This application relates generally to food preparation tables that hold and cool food pans and, more particularly, food preparation tables that cool food pans by thermal transfer between a cooled wall structure and the wall of the food pan.
Food preparation tables are commonly used in commercial establishments for preparing food products that incorporate multiple ingredients. A typical food preparation table includes a frame and housing structure having internal refrigeration or some other cooling system. An upper surface of the housing typically includes a front preparation surface that may be cooled and a rear food storage arrangement that may define multiple food pan wells (or other food pan receiving locations), each food pan well for holding on or more individual food pans for multiple individual food items that can be used in the preparation of food products. The pans are cooled in order to keep the food items in the pans fresh. One type of pan cooling system transfers heat from the food in the pan by thermal conduction through the pan wall and into one or more adjacent cooled wall structures (aka cooled rails) that border the food pan well. Close proximity, and preferably surface to surface contact, between the food pan wall and the cooled rail provides for better thermal conduction. However, various food pan suppliers exist, and the dimensions of the food pans can vary, resulting in gaps between the cold rail and the food pan wall. The gap undesirably reduce thermal conduction.
It would be desirable to provide a food pan cooling system that can improved thermal conduction in situations where a gap exists between the cold rail and the food pan wall.
In one aspect, a food pan cooling system includes a cooled wall structure at least in part defining a first food pan receiving location and having a first surface facing the first food pan receiving location; and a first thermal shim connected to and in contact with the first surface.
In another aspect, a food pan cooling system includes a housing with a food item holding arrangement including a recessed well area defining at least a first food pan receiving location and a second food pan receiving location. The first food pan receiving location includes a first cooled wall structure in the recessed well area to at least in part define the first food pan receiving location, the first cooled wall structure having a first surface facing the first food pan receiving location. A first thermal shim is connected to the first cooled wall structure, the first thermal shim having a first shim surface and a second shim surface, the first shim surface at least partly in contact with the first surface of the first cooled wall structure, and the second shim surface facing the first food pan receiving location.
In a further aspect, a method of enhancing thermal transfer between a cooled wall structure of a food pan cooling system and a food pan supported by the food pan cooling system, involves: releasably mounting a thermal shim against a surface of the cooled wall structure such that the thermal shim is located between the surface of the cooled wall structure and a food pan receiving location; and positioning a food pan in the food pan receiving location such that a wall portion of the food pan is in contact with the thermal shim for transferring heat from food product in the food pan, through the thermal shim and to the cooled wall structure.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Referring to
Referring to
Other mount arrangements for the thermal shims are possible, such as incorporating mount slots into the cooled wall structures or providing mount brackets for the shims, which enable the shims to hang from the cooled wall structures. Moreover, the cooled wall structures, or the shims themselves, could be formed with some taper to better match with the taper of the typical food pan walls.
Regardless of the exact mount structure the system with shims provides an advantageous method of enhancing thermal transfer between a cooled wall structure of a food pan cooling system and a food pan supported by the food pan cooling system. The method involves: mounting a thermal shim against a surface of the cooled wall structure such that the thermal shim is located between the surface of the cooled wall structure and a food pan receiving location; and positioning a food pan in the food pan receiving location such that a wall portion of the food pan is in contact with the thermal shim for transferring heat from food product in the food pan, through the thermal shim and to the cooled wall structure. Thus, the shims provide a more direct and thermally conductive path between the food pan walls and the cooled wall structures. Where various size food pans are used, the height of the shims along the cooled wall structure can be adjusted to provide for meaningful thermal contact between the shims and both the cooled wall structure and the food pan walls. In cases where food pans are used that actually closely match the size of the food pan receiving locations, such that little or no gap is present between the cooled wall structures and the food pan walls, the shims can be moved to a low position along the cooled wall structures to be out of the way, or the shims can be removed entirely and stored for later use when needed with another pan set.
It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that other changes and modifications are possible. What is claimed is:
Number | Name | Date | Kind |
---|---|---|---|
5355687 | Carpenter et al. | Oct 1994 | A |
7726296 | Pickens et al. | Jun 2010 | B2 |
8931293 | Shei et al. | Jan 2015 | B2 |
9068773 | Lintker | Jun 2015 | B2 |
20100293979 | Headberg et al. | Nov 2010 | A1 |
20110030565 | Shei | Feb 2011 | A1 |
20130247591 | DeMasi | Mar 2013 | A1 |
20150253062 | Lintker | May 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20210348830 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63021828 | May 2020 | US |