A1 |
20160073453 | Hyde et al. | Mar 2016 | A1 |
20160095171 | Chaimov et al. | Mar 2016 | A1 |
20160128138 | Li et al. | May 2016 | A1 |
20160205973 | An et al. | Jul 2016 | A1 |
20160249416 | Elboim et al. | Aug 2016 | A1 |
20160273970 | Alon et al. | Sep 2016 | A1 |
20160278170 | Atherton et al. | Sep 2016 | A1 |
20160323940 | Guatta | Nov 2016 | A1 |
20160330803 | Guatta | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
103175237 | Jun 2013 | CN |
0550312 | Jul 1993 | EP |
1076475 | Feb 2001 | EP |
1193584 | Apr 2002 | EP |
1471773 | Oct 2004 | EP |
1795814 | Jun 2007 | EP |
2051564 | Apr 2009 | EP |
2512206 | Oct 2012 | EP |
2824991 | Jan 2015 | EP |
2446703 | Apr 2015 | EP |
2446704 | Apr 2015 | EP |
2446705 | Apr 2015 | EP |
2906021 | Aug 2015 | EP |
2916619 | Sep 2015 | EP |
2446706 | Jan 2016 | EP |
2205043 | Jan 2017 | EP |
2239994 | Nov 2018 | EP |
2766272 | Jan 1999 | FR |
2193619 | Feb 1988 | GB |
2253193 | May 2005 | RU |
9107069 | May 1991 | WO |
9913688 | Mar 1999 | WO |
0036880 | Jun 2000 | WO |
0223953 | Mar 2002 | WO |
2008018466 | Feb 2008 | WO |
2010052724 | May 2010 | WO |
2011058537 | May 2011 | WO |
2011108016 | Sep 2011 | WO |
2011138675 | Nov 2011 | WO |
2011138688 | Nov 2011 | WO |
2012052894 | Apr 2012 | WO |
2012162072 | Nov 2012 | WO |
2013059084 | Apr 2013 | WO |
2013078325 | May 2013 | WO |
2014006510 | Jan 2014 | WO |
2014024044 | Feb 2014 | WO |
2015099651 | Jul 2015 | WO |
2015127999 | Sep 2015 | WO |
2016144872 | Sep 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20190230750 A1 | Jul 2019 | US |