The present invention generally relates to food management and more particularly to systems, apparatus, and methods for managing food in food preparation establishments such as restaurants, including quick service restaurants.
The success of restaurants depends in large part on speed of customer service and quality of food served to customers. Speed of service may be improved by forecasting or predicting food that will be ordered in the future and preparing food before it is ordered. For example, food may be prepared by cooking it (e.g., by baking, frying, broiling, etc.) and then holding it in a condition suitable for serving in anticipation of the food being ordered by a customer. It is desirable to monitor inventory of cooked food to ensure it is served to customers within a time period during which it is suitable for serving and discarded or wasted if the food has not been served before that time period expires. Some systems for food management for restaurants are known. For example, certain systems are disclosed in U.S. Pat. Nos. 7,232,062, 7,258,064, and 7,953,632, which are hereby incorporated by reference in their entireties.
One aspect of the present invention is directed to a food management control system for managing food in a food holding apparatus having at least a first holding location and a second holding location for holding food of a first food type. The food management control system includes a food management controller configured for monitoring food expiration times associated with the first and second holding locations. A point of sale device is configured for receiving customer orders and for generating a customer order signal representative of a customer order for an amount of the first food type. The food management control system also includes a user interface including at least first and second holding location displays for displaying information associated with the respective first and second holding locations. The food management control system also includes a tangible storage medium having food management controller executable instructions stored therein. The instructions, when executed by the food management controller, display on the first and second holding location displays food amount indicators representing an amount of food held at the respective holding locations. The tangible storage medium stores food management controller executable instructions for displaying a first food status indicator on one of the first and second holding location displays indicating food held at the holding location associated with said one of the first and second holding location displays should be served first relative to food held at the holding location associated with the other of the first and second holding location displays. The food management controller is in operative communication with the point of sale device for receiving the customer order signal, and the food management controller is responsive to the customer order signal to change the food amount indicator displayed on said one of the first and second holding location displays to represent a reduced amount of food of the first food type held in said one of the first and second holding locations.
Another aspect of the present invention is directed to a food management control system for managing food in a food holding apparatus. The food holding apparatus has a plurality of food holding locations including at least an origin holding location and a destination holding location for receiving food transferred from the origin location. The food management control system includes a food management controller configured for managing an inventory of food and monitoring hold times associated with the food holding locations including the origin and destination holding locations. The food management control system includes a tangible storage medium storing a data structure identifying a hold time as being associated with the origin holding location. The tangible storage medium includes food management controller executable instructions stored therein. The instructions, when executed by the food management controller, identifying the destination holding location as a default destination holding location among the plurality of food holding locations. The tangible storage medium includes food management controller executable instructions for executing a default transfer in which the food management controller modifies the data structure to identify the hold time as being associated with the default destination holding location.
Another aspect of the present invention is directed to a computer executable method for use with food holding apparatus having a plurality of food holding locations including at least an origin holding location and a destination holding location to which food from the origin holding location can be transferred. The method includes storing a data structure in a tangible storage medium identifying a hold time as being associated with the origin holding location, monitoring, with a food management controller, the hold time associated with the origin holding location, and referencing, with the food management controller, instructions stored in the tangible storage medium identifying a holding location among the plurality of the holding locations as a default holding location for receiving the hold time in a default transfer. The method further includes executing, with the food management controller, instructions stored in the tangible storage medium to execute the default transfer including modifying the data structure to identify the hold time as being associated with the default destination holding location.
Another aspect of the present invention is directed to a food management control system for managing food in a food holding apparatus. The food holding apparatus has at least a first holding location and a second holding location. The food management control system includes a food management controller configured for monitoring hold times associated with the first and second holding locations. The food management control system includes a user interface including at least first and second holding location displays for displaying information associated with the respective first and second holding locations. The first and second holding location displays are arranged in an array corresponding to an arrangement of the respective first and second holding locations. The first and second holding location displays are positioned in the array corresponding to positions of the respective first and second holding locations in the arrangement. A tangible storage medium stores a data structure identifying the first holding location as a primary holding location. The tangible storage medium has food management controller executable instructions stored therein. The instructions, when executed by the food management controller, display a primary holding location indicator on the first holding location display for distinguishing the first holding location from the second holding location as the primary holding location. The primary holding location indicator indicates to a user to place food at the first holding location instead of the second holding location when the first and second holding locations are not holding food and to transfer food from the second holding location to the first holding location if the first holding location is not holding food.
Another aspect of the present invention is directed to a restaurant food management control system for managing an inventory of cooked food. The restaurant food management control system includes a user interface for displaying a cook list of food types to be cooked for adding to the inventory of cooked food. The restaurant food management control system includes food management controller configured for managing the inventory of cooked food, monitoring a need for cooked food, and determining food types needed to be cooked. The restaurant food management control system includes a tangible storage medium storing the cook list. The tangible storage medium has food management controller executable instructions stored therein. The instructions, when executed by the food management controller, determine a priority for each food type on the cook list as a function of an amount of food of that food type in the inventory and an amount of food of that food type needed to be cooked. The tangible storage medium has food management controller executable instructions that, when executed by the food management controller, modify the cook list to arrange the food types on the cook list in order of the determined priority.
Another aspect of the present invention is directed to a food management control system for managing an inventory of processed food. The food management control system includes a user interface for displaying a prioritized food type list of food types to be processed for adding to the inventory of processed food. The food management control system includes a food management controller configured for managing the inventory of processed food, monitoring a need for processed food, and determining food types needed to be processed. The food management control system includes a tangible storage medium storing the prioritized food type list. The tangible storage medium has food management controller executable instructions stored therein. The instructions, when executed by the food management controller, determine a priority for each food type on the prioritized food type list as a function of an amount of food of that food type in the inventory and an amount of food of that food type needed to be processed. The tangible storage medium has food management controller executable instructions for modifying the prioritized food type list to arrange the food types on the prioritized food type list in order of the determined priority.
Another aspect of the present invention is directed to a food management system for managing food in a food holding apparatus having a plurality of holding locations. The food management system includes a food management controller configured for monitoring a status of the plurality of holding locations. The food management system includes a user interface including a plurality of holding location displays associated with respective holding locations for displaying information associated with the holding locations. The holding location displays are arranged in an array corresponding to an arrangement of the respective holding locations. The holding location displays are positioned in the array corresponding to positions of the respective holding locations in the arrangement. Each holding location display includes a touch sensitive area defining a button that can be actuated by at least a first type of user engagement with the button. The food management system including a tangible storage medium having food management controller executable instructions stored therein. The instructions, when executed by the food management controller, display on each holding location display information associated with the status of the respective holding location. The tangible storage medium has food management controller executable instructions for executing a first operation in response to the first type of user engagement with the button when a first holding location status is displayed on the holding location display and for executing a second operation different than the first operation in response to the first type of user engagement with the button when a second holding location status is displayed on the holding location display.
Another aspect of the present invention is directed to a computer executable method for use with food holding apparatus having a plurality of holding locations. The method includes providing a user interface including a plurality of holding location displays associated with respective holding locations for displaying information associated with the holding locations. The holding location displays are arranged in an array corresponding to an arrangement of the respective holding locations. The holding location displays are positioned in the array corresponding to positions of the respective holding locations in the arrangement. Each holding location display including a touch sensitive area defining a button that can be actuated by at least a first type of user engagement with the button. The method also includes displaying on each holding location display information associated with the status of the respective holding location, executing, with a food management controller, a first operation in response to the first type of user engagement with the button when a first holding location status is displayed on the holding location display, and executing, with the food management controller, a second operation different than the first operation in response to the first type of user engagement with the button when a second holding location status is displayed on the holding location display.
Another aspect of the present invention is directed to a food management control system for managing food in a food holding apparatus having a plurality of holding locations. The food management control system includes a food management controller configured for monitoring status of the plurality of holding locations. The food management control system includes a user interface including a plurality of holding location displays associated with respective holding locations for displaying information associated with the holding locations. The holding location displays are arranged in an array corresponding to an arrangement of the respective holding locations and positioned in the array corresponding to positions of the respective first and second holding locations in the arrangement. Each holding location display includes a touch sensitive area defining a button that can be actuated by at least a first type of user engagement with the button and a second type of user engagement with the button different than the first type of user engagement with the button. The food management control system includes a tangible storage medium having food management controller executable instructions stored therein. The instructions, when executed by the food management controller, display on each holding location display information associated with the status of the respective holding location. The tangible storage medium has food management controller executable instructions for executing a first operation in response to the first type of user engagement with the button and for executing a second operation different than the first operation in response to the second type of user engagement with the button.
Yet another aspect of the present invention is directed to a computer executable method for use with a food holding apparatus having a plurality of holding locations. The method includes providing a user interface including a plurality of holding location displays associated with respective holding locations for displaying information associated with the holding locations. The holding location displays are arranged in an array corresponding to an arrangement of the respective holding locations and positioned in the array corresponding to positions of the respective first and second holding locations in the arrangement. Each holding location display includes a touch sensitive area defining a button that can be actuated by at least a first type of user engagement with the button and a second type of user engagement with the button different than the first type of user engagement with the button. The method further includes displaying on each holding location display information associated with the status of the respective holding location, executing, with a food management controller, a first operation in response to the first type of user engagement with the button, and executing, with the food management controller, a second operation different than the first operation in response to the second type of user engagement with the button.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
Referring to the drawings,
An aspect of the present invention relates to the food holding apparatus 20. In one example, as shown in
A control system 40 (e.g., “food management control system” or “quick service food management control system”) associated with the holding apparatus 20 is shown schematically in
The at least one touch screen display 64 is associated with the food holding apparatus 20 for monitoring food preparation and inventory (e.g., uncooked and/or cooked food inventory) and providing associated information and instructions to employees. For example, the touch screen display 64 may be part of the point-of-sale device 24, local computer 26, remote computer 28, tablet 30, and/or hand-held computing devices 32, etc. At least one touch screen display 64 is desirably positioned proximate the food holding apparatus 20 for reference by employees using the food holding apparatus. For example, in one embodiment, the touch screen display 64 is part of the tablet 30 and is mounted or otherwise supported next to the food holding apparatus 20. Alternatively, the touch screen display 64 may be part of the food holding apparatus 20. For example, the food holding unit 22 may include multiple touch screen displays (e.g., arranged in an array on the holding unit) associated with and positioned proximate to respective individual or groups of holding locations 36, or the food holding unit 22 may include a global touch screen display associated with all of the holding locations.
The user interface 46 (e.g., the touch screen display 64) may provide information to the employees and receive information from the employees regarding many aspects of food preparation and inventory, some of which will be understood by reference to the patents incorporated by reference herein. The touch screen display 64 may indicate to employees amounts and types of food to be cooked based on forecasted and/or recent orders. In addition, the touch screen display 64 may indicate to employees status of food being held in the food holding apparatus 20 (e.g., whether the food is suitable for being served, whether its hold time has expired, etc.).
Food may be stored in the food holding apparatus 20 (e.g., after it is cooked or otherwise prepared, such as by thawing, cutting, assembling, and/or portioning) until it is served to a customer or discarded as waste. Inventory of food held in the food holding apparatus 20 may be monitored by the control system 40, and indications of the status of the holding locations 36 (e.g., status of food held at the holding locations) may be shown on the touch screen display 64. As will be explained in further detail, the food holding apparatus status section 72 indicates status of food holding locations 36 such as “no food present,” “food present,” “food suitable for serving,” “food to be served first,” “food to be served second,” and “food expired or to be discarded.”
Referring to
Although the holding location displays 80 are illustrated as all being sections of the touch screen display 64, it will be appreciated that other configurations can be used without departing from the scope of the present invention. For example, the holding location displays 80 could be unconnected or separate from each other (e.g., on respective separate touch screen displays). Such separate holding location displays could still be arranged in an array corresponding to the holding locations. For example, the holding location displays 80 could be positioned on the holding apparatus 20 in such an array (e.g., next to the respective holding locations 36).
Although the illustrated hold time indicators 80B are count down timers, it will be understood other hold time indicators may be used without departing from the scope of the present invention. For example, the hold time indicator may be a count up timer, a static time (e.g., static expiration time), color, symbol, graphic, text, bolding, highlighting, outlining, or other indicator without departing from the scope of the present invention. As used herein, the term “hold time” can mean an expiration time, a time remaining until expiration, a time food has been held, etc., without departing from the scope of the present invention.
Although the illustrated food amount indicators 80C indicate numbers of food items, it will be understood other types of food amount indicators may be used without departing from the scope of the present invention. For example, it may be desirable to indicate amount of food by weight, volume, percentage (e.g., percentage of an amount), or other measures, any of which may be used without departing from the scope of the present invention.
In one aspect of the present invention, employees may be trained to serve food from designated “primary” or “serving” locations 36 of the holding apparatus 20. It may be desirable to train the employees to serve from these designated primary locations 36 for ease of use and efficiency. For example, when the primary holding location is not holding food, employees should transfer non-expired food of that type held in other locations 36 to the primary location for that food type, or place new food at the primary location instead of a different location for that food type. The primary locations 36 may be indicated by primary location indicators 82 on the respective holding location displays for distinguishing the primary locations from other locations designated for holding the same type of food. In the illustrated embodiment, primary locations 36 are indicated by “key” symbols 82 in the upper left corner of the holding location displays 80 representative of the primary locations. The primary holding location indicators 82 are particularly helpful to a user in distinguishing the primary holding location from another holding location when both holding locations are indicated on the respective holding location displays as being active but not holding food. For example, referring to
Various aspects and functions of the control system 40 and in particular the user interface 46 (e.g., touch screen display 64) will now be explained with reference to
In the illustrated embodiment, the food holding apparatus status section 72 includes the plurality of holding location displays 80, which each include a touch sensitive area defining the button 89. In the illustrated embodiment, the buttons 89 are substantially co-extensive with the holding location displays 80 and have respective boundaries adjacent boundaries of the holding location displays. In the illustrated embodiment, the boundaries of the buttons 89 are shown as rectangular outlines or borders that are also the boundaries of the respective holding location displays 80. The buttons 89 may have other sizes and shapes without departing from the scope of the present invention. For example, the buttons may be at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or more of the holding location displays. The buttons 89 desirably have sufficient size to facilitate convenient engagement with them by a finger of a user. It will be appreciated that the holding location displays 80 may be relatively small, and it may be desirable to provide the buttons 89 with the largest size possible to facilitate engagement with the buttons. In the illustrated embodiment, the buttons 89 are the only buttons in the touch sensitive area of respective holding location displays 80. The size of the buttons 89 may be described with reference to the holding location indicators that are displayed on the holding location display 80 in the touch sensitive area defining the buttons. For example, one or more indicators such as the food amount indicator 80C, food hold time indicator 80B, and food type indicator 80A can be displayed in the touch sensitive area of the holding location display 80 defining the button 89. In the illustrated embodiment, when the holding location display indicates no food is held and when it indicates food is held and not yet expired, only information representative of the status of the holding location is displayed in the touch sensitive area of the holding location display 80 defining the button 89. When a holding location display indicates a status of no food held or food held is not yet expired, the touch sensitive area of the holding location display is free of any indicator indicating an operation executed in response to engagement with the button. It is believed the above features provide the holding location displays with a relatively clean appearance and facilitate quick user comprehension and interaction. Other button configurations may be used without departing from the scope of the present invention. As will be described in further detail below, the buttons 89 may be actuated by different types of user engagement with the buttons, such as the user engagements described above. For example, a button 89 may be actuated by briefly tapping the button to bring up a prompt window providing access to various other buttons associated with the holding location 36 or by making a sustained press of the button to execute certain functions with or without bringing up a prompt window. It will be understood that the operations initiated or executed by the different types of user engagement with the buttons 89 associated with the holding locations 36 (e.g., brief tap and sustained press) may be other than described or be switched without departing from the scope of the present invention.
When food is ready to be held in the food holding apparatus 20 (e.g., after the food has been cooked), an employee may place the food at a chosen location 36 of the food holding apparatus appropriate for holding the particular type of food. Desirably, the chosen location 36 is indicated on its holding location display 80 as being active but not holding food. For example, as shown in
While a holding location 36 is indicated on its respective holding location display 80 as containing food, the amount of food indicated as being held at the holding location may be updated. For example, if the holding location 36 is indicated as “serve first” (e.g., green color), the control system 40 will presume the employees are serving food from that location, and the controller 42 will change (e.g., update) the food amount indicator 80C of the holding location display 80 representing that “serve first” holding location 36 to represent a decreased amount of food, responsive to a signal from the point-of-sale device 24 indicating an amount of food of that type has been ordered by a customer. The controller 42 logs this decreased amount in the tangible storage medium 44 as being the amount of food held at the associated holding location 36. For example, if the food amount indicator 80C shows “10” and the point-of-sale device 24 signals a customer ordered one item of that food type, the controller 42 will display on the respective holding location display 80 an updated food amount indicator to show “9.” This may occur substantially in real-time, in a delayed fashion, and/or periodically. Moreover, for various reasons, the employees may need to update the amount of food indicated as being held. For example, some of the food may have fallen out of the pan while the employee was taking food from the pan. To manually increase or decrease the amount of food indicated by the food amount indicator 80C, the employee may briefly “tap” the holding location display 80 associated with the relevant location 36 to bring up the prompt screen 90 shown in
While a food holding location 36 is indicated on the associated holding location display 80 as containing food suitable for serving, the food may be transferred from that holding location to a different holding location, and the hold time indicator 80B may be transferred to the holding location display 80 associated with the different holding location. For ease of reference, the holding location 36 from which the food is transferred will be referred to as the origin holding location, and the location to which the food is to be transferred will be referred to as the destination holding location. For example, as explained above, it may be desirable for employees to serve food from a primary or serving location of the holding apparatus 20 for a particular type of food. If the primary holding location needs to be supplied with food, food from another holding location 36 (e.g., a container having an amount of food in it) may be transferred to the primary location. The identity of the primary holding location may be stored in the tangible storage medium 44 as a default destination holding location. In other words, transfers to the primary holding location may be executed automatically as “default transfers.” In such cases, the primary holding location indicator 82 can be referred to as a default destination location indicator. Alternatively or in addition, the control system 40 may permit “selected transfers” (e.g., override of “default transfers”) in which the employee selects a desired destination holding location that is different than the default destination holding location. For example, processor executable override instructions responsive to user input would designate a different holding location 36 than the default location as the destination holding location. In one example, the instructions to identify the destination holding location would identify the default holding location as the only destination holding location unless the override instructions have been executed prior to execution of the identifying instructions.
Transfers may be executed in various ways, such as by different types of user engagement with the buttons 89 of the holding location displays 80. For example, the transfer function may be executed by “long holding” (“sustained pressing”) the button 89 on the holding location display 80 for an origin holding location. Referring to
Alternatively, if the employee desired to make a “selected transfer,” they could, for example, during the pending transfer countdown time, tap the pending transfer window 100 to signal the control system 40 to execute a selected transfer instead of a default transfer. An example of such a process is illustrated in
It will be appreciated that default and selected transfer operations may be initiated and executed in other fashions without departing from the scope of the present invention. For example, as shown in
In one embodiment, the control system 40 may include at least one sensor 110 used for initiating a transfer. For example, as shown in
When food at a holding location 36 is indicated on its holding location display 80 as containing expired food (hold time elapsed, e.g., “0:00”), the amount of expired food represented as held in the holding location may be updated. For example, to indicate to the control system 40 that the expired food is being discarded, the employee may tap on the holding location display 80 representative of the relevant holding location 36. The prompt window 90 such as shown in
In view of the discussion above, it will be appreciated that the buttons 89 of the touch screen display 64 associated with the holding locations 36 permit execution of different operations by different activations or actuations of the buttons by different types of user engagement with the buttons. For example, in one embodiment, as described above, tapping (a first type of engagement) of a button 89 for a holding location display 80 brings up the prompt window 90 (e.g., from which the amount of food indicated as stored at the location 36 can be changed or a transfer may be initiated), and long holding or sustained pressing (a second type of engagement) of the button executes a transfer. In other embodiments, a default transfer may be initiated or executed by tapping and a selected transfer may be initiated or executed by long holding. As also described above, upon inserting food into a previously empty holding location 36, tapping the button 89 associated with the holding location display 80 may bring up the prompt window 90, and sustained pressing the button may automatically enter the suggested amount of food (e.g., previously displayed on the cook list). Moreover, as also described above, upon expiration of the hold time, tapping the button 89 may bring up the prompt window 90 (where the amount of food to be wasted can be modified), and long holding the button may automatically log the suggested amount of food as waste and change the displayed status of the holding location 36 to “no food held.” It will be understood that other operations may be executed based on other types of engagements with the touch screen display, and the operations initiated or executed by tapping, long holding, or other types of engagements may be switched or interchanged without departing from the scope of the present invention. It will be appreciated that the appearance of the buttons 89 is substantially the same for a particular food holding location display among the various holding location statuses, other than the updating of displayed information representative of the status of the holding location in the touch sensitive area of the holding location display defining the button. For example, a button appears substantially the same among holding location statuses except for the updating of displayed indicators representing food type, amount, hold time, whether food is present, whether food should be served first or second, and whether food is expired. However, other configurations may be used without departing from the scope of the present invention.
In another aspect of the present invention, the cook list section 70 may display food types to cook in order of floating priority. This will be described with reference to
The ratio of inventory versus need of a particular food type may change over time, and the cook lists may be updated to reflect the changed priority. The tangible storage medium 44 can store the cook list and priority information (e.g., in data structures), and the controller 42 can update the priority information and modify the cook list accordingly. Continuing with the example from above, if the point-of-sale device 24 indicates to the control system 40 that a customer has recently ordered two cookies, the inventory of the cookies will be updated to 1 cookie (2 less cookies than before). The food amount indicator 80C on the holding location display 80 associated with the holding location holding cookies from which they are being served (e.g., the primary holding location) would be updated to 1 from 3. Accordingly, the ratio of inventory to need of cookies would reduce to 10%, meaning there would be increased priority to cook cookies. If the updated inventory to need of cookies changed the relative priority on the cook list 70B′ (e.g., relative to rolls at 20%), cookies would move higher on the oven cook list (e.g., “9 COOKIE”), as shown in
If desired, a food type listed on the cook list 70B′ may be “held” or “locked” in position (priority) on the list by user engagement (e.g., tapping, long holding, etc.) the associated line item (e.g., the food type indicator) on the cook list. For example, if the particular food type is currently being cooked, it may be desirable to hold its position on the cook list until cooking of food of that food type is finished and the cooked food is supplied to the food holding apparatus 20. After food is cooked and supplied to the food holding apparatus 20, the control system 40 knows cooking of the food has finished, based on entry of the food into a holding location (from an employee using the touch screen display 64 to enter the food into a holding location). In response, the control system 40 may reduce the amount of that food type shown on the cook list as needing to be cooked or remove it from the cook list, as necessary.
It will be appreciated that features of the cook list 70B′ described above can be applied to types of food processing other than cooking. For example, a prioritized food type list similar to the cook list 70B′ can be used for identifying and listing food types to be processed (in other ways than cooking) in order of determined priority. Food processing can include thawing, cutting, portioning, moving, assembling, packaging, holding, and/or other types of processing. The priority for processing a particular food type can be determined as a function of an amount of food of that food type in inventory and an amount of that food type needed to be processed, exactly as described above with respect to processing by cooking. The priority for food types on the prioritized food type list can be updated, and the order of the food types on the prioritized food type list can be changed based on the updated determined priority. Any of the features described above with respect to the cook list could be applied to the prioritized food type list.
As with the previous embodiment, the view shown in
The second embodiment also includes primary (default destination) holding location indicators 282 that serve the same purpose as the indicators 82 described above with respect to the first embodiment. The primary holding location indicators 282 distinguish the holding locations as primary holding locations and desirably also default destination holding locations for default transfers. In this embodiment, the holding location indicators 282 are provided in the form of an asterisk. It will be understood other indicators such as other symbols can be used without departing form the scope of the present invention. In this embodiment, the primary holding location indicators 282 are not displayed on the respective holding location displays 280 when the holding location display indicates the holding location is holding food. When food is held in the a primary holding location, presumably the respective food holding location display 280 indicates the status as being “serve first” because the longest held (or soonest to expire) food would be present in that holding location. This serves as sufficient indication to the employee to serve from the primary holding location. For example, the left “FISH” holding location display 280 represents the primary holding location for fish and would display a primary holding location status indicator if not indicating that the holding location is holding food (food amount indicator 280C representing “1”, hold time indicator 280B representing “00:08” remaining before expiration, green background indicating “serve first”).
The cook list section 270 includes a plurality of cook lists 270A, 270B, 270C, 270D corresponding to different cooking devices including the fryers broiler 18, fryers 12, ovens 10, and microwave 14. The food types to be cooked are indicated by a food type indicator such as a full or abbreviated name of the type of food (e.g., “SM BRG” for small burger patties, “LG BRG” for large burger patties, etc. and an amount of that food type to be cooked (e.g., “10” for “SM BRG,” “6” for “LG BRG”), which together may be referred to as a line item. It will be appreciated that the cook lists 270A-270D have the same prioritizing features as described above with respect to the cook list 70B′ of
The Title, Field of Invention, and Background are provided to help the reader quickly ascertain the nature of the technical disclosure. They are submitted with the understanding that they will not be used to interpret or limit the scope or meaning of the claims. They are provided to introduce a selection of concepts in simplified form that are further described in the Detailed Description. The Title, Field of Invention, and Background are not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the claimed subject matter.
For purposes of illustration, programs and other executable program components, such as the operating system, are illustrated herein as discrete blocks. It is recognized, however, that such programs and components reside at various times in different storage components of a computing device, and are executed by a data processor(s) of the device.
Although described in connection with an exemplary computing system environment, embodiments of the aspects of the invention are operational with numerous other general purpose or special purpose computing system environments or configurations. The computing system environment is not intended to suggest any limitation as to the scope of use or functionality of any aspect of the invention. Moreover, the computing system environment should not be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with aspects of the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, mobile telephones, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
Embodiments of the aspects of the invention may be described in the general context of data and/or processor-executable instructions, such as program modules, stored one or more tangible, non-transitory storage media and executed by one or more processors or other devices. Generally, program modules include, but are not limited to, routines, programs, objects, components, and data structures that perform particular tasks or implement particular abstract data types. Aspects of the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote storage media including memory storage devices.
In operation, processors, computers and/or servers may execute the processor-executable instructions (e.g., software, firmware, and/or hardware) such as those illustrated herein to implement aspects of the invention.
Embodiments of the aspects of the invention may be implemented with processor-executable instructions. The processor-executable instructions may be organized into one or more processor-executable components or modules on a tangible processor readable storage medium. Aspects of the invention may be implemented with any number and organization of such components or modules. For example, aspects of the invention are not limited to the specific processor-executable instructions or the specific components or modules illustrated in the figures and described herein. Other embodiments of the aspects of the invention may include different processor-executable instructions or components having more or less functionality than illustrated and described herein.
The order of execution or performance of the operations in embodiments of the aspects of the invention illustrated and described herein is not essential, unless otherwise specified. That is, the operations may be performed in any order, unless otherwise specified, and embodiments of the aspects of the invention may include additional or fewer operations than those disclosed herein. For example, it is contemplated that executing or performing a particular operation before, contemporaneously with, or after another operation is within the scope of aspects of the invention.
When introducing elements of aspects of the invention or the embodiments thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that several advantages of the aspects of the invention are achieved and other advantageous results attained.
Not all of the depicted components illustrated or described may be required. In addition, some implementations and embodiments may include additional components. Variations in the arrangement and type of the components may be made without departing from the spirit or scope of the claims as set forth herein. Additional, different or fewer components may be provided and components may be combined. Alternatively or in addition, a component may be implemented by several components.
The above description illustrates the aspects of the invention by way of example and not by way of limitation. This description enables one skilled in the art to make and use the aspects of the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the aspects of the invention, including what is presently believed to be the best mode of carrying out the aspects of the invention. Additionally, it is to be understood that the aspects of the invention is not limited in its application to the details of construction and the arrangement of components set forth in the description or illustrated in the drawings. The aspects of the invention are capable of other embodiments and of being practiced or carried out in various ways. Also, it will be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Having described aspects of the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of aspects of the invention as defined in the appended claims. It is contemplated that various changes could be made in the above constructions, products, and methods without departing from the scope of aspects of the invention. In the preceding specification, various embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the aspects of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
The following are statements of invention described in the present application. Although some of the following statements are not currently presented as claims, the statements are believed to be patentable and may subsequently be presented as claims. Associated methods, such as methods corresponding to statements of apparatus or systems below, are also believed to be patentable and may subsequently be presented as claims.
A1. A food management control system for managing food in a food holding apparatus, said food holding apparatus having a plurality of food holding locations including at least an origin holding location and a destination holding location for receiving food transferred from the origin location, the food management control system including
a food management controller configured for managing an inventory of food and monitoring hold times associated with the food holding locations including the origin and destination holding locations, and
a tangible storage medium storing a data structure identifying a hold time as being associated with the origin holding location, the tangible storage medium including food management controller executable instructions stored therein, said instructions, when executed by the food management controller, identifying the destination holding location as a default destination holding location among the plurality of food holding locations, the tangible storage medium including food management controller executable instructions for executing a default transfer in which the food management controller modifies the data structure to identify the hold time as being associated with the default destination holding location.
A2. A food management control system as set forth in claim A1 further comprising an origin holding location display associated with the origin holding location and a destination holding location display associated with the destination holding location, wherein the tangible storage medium includes food management controller executable instructions for, before the default transfer, displaying on the origin holding location display a food status indicator representative of the hold time, and food management controller executable instructions for, after the default transfer, displaying on the default destination holding location display a food status indicator representative of the transferred hold time.
A3. A food management control system as set forth in claim A2 wherein the food status indicator displayed on the destination holding location display includes a timer representative of the hold time.
A4. A food management control system as set forth in claim A2 wherein the food status indicator displayed on the destination holding location display includes a color representative of the hold time.
A5. A food management control system as set forth in claim A1 further comprising a user interface including holding location displays associated with respective food holding locations including the origin holding location and destination holding location, wherein the holding location displays are arranged in an array corresponding to an arrangement of the holding locations, and the origin holding location display and destination holding location display are positioned in the array corresponding to positions of the respective origin and destination holding locations in the arrangement.
A6. A food management control system as set forth in claim A5 wherein the tangible storage medium includes food management controller executable instructions for displaying a default destination holding location indicator on the holding location display associated with the holding location identified in the identifying instructions as the default destination holding location to visually distinguish to a user said holding location as the default destination holding location.
A7. A food management control system as set forth in claim A5 wherein the tangible storage medium includes food management controller executable instructions for displaying food type indicators on the holding location displays for indicating a type of food to be held at the holding locations.
A8. A food management control system as set forth in claim A7 wherein the food type indicators displayed on the holding location displays associated with the origin and destination holding locations indicate the same type of food is to be held at the origin and destination holding locations.
A9. A food management control system as set forth in claim A5 wherein the user interface comprises a touch screen display, and the holding location displays associated with the origin and destination holding locations are sections of the touch screen display.
A10. A food management control system as set forth in claim A1 wherein the destination holding location is a first destination holding location and the holding apparatus further comprises a second destination holding location, the identifying instructions identifying the first destination holding location and not the second destination holding location as the default destination holding location among the first and second destination holding locations.
A11. A food management control system as set forth in claim A10 further comprising a user interface including holding location displays associated with respective ones of the first and second destination holding locations, wherein the tangible storage medium includes food management controller executable instructions for displaying a food type indicator on the holding location displays to indicate a type of food to be held at the holding locations, and wherein the food type indicators displayed on the holding location displays associated with the first and second destination holding locations indicate the same type of food is to be held at the first and second destination holding locations.
A12. A food management control system as set forth in claim A10 further comprising a user interface configured for receiving user input, and wherein the food management controller is responsive to user input to change the identifying instructions to identify the second destination holding location as the default destination holding location instead of the first destination holding location.
A13. A food management control system as set forth in claim A1 further comprising a user interface configured for receiving user input, and wherein the food management controller is responsive to user input to initiate the default transfer.
A14. A food management control system as set forth in claim A1 wherein the food holding apparatus includes a sensor configured for sensing whether food is present in the origin holding location, and the tangible storage medium includes food management controller executable instructions for initiating the default transfer as a function of a signal from said sensor.
A15. A food management control system as set forth in claim A1 wherein the food holding apparatus includes a sensor configured for sensing whether food is present in the destination holding location identified in the identifying instructions as the default holding location, and the tangible storage medium includes food management controller executable instructions for initiating the default transfer as a function of a signal from said sensor indicating no food is held in the default destination holding location.
A16. A food management control system as set forth in claim A1 further comprising a user interface configured for receiving user input, and wherein the tangible storage medium includes food management controller executable override instructions responsive to user input designating a different holding location than the default holding location as the destination holding location for a selected transfer and wherein the identifying instructions identify the default holding location as the only destination holding location unless the override instructions have been executed prior to execution of the identifying instructions.
A17. A food management control system as set forth in claim A1 wherein the tangible storage medium includes a second data structure identifying an amount of food as being associated with the origin holding location, the food management controller being configured for monitoring the amount of food held at the origin holding location, the food management controller being configured to, in the default transfer, modify the second data structure to identify the amount of food as being associated with the default destination holding location and configured to thereafter monitor the amount of food held at the default destination holding location.
A18. A food management control system as set forth in claim A17 further comprising an origin holding location display associated with the origin holding location and a destination holding location display associated with the destination holding location, wherein the tangible storage medium includes food management controller executable instructions for, before the default transfer, displaying on the origin holding location display an indicator representative of the amount of food held at the origin holding location, and food management controller executable instructions for, after the default transfer, displaying on the destination holding location display a food status indicator representative of the transferred amount of food.
A19. A food management system including the food management control system as set forth in claim A1 in combination with the food holding apparatus having the plurality of food holding locations including the origin holding location and the destination holding location.
AM1. A computer executable method for use with food holding apparatus having a plurality of food holding locations including at least an origin holding location and a destination holding location to which food from the origin holding location can be transferred, the method including:
storing a data structure in a tangible storage medium identifying a hold time as being associated with the origin holding location,
monitoring, with a food management controller, the hold time associated with the origin holding location,
referencing, with the food management controller, instructions stored in the tangible storage medium identifying a holding location among the plurality of the holding locations as a default holding location for receiving the hold time in a default transfer,
executing, with the food management controller, instructions stored in the tangible storage medium to execute the default transfer including modifying the data structure to identify the hold time as being associated with the default destination holding location.
B1. A food management control system for managing food in a food holding apparatus, said food holding apparatus having at least a first holding location and a second holding location, the food management control system including
a food management controller configured for monitoring hold times associated with the first and second holding locations,
a user interface including at least first and second holding location displays for displaying information associated with the respective first and second holding locations, the first and second holding location displays being arranged in an array corresponding to an arrangement of the respective first and second holding locations, and the first and second holding location displays being positioned in the array corresponding to positions of the respective first and second holding locations in the arrangement, and
a tangible storage medium storing a data structure identifying the first holding location as a primary holding location, the tangible storage medium having food management controller executable instructions stored therein, said instructions, when executed by the food management controller, displaying a primary holding location indicator on the first holding location display for distinguishing the first holding location from the second holding location as the primary holding location, the primary holding location indicator indicating to a user to place food at the first holding location instead of the second holding location when the first and second holding locations are not holding food and to transfer food from the second holding location to the first holding location if the first holding location is not holding food.
B2. A food management control system as set forth in claim B1 wherein the primary holding location indicator is not representative of a length of food hold time.
B3. A food management control system as set forth in claim B1 wherein when the first and second food holding locations are active and not holding food the holding location displays have substantially the same appearance except for the primary holding location indicator distinguishing the first holding location from the second holding location.
B4. A food management control system as set forth in claim B1 wherein the primary holding location indicator is a symbol.
B5. A food management control system as set forth in claim B1 wherein the user interface comprises a touch screen display and the first and second holding location displays are sections of the touch screen display.
B6. A food management control system as set forth in claim B5 wherein the first and second holding location displays include outlines representing the respective first and second holding locations, and the primary holding location indicator is displayed in the outline of the first holding location display.
B7. A food management control system as set forth in claim B1 wherein the first holding location display is positioned at a bottom left side of said array.
B8. A food management control system as set forth in claim B1 wherein the tangible storage medium includes food management controller executable instructions for displaying on the first and second holding location displays food status indicators representative of hold times associated with the respective first and second hold times.
B9. A food management control system as set forth in claim B1 wherein the tangible storage medium includes food management controller executable instructions for displaying a food type indicator on the holding location displays for indicating a type of food to be held at the holding locations.
B10. A food management control system as set forth in claim B9 wherein the food type indicators displayed on the holding location displays indicate the same type of food is to be held at the first and second holding locations.
B11. A food management control system as set forth in claim B1 wherein the tangible storage medium includes food management controller executable instructions for displaying on the first and second holding location displays food status indicators representative of whether food held at the respective holding location should be served first relative to food held at another holding location, whether food stored at the respective holding location should be served second relative to food held at another holding location, and whether food stored at the respective holding location is expired.
B12. A food management control system as set forth in claim B11 wherein the tangible storage medium includes food management controller executable instructions for displaying on the first holding location display a status indicator representative of no food being held at the first holding location, and the tangible storage medium includes food management controller executable instructions for initiating a transfer of food from the second holding location to the first holding location when the second holding location display displays the status indicator representing food held at the second holding location should be served first relative to food held at another holding location and the first holding location display displays the status indicator representative of no food being held at the first holding location.
B13. A food management control system as set forth in claim B11 wherein the food holding apparatus includes a sensor configured for sensing whether food is present in the first holding location, and the tangible storage medium includes food management controller executable instructions for initiating a transfer of food from the second holding location to the first holding location when the second holding location display displays the status indicator representing food held at the second holding location should be served first relative to food held at another holding location and as a function of a signal from said sensor indicating no food is held at the first holding location.
B14. A food management control system as set forth in claim B1 wherein the user interface is configured for receiving user input to inform the food management controller the user is placing food at the second holding location, and wherein the tangible storage medium includes food management controller executable instructions responsive to user input for prompting the user to place the food at the first holding location if the user attempts to place the food at the second holding location and no food is held at the first holding location.
B15. A food management control system as set forth in claim B1 wherein the tangible storage medium includes food management controller executable instructions for displaying on the first holding location display a food held status indicator representative of food being held at the first holding location, and the tangible storage medium includes food management controller executable instructions for not displaying the primary holding location indicator on the first holding location display when the food held status indicator is displayed on the first holding location display.
B16. A food management control system as set forth in claim B1 wherein the user interface is configured for receiving user input, and wherein the food management controller is responsive to user input to modify the data structure to identify the second holding location as the primary holding location, and wherein the food management controller is responsive thereto to display the primary holding location indicator on the second holding location display instead of the first holding location display.
C1. A restaurant food management control system for managing an inventory of cooked food, the restaurant food management control system including
a user interface for displaying a cook list of food types to be cooked for adding to the inventory of cooked food,
a food management controller configured for managing the inventory of cooked food, monitoring a need for cooked food, and determining food types needed to be cooked,
a tangible storage medium storing the cook list, the tangible storage medium having food management controller executable instructions stored therein, said instructions, when executed by the food management controller, determining a priority for each food type on the cook list as a function of an amount of food of that food type in the inventory and an amount of food of that food type needed to be cooked, and the tangible storage medium storing food management controller executable instructions, when executed by the food management controller, modifying the cook list to arrange the food types on the cook list in order of the determined priority.
C2. A restaurant food management control system as set forth in claim C1 wherein the tangible storage medium stores a data structure, the data structure including the determined priority for each food type on the cook list, the tangible storage medium having food management controller executable instructions for modifying the second data structure with updated determined priority for each food type on the cook list and for changing the order of the food types on the cook list based on the updated determined priority.
C3. A restaurant food management control system as set forth in claim C2 wherein the tangible storage medium includes food management controller executable instructions for locking a food type in position on the cook list to hold the food type in position on the cook list.
C4. A restaurant food management control system as set forth in claim C1 wherein the tangible storage medium includes food management controller executable instructions for determining the priority for each food type on the cook list as a function of a ratio including an amount of food of that food type in the inventory and an amount of food of that food type needed to be cooked.
C5. A restaurant food management control system as set forth in claim C1 wherein the tangible storage medium includes food management controller executable instructions for determining the priority for each food type on the cook list as a function of a ratio of an amount of food of that food type in the inventory to an amount of food of that food type needed to be cooked.
C6. A restaurant food management control system as set forth in claim C1 wherein the food management controller is configured for monitoring an amount of each food type held in inventory at a plurality of holding locations of a holding apparatus, and the tangible storage medium includes food management controller executable instructions for determining inventory of cooked food as a function of the amount of cooked food at the plurality of holding locations.
C7. A restaurant food management control system as set forth in claim C1 wherein the tangible storage medium includes food management controller executable instructions for determining the need for cooked food as a function of forecasted customer orders.
C8. A restaurant food management control system as set forth in claim C7 further comprising a point of sale device for receiving customer orders, the point of sale device being in operative communication with the food management controller, and wherein the tangible storage medium includes food management controller executable instructions for determining the need for cooked food as a function of recent unfilled customer orders.
C9. A restaurant food management control system as set forth in claim C1 further comprising a point of sale device for receiving customer orders in operative communication with the food management controller, and wherein the food management controller determines the need for cooked food as a function of recent unfilled customer orders.
C10. A restaurant food management control system as set forth in claim C9 wherein when the food management controller determines unfilled customer orders for a food type outnumber the amount of food of that food type in inventory, the food management controller emphasizes that food type on the cook list with increased importance relative to the other food types on the cook list.
C11. A restaurant food management control system as set forth in claim C1 wherein the cook list displays amounts of each food type to be cooked.
C12. A restaurant food management control system as set forth in claim C1 wherein the tangible storage medium includes food management controller executable instructions for locking a food type in position on the cook list to hold the food type in position on the cook list.
C13. A restaurant food management control system as set forth in claim C12 wherein the user interface is configured for receiving user input, and the food management controller is responsive to user input to lock a selected food type on the cook list.
C14. A restaurant food management control system as set forth in claim C13 wherein the tangible storage medium includes food management controller executable instructions for moving a food type selected by the user to a highest priority position on the cook list if the food type was not already at the highest priority position.
C15. A restaurant food management control system as set forth in claim C13 wherein the user interface is a touch screen display, and the food management controller is responsive to the touch of a user on the touch screen display selecting a food type on the cook list for locking the selected food type.
C16. A restaurant food management control system as set forth in claim C12 wherein the tangible storage medium includes food management controller executable instructions for displaying a lock indicator on the cook list associated with a locked food type.
C17. A restaurant food management control system as set forth in claim C16 wherein each food type on the cook list is indicated on the cook list by a line item including at least one of text and an image representing the food type, and wherein the lock indicator includes a symbol adjacent the line item.
C18. A restaurant food management control system as set forth in claim C16 wherein the food management controller unlocks a locked food type on the cook list as a function of a food inventory signal representing an amount of the locked food type has been added to inventory.
C19. A restaurant food management control system as set forth in claim C18 wherein the user interface is configured for receiving user input for generating the food inventory signal.
C20. A restaurant food management control system as set forth in claim C19 wherein the user interface includes a plurality of holding location displays associated with respective holding locations of a holding apparatus for holding cooked food in the inventory, the holding location displays being configured for receiving user input representing an amount of the locked food type has been added to one of the plurality of holding locations for generating the food inventory signal.
C21. A restaurant food management control system as set forth in claim C18 further comprising a sensor associated with a holding location of holding apparatus for holding cooked food of the locked food type in the inventory, the sensor being configured for generating the food inventory signal in response to detecting food supplied to the holding location.
C22. A restaurant food management control system as set forth in claim C12 wherein in response to a food type being locked on the cook list the food management controller records a record in the tangible storage medium representing cooking of that food type has begun.
C23. A restaurant food management control system as set forth in claim C22 wherein the cook list displays amounts of each food type to be cooked, and the record recorded by the food management controller in the tangible storage medium includes the amount of food of the locked food type.
CA1. A food management control system for managing an inventory of processed food, the food management control system including
a user interface for displaying a prioritized food type list of food types to be processed for adding to the inventory of processed food,
a food management controller configured for managing the inventory of processed food, monitoring a need for processed food, and determining food types needed to be processed,
a tangible storage medium storing the prioritized food type list, the tangible storage medium having food management controller executable instructions stored therein, said instructions, when executed by the food management controller, determining a priority for each food type on the prioritized food type list as a function of an amount of food of that food type in the inventory and an amount of food of that food type needed to be processed, and the tangible storage medium storing food management controller executable instructions for modifying the prioritized food type list to arrange the food types on the prioritized food type list in order of the determined priority.
D1. A food management system for managing food in a food holding apparatus having a plurality of holding locations, the food management system including
a food management controller configured for monitoring a status of the plurality of holding locations,
a user interface including a plurality of holding location displays associated with respective holding locations for displaying information associated with the holding locations, the holding location displays being arranged in an array corresponding to an arrangement of the respective holding locations, the holding location displays being positioned in the array corresponding to positions of the respective holding locations in the arrangement, each holding location display including a touch sensitive area defining a button that can be actuated by at least a first type of user engagement with the button,
a tangible storage medium having food management controller executable instructions stored therein, said instructions, when executed by the food management controller, displaying on each holding location display information associated with the status of the respective holding location, the tangible storage medium storing food management controller executable instructions for executing a first operation in response to the first type of user engagement with the button when a first holding location status is displayed on the holding location display and for executing a second operation different than the first operation in response to the first type of user engagement with the button when a second holding location status is displayed on the holding location display.
D2. A food management control system as set forth in claim D1 wherein the first displayed holding location status represents no food is held at the holding location.
D3. A food management control system as set forth in claim D2 wherein the first operation executed by the first engagement is the food management processor recording in the tangible storage medium an amount of food as being held at the respective holding location.
D4. A food management control system as set forth in claim D1 wherein the second displayed holding location status represents food is held at the holding location.
D5. A food management control system as set forth in claim D4 wherein the second operation executed by the first engagement is the food management processor transferring association of an amount of food held at the holding location to a different holding location.
D6. A food management control system as set forth in claim D1 wherein the second displayed holding location status represents an expired hold time associated with the respective holding location.
D7. A food management control system as set forth in claim D6 wherein the second operation executed by the first engagement is the food management processor changing the holding location status to represent no food is held at the holding location.
D8. A food management control system as set forth in claim D6 wherein the operation executed by the first engagement is the food management processor recording as waste in the tangible storage medium an amount of food last held at the holding location.
D9. A food management control system as set forth in claim D1 wherein the tangible storage medium includes food management controller executable instructions for executing a third operation in response to the first type of user engagement with the button when a third holding location status is displayed on the holding location display.
D10. A food management control system as set forth in claim D9 wherein the third displayed holding location status represents an expired hold time associated with the respective holding location.
D11. A food management control system as set forth in claim D1 wherein the button includes a boundary substantially coextensive with the holding location display.
D12. A food management control system as set forth in claim D1 wherein the button includes a boundary indicated on the holding location display by a border.
D13. A food management control system as set forth in claim D1 wherein the holding location display displays information representative of the status of the holding location in the touch sensitive area of the holding location display defining the button.
D14. A food management control system as set forth in claim D13 wherein an appearance of the button when the first holding location status is displayed on the holding location display is substantially the same as an appearance of the button when the second holding location status is displayed on the holding location display except for updating of displayed information representative of the status of the holding location in the touch sensitive area of the holding location display defining the button.
D15. A food management control system as set forth in claim D13 wherein the holding location display displays at least one indicator representative of status of the respective holding location in the touch sensitive area of the holding location display defining the button, the at least one indicator including at least one of a food amount indicator representing an amount of food held at the respective holding location, a food hold time indicator representing a time food has been held at the respective holding location, and a food type indicator indicating a type of food held at the respective holding location.
D16. A food management control system as set forth in claim D13 wherein the holding location display displays at least two indicators representative of a status of the respective holding location in the touch sensitive area of the holding location display defining the button, the at least two indicators including at least two of a food amount indicator representing an amount of food held at the respective holding location, a food hold time indicator representing a time food has been held at the respective holding location, and a food type indicator indicating a type of food held at the respective holding location.
D17. A food management control system as set forth in claim D13 wherein the holding location display displays at least three indicators representative of status of the respective holding location in the touch sensitive area of the holding location display defining the button, the at least three indicators including a food amount indicator representing an amount of food held at the respective holding location, a food hold time indicator representing a time food has been held at the respective holding location, and a food type indicator indicating a type of food held at the respective holding location.
D18. A food management control system as set forth in claim D1 wherein the holding location display displays only information representative of the status of the holding location in the touch sensitive area of the holding location display defining the button.
D19. A food management control system as set forth in claim D1 wherein the touch sensitive area of the holding location display defining the button is free of any indicator indicating an operation executed in response to the first type of user engagement with the button.
D20. A food management control system as set forth in claim D1 wherein the first type of user engagement is a single engagement with the button.
D21. A food management control system as set forth in claim D20 wherein the first type of user engagement with the button is a sustained press of the button.
D22. A food management control system as set forth in claim D1 wherein the button can be actuated by a second type of user engagement with the button different than the first type of user engagement with the button, and wherein the tangible storage medium includes food management controller executable instructions for executing a third operation in response to the second type of user engagement with the button.
D23. A food management control system as set forth in claim D22 wherein the second type of user engagement with the button is a quick tap and release of the button.
D24. A food management control system as set forth in claim D1 wherein the user interface includes a touch screen display, and the plurality of holding location displays are sections of the touch screen display.
DM1. A computer executable method for use with food holding apparatus having a plurality of holding locations, the method including
providing a user interface including a plurality of holding location displays associated with respective holding locations for displaying information associated with the holding locations, the holding location displays being arranged in an array corresponding to an arrangement of the respective holding locations, the holding location displays being positioned in the array corresponding to positions of the respective holding locations in the arrangement, each holding location display including a touch sensitive area defining a button that can be actuated by at least a first type of user engagement with the button,
displaying on each holding location display information associated with the status of the respective holding location,
executing, with a food management controller, a first operation in response to the first type of user engagement with the button when a first holding location status is displayed on the holding location display, and
executing, with the food management controller, a second operation different than the first operation in response to the first type of user engagement with the button when a second holding location status is displayed on the holding location display.
E1. A food management control system for managing food in a food holding apparatus having a plurality of holding locations, the food management control system including
a food management controller configured for monitoring status of the plurality of holding locations,
a user interface including a plurality of holding location displays associated with respective holding locations for displaying information associated with the holding locations, the holding location displays being arranged in an array corresponding to an arrangement of the respective holding locations and positioned in the array corresponding to positions of the respective first and second holding locations in the arrangement, each holding location display including a touch sensitive area defining a button that can be actuated by at least a first type of user engagement with the button and a second type of user engagement with the button different than the first type of user engagement with the button,
a tangible storage medium having food management controller executable instructions stored therein, said instructions, when executed by the food management controller, displaying on each holding location display information associated with the status of the respective holding location, the tangible storage medium storing food management controller executable instructions for executing a first operation in response to the first type of user engagement with the button and for executing a second operation different than the first operation in response to the second type of user engagement with the button.
E2. A food management control system as set forth in claim E1 wherein the first type of user engagement is a single engagement with the button.
E3. A food management control system as set forth in claim E2 wherein the first type of user engagement with the button is a quick tap and release of the button.
E4. A food management control system as set forth in claim E2 wherein the second type of user engagement is a single engagement with the button.
E5. A food management control system as set forth in claim E4 wherein the second type of user engagement with the button is a sustained press of the button.
E6. A food management control system as set forth in claim E1 wherein the first operation executed by the first type of engagement with the button is displaying a prompt window on the user interface, the prompt window including a plurality of buttons.
E7. A food management control system as set forth in claim E6 wherein the second operation executed by the second type of user engagement with the button is the food management processor recording in the tangible storage medium an amount of food as being held at the respective holding location.
E8. A food management control system as set forth in claim E6 wherein the second operation executed by the second type of user engagement with the button is the food management processor transferring association of an amount of food held at the holding location to a different holding location.
E9. A food management control system as set forth in claim E6 wherein the second operation executed by the second type of user engagement with the button is the food management processor changing the holding location status to represent no food is held at the holding location.
E10. A food management control system as set forth in claim E6 wherein the second operation executed by the second type of user engagement with the button is the food management processor changing the holding location status to represent food is held at the holding location.
E11. A food management control system as set forth in claim E1 wherein the second operation executed by the second type of user engagement with the button is the food management processor recording in the tangible storage medium an amount of food as being held at the respective holding location.
E12. A food management control system as set forth in claim E1 wherein the second operation executed by the second type of user engagement with the button is the food management processor transferring association of an amount of food held at the holding location to a different holding location.
E13. A food management control system as set forth in claim E1 wherein the second operation executed by the second type of user engagement with the button is the food management processor changing the holding location status to represent no food is held at the holding location.
E14. A food management control system as set forth in claim E1 wherein the second operation executed by the second type of user engagement with the button is the food management processor changing the holding location status to represent food is held at the holding location.
E15. A food management control system as set forth in claim E1 wherein the button includes a boundary substantially coextensive with the holding location display.
E16. A food management control system as set forth in claim E1 wherein the button includes a boundary indicated on the holding location display by a border.
E17. A food management control system as set forth in claim E1 wherein the holding location display displays information representative of the status of the holding location in the touch sensitive area of the holding location display defining the button.
E18. A food management control system as set forth in claim E17 wherein an appearance of the button when the first holding location status is displayed on the holding location display is substantially the same as an appearance of the button when the second holding location status is displayed on the holding location display except for updating of displayed information representative of the status of the holding location in the touch sensitive area of the holding location display defining the button.
E19. A food management control system as set forth in claim E17 wherein the holding location display displays at least one indicator representative of status of the respective holding location in the touch sensitive area of the holding location display defining the button, the at least one indicator including at least one of a food amount indicator representing an amount of food held at the respective holding location, a food hold time indicator representing a time food has been held at the respective holding location, and a food type indicator indicating a type of food held at the respective holding location.
E20. A food management control system as set forth in claim E17 wherein the holding location display displays at least two indicators representative of status of the respective holding location in the touch sensitive area of the holding location display defining the button, the at least two indicators including at least two of a food amount indicator representing an amount of food held at the respective holding location, a food hold time indicator representing a time food has been held at the respective holding location, and a food type indicator indicating a type of food held at the respective holding location.
E21. A food management control system as set forth in claim E17 wherein the holding location display displays at least three indicators representative of status of the respective holding location in the touch sensitive area of the holding location display defining the button, the at least three indicators including a food amount indicator representing an amount of food held at the respective holding location, a food hold time indicator representing a time food has been held at the respective holding location, and a food type indicator indicating a type of food held at the respective holding location.
E22. A food management control system as set forth in claim E1 wherein the holding location display displays only information representative of the status of the holding location in the touch sensitive area of the holding location display defining the button.
E23. A food management control system as set forth in claim E1 wherein the touch sensitive area of the holding location display defining the button is free of any indicator indicating an operation executed in response to the first type of user engagement with the button.
E24. A food management control system as set forth in claim E1 wherein the user interface includes a touch screen display, and the plurality of holding location displays are sections of the touch screen display.
EM1. A computer executable method for use with a food holding apparatus having a plurality of holding locations, the method including
providing a user interface including a plurality of holding location displays associated with respective holding locations for displaying information associated with the holding locations, the holding location displays being arranged in an array corresponding to an arrangement of the respective holding locations and positioned in the array corresponding to positions of the respective first and second holding locations in the arrangement, each holding location display including a touch sensitive area defining a button that can be actuated by at least a first type of user engagement with the button and a second type of user engagement with the button different than the first type of user engagement with the button,
displaying on each holding location display information associated with the status of the respective holding location,
executing, with a food management controller, a first operation in response to the first type of user engagement with the button, and
executing, with the food management controller, a second operation different than the first operation in response to the second type of user engagement with the button.
F1. A food management control system for managing food in a food holding apparatus having at least a first holding location and a second holding location for holding food of a first food type, the food management control system including
a food management controller configured for monitoring food expiration times associated with the first and second holding locations,
a point of sale device for receiving customer orders, the point of sale device generating a customer order signal representative of a customer order for an amount of the first food type,
a user interface including at least first and second holding location displays for displaying information associated with the respective first and second holding locations,
a tangible storage medium having food management controller executable instructions stored therein, said instructions, when executed by the food management controller, displaying on the first and second holding location displays food amount indicators representing an amount of food held at the respective holding locations, the tangible storage medium storing food management controller executable instructions for displaying a first food status indicator on one of the first and second holding location displays indicating food held at the holding location associated with said one of the first and second holding location displays should be served first relative to food held at the holding location associated with the other of the first and second holding location displays,
wherein the food management controller is in operative communication with the point of sale device for receiving the customer order signal, and the food management controller is responsive to the customer order signal to change the food amount indicator displayed on said one of the first and second holding location displays to represent a reduced amount of food of the first food type held in said one of the first and second holding locations.
F2. A food management control system as set forth in claim F1 wherein the food amount indicators are numbers.
F3. A food management control system as set forth in claim F1 wherein the first food status indicator is a color.
F4. A food management control system as set forth in claim F1 wherein the tangible storage medium includes food management controller executable instructions for displaying on said other of the first and second holding location displays a second food status indicator indicating food held at the holding location associated with said other of the first and second holding location displays should be served second relative to food held at the holding location associated with said one of the first and second holding location displays.
F5. A food management control system as set forth in claim F4 wherein the second food status indicator is a color.
F6. A food management control system as set forth in claim F1 wherein the tangible storage medium includes food management controller executable instructions for displaying the first food status indicator on the holding location display associated with the holding location holding food having the least time until expiration among food held at the first and second holding locations.
F7. A food management control system as set forth in claim F1 wherein the tangible storage medium includes food management controller executable instructions for displaying food type indicators on the first and second holding location displays for indicating the first type of food is held at the first and second holding locations.
F8. A food management control system as set forth in claim F1 wherein the first and second holding location displays are arranged in an array corresponding to an arrangement of the respective first and second holding locations, and the first and second holding location displays are positioned in the array corresponding to positions of the respective first and second holding locations in the arrangement.
F9. A food management control system as set forth in claim F8 wherein the wherein the user interface includes a touch screen display, and the first and second holding location displays are sections of the touch screen display.
This application is a continuation of PCT Patent Application No. PCT/US2014/052956, filed Aug. 27, 2014, which claims priority to U.S. Patent Application No. 61/870,675 (provisional), filed Aug. 27, 2013, each of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61870675 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2014/052956 | Aug 2014 | US |
Child | 15055346 | US |