The invention relates generally to food processing machinery and to electronic controllers for controlling such machinery. More particularly, it relates to machinery for producing flaked or particulate material such as breakfast cereals, cookies, baked goods, snack food, and the like that is divided into portions and packaged as individual portions of a predetermined weight and volume. In addition, it relates to machinery for volumetrically measuring individual package portions of such food products and weighing such portions.
Many food products, such as those mentioned above, are individually packaged for sale on grocery store shelves. The packages have a finite volume typically on the order of 250 cubic inches and a finite weight, typically on the order of one-half to three pounds. For obvious reasons, manufacturers would like to maintain the weight of the product as closely as possible to the weight designated on the outside of the individual package or box. Underweight products violate federal packaging and marketing standards. At the same time, manufacturers cannot guarantee the minimum weight of food simply by providing an excess volume of food product. Boxes in which the food product is placed have a finite volume, and an excess volume may cause the boxes to distend outwardly, tearing them, or making it difficult or impossible to package them into cartons or containers for shipping.
Further complicating the processes of appropriately portioning the food product is the fact that the food product manufacturing process itself may cause the relationship between volume and weight to vary widely. The relationship between volume and weight is called the “bulk density”. Bulk density is expressed as units of weight per units of volume. Typically, it is expressed as ounces per cubic inch or grams per cubic centimeter, although these units of measure are not mandatory. If the bulk density of a food product increases dramatically as food processing equipment drifts from its nominal and preferred position, a unit of weight of the food product will take up a considerably smaller volume. While this is enough to meet federal and state packaging standards, since the weight is held constant, consumers are often upset because the large package they have only appears to be half full. Even though the weight is correct, the reduced volume leaves the consumer feeling angry and frustrated. Similarly, if the bulk density of the food product drops dramatically, a given weight of the product will take up a considerably larger volume. When this happens, if the portioning process for each of the packages is based solely upon weight, the portions will increase in volume and may jam the packaging machinery causing it to fail. This requires shutting down the packaging machinery and cleaning it out. Any shut-down of the food processing line imposes a significant cost on the food manufacturer. What is needed, therefore is a system and process for feeding back a signal indicative of the bulk density of the product being portioned and packaged to the food manufacturing process so that it can be adjusted on the fly and the proper bulk density, weight, and volume of each individually wrapped portion can be properly maintained. It is an object of this invention to provide such a system and process.
The invention can be summarized as a cup filler or other volumetric metering device that is configured to generate an electrical signal that indicates the bulk density of a volumetrically metered portion of particulate food matter. The cup filler is connected to food processing machinery that actually makes the particulate food matter and sends a signal indicative of the bulk density to the food processing machinery to which it is coupled. The food processing machinery includes an electronic controller that is configured to change at least one operational of the machinery itself in response to the received bulk density signal to thereby alter the bulk density of the food product.
The present invention will become more fully understood from the following detailed description, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts, in which:
Mixer/agitator 204 may be a paddle blender, a double ribbon blender, a paddle/ribbon blender, a plow blender/turbulent mixer, a fluidizing Forberg-type mixer, an air mixer, a V-blender, a cone mixer, a single blade mixer, or a speed flow continuous mixer. The mixer may be oriented vertically or horizontally. It preferably includes a variable speed motor coupled to the paddles or agitators, a control valve for regulating a flow of steam or hot water to the mixer 204 to regulate the flow of steam or water to the mixer in models so equipped. It also includes a temperature sensor that provides a temperature sense signal indicative of the raw material being mixed or agitated therein. The variable speed motor and control valves are controlled by signals provided either by the internal PLC or by electronic controller 200 over communication line 232. The temperature sensor provides temperature signal to electronic controller 200 indicative of the temperature of the mix also over communication line 232. The motor and control valve in mixer 204 may be driven directly by an on-board PLC or may receive their control signals from electronic controller 200.
Preferred mixers include the automated mixers provided by AMF Bakery Systems, Air Process Systems & Conveyors Company, Inc., and Dunbar Systems, Inc. Most preferred is the TBM Series Tilt Bowl Mixer manufactured by AMF that includes a PLC configured to control mixing speed, mixing and refrigeration time, and dough temperature.
Cooking extruder 208 and forming and cooking extruder 212 are preferably a twin screw extruder having a variable speed drive motor coupled to a splitter/reduction gear box to drive both screws. The motor is preferably a DC drive motor. The extruder preferably includes a pressure and temperature transducer fitted to the die block to monitor the temperature and pressure of the material being extruded. In addition, these extruders preferably include at least one electrical heating element (although steam may be used) that is connected to a variable power control to regulate the degree of heating. When steam is used, the extruder preferably includes an electronic control valve configured to throttle the steam provided to the extruder thereby permitting the temperature of the extruder and hence the material being extruded to be varied. In addition, a water-cooling jacket is preferably provided around the shell of the extruder to cool the extruder and hence the material when temperatures become too high. These extruders preferably include a dedicated controller, preferably a PLC that directly controls the motor drive and monitors the pressure transducer temperature transducer and controls the valve regulating steam flow rate and the power circuitry controlling the flow of electricity to the electrical heating elements. A preferred extruder 208 or 212 is the MPF Series Extruders manufactured by APV Baker, Inc. Another preferred extruder, in accordance with the foregoing description, includes the Wenger Magnum Series Twin Screw Extruder as configured with the Wenger Automatic Process Management System software operating in conjunction with the Wenger PLC.
The pelletizing extruder 214 is preferably a single screw extruder driven by a variable speed motor, preferably a DC or AC variable speed motor coupled to a gear reducer. The barrel of the extruder includes a water jacket disposed to conduct heat from the extruded material into circulating cold water. The extruder screw is preferable cored for water-cooling as well. An electronic control valve is coupled to the water jacket to provide electronic control of cooling flow rate through the water jacket. The temperature sensor is disposed on the barrel in at least one region, to sense the temperature of the barrel and provide feedback for the appropriate cooling. A die plate is fixed to the exit end of the extruder barrel and includes a plurality of passages through which the extruded material is forced. The extruder also includes an adjustable die face cutter having a multi-bladed knife disposed to rotate across the outer face of the die and cut off individual pellets as they pass through the passages in the die. This multi-bladed knife is coupled to a variable speed motor drive to control the rate at which individual pellets are cut off and thereby to control the size of the pellets that are produced. A preferred extruder in accordance with this description is the APV Baker Incorporated BPF-200 Series Extruder. The pelletizing extruder 214 preferably includes a PLC coupled to and configured to drive the variable speed motor that rotates the screw with respect to the barrel and the variable speed motor drive that rotates the multi-bladed knife with respect to the outwardly facing die face.
Microwave oven 216, tempering oven 218, toasting oven 228, and baking oven 230 may be any of a variety of food processing ovens, such as infra-red ovens, convection ovens, fluidized bed ovens, microwave ovens, or ovens having a combination of these heating technologies inside. A preferred oven for use in toasting food products such as cereal flakes is the APV Baker Thermo Glide Toaster. This system includes an electronically controlled fan to vary the flow rate of hot air circulating around the particulate food as well as several temperature sensors responsive to the air temperature of the air within the oven and at least one variable speed motor for controlling the speed of the internal conveyor that conveys the particulate food matter through the oven. Ovens based on microwave technology include both a microwave generator and a microwave applicator. The microwave generator portion of the microwave oven preferably includes a PLC configured to continuously vary the power output over the entire range of 0% to 100%. A preferred microwave generator for use with the microwave oven is the Amana QMP-1759 Microwave Generator. A preferred microwave applicator is shown in U.S. Pat. No. 5,457,303, which is incorporated herein for all that it teaches. Alternative microwave applicators include any of the QMP-2103 Series Amana microwave continuous cooking systems.
Flaking rolls 220 are preferably of a dual-roll design having two pressure rollers with parallel axes that are closely aligned to each other to provide a small gap therebetween in which the pellets are crushed and turned into flakes. An example of such a flaking roll system can be found in U.S. Pat. No. 5,018,960. The system disclosed in the '960 patent, which is incorporated herein for all that it teaches, is preferably modified to include a stepping or servo motor coupled to threadably adjustable devices 136 (shown in the '960 patent) to rotate those devices and thereby change the nip clearance between the flaking rolls under electronic control such as by a belt or gear engagement. In addition, in a preferred embodiment these servo or stepping motors are preferably controlled by an on-board PLC in the block indicated by flaking rolls 220 in
Shredding rolls 222 are formed in the conventional fashion as a plurality of rolls arranged in several roll stations, each station having two rolls, at least one of which having a plurality of circumferential grooves defined on an outer surface thereof, such that when the extruded food product is provided to the station or stations, comprising the shredding rolls or shredding mill, each station will subdivide or shred the material into a plurality of longitudinal threads of food product. Shredding rolls 222 preferably include a plurality of variable speed drive motors that drive the shredding rolls in each roll station or stand, and are coupled to the actual rolls to permit their speed to vary under electronic control. Similarly, each of the actual rolls is provided with internal passages through which cooling fluid (typically water) is conducted to cool the rolls during operation. An electrical proportional control valve is also provided as part of the shredding rolls 222 fluidly connected between the source of cooling water and the rolls themselves to regulate the flow of this cooling fluid through the rolls, thereby controlling the temperature of the rolls and the amount of cooling. In addition, shredding rolls 222 include at least one temperature sensor disposed to detect the temperature of the rolls and/or cooling water, and thereby permit the regulation of the temperature of the rolls by opening and closing the cooling fluid valve in response to the temperature. The motors, valve and sensors of the shredding rolls 222 are coupled over communication lines 234 to electronic controller 200, thereby permitting electronic controller 200 to vary the speed of the rolls, vary the amount of cooling fluid passing through the rolls, and control the temperature of the rolls.
In an alternative embodiment, shredding rolls 222 include a PLC coupled to the motors, valve and temperature sensors. In this embodiment, the PLC is coupled to the electronic controller 200 and is configured to receive motor speed commands and cooling commands from electronic controller 200. Examples of shredding rolls in accordance with the present invention are the shredding mills or rolls manufactured by Wolverine Corporation, such as the Wolverine 16 Station Shredding Line.
The food processing devices illustrated in
Depending on the particular food preparation process required, and as shown in the aforementioned patents and text, each of the devices 202-230 can be provided with raw material and can sequentially process the raw materials to produce the continuous particulate matter. The particular order in which the devices are used to process these raw materials are shown in the aforementioned patents.
Any of the actuators that have been described above and form a part of devices 202-230 will change the bulk density of the finished food matter, the continuous particulate food matter, and thus may be moved or otherwise varied, either in speed, position, length of time of operation, or temperature, to achieve a preferred bulk density to the particulate food matter produced by the food processing machinery. For example, changing the quantity of raw materials provided to the mixer/agitator will change the bulk density of the continuous particulate food matter. Changing the temperature at which any of the devices works by varying the heating or cooling applied to the devices will also vary the bulk density. Changing the speed at which any of the devices 202-230 operates will also alter the bulk density of the continuous particulate food matter.
Not all of the devices 202-230 are required for every possible process, however. For example, when producing breakfast cereal flakes, flaking rolls 220 would be used and shredding rolls 222 would not be used. Conversely, when manufacturing a shredded breakfast cereal, shredding rolls 222 would be used and flaking rolls 220 would not. Similarly, when making toasted flaked products, one of the ovens 216, 218, 228 or 230 would be used to toast the product and deep fat fryer 224 would not be used. When preparing puffed cereal products, gun puffer 226 would be used to puff the cereal and deep fat fryer 224 would not be used.
Now referring to
While the embodiment shown in
Referring now to
Device 314 determines the relative distance between plates 302 and 306 based upon the elapsed time between the launching of the electronic interrogation pulse and arrival of the strain pulse. It then provides a signal indicative of the distance between the two plates on signal line 316, which is coupled to controller 312 and device 314. In this manner, controller 312 is made aware of the relative spacing of plates 302 and 306, and any changes in the spacing of the two cylinders 308 and 310 that comprise each of cups 304. Position sensors appropriate for use as device 314 are manufactured by Temposonics, whereas ultrasonic range finders appropriate for substitution of device 314 are manufactured by Hyde Park.
Controller 312 is configured by an internal program to provide several signals on signal lines 324. One or more of these signals are indicative of the bulk density of the product. As described above, the bulk density of the product is defined as the ratio of the weight of a predetermined quantity of the particulate matter, and the volume of that predetermined quantity.
At the bottom of
The cups 304 are in the form of two cylinders. A first cylinder 310 is fixed to and extends below top plate 306. Passage 500 defines the opening of first cylinder 310. Cylinder 310 is preferably circular in cross section, and is fitted into second cylinder 308.
The volume of cups 304 can be varied by raising and lowering bottom plate 302 with respect to top plate 306. This raising and lowering is provided by actuator 406, which is pinned to shaft 502. Actuator 406 expands or retracts in length in response to an electrical signal generated by the electronic controller for this system. It is pinned to shaft 502 and supports bottom plate 302, and cup plate 300, including second cylinders 308. When it expands in length, its top portion 504 raises with respect to shaft 502. Since bottom plate 302 and cup plate 300 rest on actuator 406, they are also raised. Cup plate 300 may be keyed to shaft 502 by key 506. Key 506 slides upward in key slot 504 thereby keeping cup plate 300 rotationally coupled to shaft 502 in a plurality of vertical positions. When cup plate 300 is raised, cylinder 308 moves upwards around the outer surface of cylinder 310. Since the two cylinders define the volume of each cup 304, this upward motion causes a reduction in cup volume, and hence a reduction in the volume of bulk material metered into each cup. A similar increase in cup volume can be created by lowering the upper portion of actuator 406 thereby causing cylinder 308 to slide downward realtive to cylinder 310.
In
In step 600 of
In an alternative embodiment for determining volume, controller 312, which drives motor 400, is programmed to maintain a counter in its electronic memory that is equivalent to the rotational position of motor 400. Since the rotational position of motor 400 corresponds directly to the threaded engagement of the two cylinders, 402 and 404, and since the threaded engagement of these cylinders also indicates the height of bottom plate 302 with respect to top plate 306, the rotational position of motor 400 also indicates the volume of the cups by the relationship Y=MX+B, where X is the rotational position of motor 400, Y is the volume of cups 304 and M is a constant and B is a constant. Thus, even when there is no separate device 314, the volume of cups 304 can be determined by tracking the rotational position of motor 400 which drives bottom plate 302 up and down in a counter that is incremented or decremented when in a preferred embodiment, an initialization program is provided in controller 312 in which motor 400 is driven to a predetermined position and zeroed out. By “predetermined positions”, it is meant that the bottom plate would be moved until the cups have a known and predetermined volume and the motor counter in controller 312 would be set to a known value (such as zero) associated with this known volume. This “zeroing out” would then permit the volume to be determined based on relative motions of motor 400. This process of initializing a counter based on the rotation of motor 400 could be automated by providing an electrical limit switch 432 that would be engaged by bottom plate 302 when it reached the predetermined position for zeroing out. Controller 312, connected to the switch, will drive motor 400 until it sensed that the switch was engaged, thereby indicating that the cups 304 were in their position of predetermined volume. At which time, controller 312 will set the counter indicative of the motor's 400 rotational position to the predetermined value.
While the preferred embodiment permits the bottom plate 302 to be driven up or down with respect to the top plate 306 and thereby permits the volume of each of the cups 304 to be varied dynamically, this is not an essential requirement in determining the bulk density of the particulate food matter or of providing a signal or signals indicative of bulk density. Since bulk density is a ratio of volume to weight, if the cups have a fixed volume, the bulk density will vary only with the weight.
In step 602, controller 312 receives data indicative of the weight of a portion of particulate food matter deposited in a weigh bucket 318. In the preferred embodiment, load cell 320 includes circuitry 326 to generate a digital value indicative of weight. This data is transmitted over signal lines 322 to circuitry 326 in controller 312. In this embodiment, device 320 is preferably a Tedea Model 910 Load Cell combined with a GSE 460 indicator. The Tedea Model 910 Load Cell provides an analog signal, and the GSE 460 indicator converts that analog signal to digital format. It is this data that is preferably provided over signal line 322 to controller 312. Alternatively, the Tedea Model 910 load cell could be used as device 320 and the analog signal provided by the load cell on line 322 is sent directly to PLC 312. In this embodiment, circuitry 326 would comprise an analog-to-digital converter. If controller 312 was an Allen-Bradley PLC, circuit 326 could be an analog-to-digital converter card manufactured by Hardy. Of course, any arrangement of strain gauges, load cells, or other deflection-measuring device that generates a signal indicative of the weight of the contents of the bucket could be used as device 320.
In the preceding examples, the weight that was determined was the weight of a predetermined quantity of particulate food matter metered by a cup 304 into a fixed and stationary weigh bucket 318. In an alternative embodiment, however, the weight of the predetermined quantity of material metered by each cup 304 as it directs particulate matter into drop tube 408 could be measured by a centripetal force meter instead of weigh bucket 318 and device 320. Referring back to
The checkweigher maybe used to replace or work in conjunction with either the weigh bucket or centripetal force meter weight sensor devices. In the alternative embodiment shown in
In the alternative centripetal force meter embodiment, material is released from cups 304 and enters drop tubes or spouts 408, it is directed downward against plate 414, which is mechanically coupled to meter 410. Plate 414 causes the particulate food matter to deflect in its direction of travel as shown by arrow 416, which describes the path of the matter from drop tube 408 into feed tube 418. As the matter is steered in a curved path, it deflects plate 414, which in turn deflects measuring devices inside meter 410. This deflection is amplified and turned into an analog or digital signal indicative of the force applied to plate 414 and is provided over signal line 412 to controller 312. A preferred centripetal flow, meter for use in this system is the CFM Series centripetal force meter manufactured by CentriFlow. Of the meters in that series, the CentriFlow CFM-6 is especially preferred. The use of weight bucket 318 and centripetal flow meters 410 are two types of alternatives in place of a checkweigher 118. These two alternatives, if so desired, may also be used with the addition of a checkweigher 118.
The next step in the process of generating and transmitting the bulk density signal to controller 200 (i.e., food process 100) is that of determining the signal indicative of bulk density. As noted above, if cups having a fixed volume are employed in the cup filler (i.e., bottom plate 302 is not adjusted with respect to top plate 306) then the bulk density signal can be derived strictly from the weight data. The step of determining the signal indicative of bulk density is simply that of providing the signal indicative of the weight that is received from multiple types of devices 410, 320 or 118 as mentioned above. Each of these devices provides a signal indicative of the weight of a discreet volume or portion of particulate food product. Since the volume is fixed (in this example), the bulk density varies in direct relationship to the weight. Since bulk density is expressed as weight per unit volume, and since volume is fixed, the relationship is as follows:
Y=MX
where Y is the bulk density, X is the weight (derived from the signal provided by device 410, 320 or 118), and M is a constant of proportionality. An appropriate correction factor is provided in controller 200 to properly format the data for use in the food process control algorithms executed by controller 200. It should be clear that the weight in itself, for a cup filler having a fixed volume cup 304, is a signal indicative of bulk density 112.
In cup fillers such as the preferred embodiment shown herein where the volume can change as well as the weight, the signal indicative of bulk density 112 is a product of both the volume signal provided by sensor 314 and the weight signal provided by devices 410, 320 or 118. Again, since bulk density is the ratio of weight to unit volume, controller 312 can directly calculate a value or signal indicative of bulk density by dividing the signal received from device 410, 320 or 118 by the signal received from sensor 314. Expressing this in general form,
Y=M(W/V)+B
where Y is a value indicative of bulk density, M is a constant of proportionality, W is a value indicative of the weight signal received from devices 410, 320 or 118, V is a value indicative of the volume signal received from device 314 and B is a second constant. Controller 312 is preferably configured to calculate Y and thereby provide a single value indicative of the bulk density of a measured portion of the particulate food matter. It should be clear that various additional scaling factors and offsets may be necessary in this and the other equations depending upon the resolution and signal format of devices 314, 410, 320 and 118. In a preferred embodiment, controller 312 is configured to calculate this value Y by combining the weight signal and the volume signal and transmit this value over lines 324 to controller 200 as a signal indicative of bulk density 112.
In a preferred embodiment, controller 312 includes a control algorithm that is configured to maintain the weight of each portion of food constant. As I noted in the background of this invention, it is quite important with food products to meter a precise weight of food material into each individually wrapped package of food.
Since varying the position of the motor 400 controls the weight, the rotational commands transmitted to the motor 400 to make it move to a predetermined position that will minimize the weight error can be combined with the existing motor position to determine the new position of the motor. For example, if motor 400 is a stepper motor or servomotor, the signal provided to motor 400 is typically going to be the amount of rotation expressed a number of revolutions through which the motor should be rotated to raise and lower bottom plate 302. In either case, controller 312 can, as each correction to the motor position is received, sum these corrections to determine the current position of the motor 400 at any time. Since each motor position corresponds to a particular volume of each of cups 304, the motor position is indicative of the cup volume. Furthermore, since the control algorithm shown in
Y=M(1/Mp)+B
Where Y is bulk density, M is a constant, Mp is motor position and B is another constant.
In other words, the greater the motor position measured as an angle or a series of pulses, the greater the volume of the cups. Since the weight is controlled by controller 312 to be constant, it is not a factor in this equation. Only the motor position signal, “Mp” determines the volume and hence the bulk density of the particulate food matter. Thus, when the weight is held constant by controller 312, the motor position (or more generally the position of the bottom plate with respect to the top plate) is indicative of the bulk density of the particulate food matter. Y is preferably calculated by controller 312 and sent to controller 200 as a signal indicative of bulk density 112. This step is represented by block 604 of FIG. 6.
Stepper motors are inclined to slip. In other words, when motor drive signals are applied to stepper motors they occasionally do not rotate the desired or commanded amount. As a result, relying on the motor position as provided by the motor drive circuit or by maintaining a motor position counter that is the sum of all the motor position drive commands, may not provide an accurate indication of the motor position. In these cases, it is particularly beneficial to provide an independent motor position sensor such as a shaft encoder that is fixed to the motor to rotate with the motor. This shaft absolute encoder will provide a series of pulses with each increment of motor 400 rotation that can be counted and the rotational position of the motor (hence the volume of cups 304) can be determined. Alternatively, the motor can be driven in an open/loop fashion to maintain the weight constant and the signal from device 314 or any similar device that provides an indication of the position of the top plate 306 with respect to the bottom plate 302, such as a Temposonics position sensor, can be used as a direct indication of the current volume of the cups 304.
In step 606, shown in
In the description of the cup filler including its controller 312, particular components were described. Different components that provide the same capabilities may be substituted in the invention to provide the same capability, but with alternative structures. For example, rather than the threaded cylinder arrangement provided to drive bottom plate 302 up and down, a jack can be provided. This jack may be a hydraulic jack, a scissors jack, a pneumatic jack, or a motor driven ball-screw jack. In addition, motor 400 may be a servomotor, a stepper motor or a conventional DC or AC motor. Bottom plate 302 may be raised and lowered by a cable cylinder, such as that manufactured by Greenco or by a rigid chain driven by motor 400, such as that manufactured by Serapid. Alternatively, a linear actuator, such as any of the actuators in the Rexroth Star would also be applicable.
The other components of the cup filler have been removed in
The signals exchanged between controller 312 and controller 200 over communications lines 324 may be in the form of an analog voltage or current signal, or a digital signal following the RS232, RS422 or RS485 ASCII communications protocol. Alternatively, circuit 328 may be configured to communicate over lines 324 to controller 200 using the Allen-Bradley DF1 DH45 protocol, the DH Plus protocol, DeviceNet, Control net, RIO, or Ethernet. If a Automation Direct brand PLC is used, the preferred communications protocol is Direct Net, K-Sequence, Ethernet, Profibus, DeviceNet, or MODBUS. The signals indicative of the bulk density, (whether an expression of volume, weight, or a combination of volume and weight), are preferably not only digital signals, but are packetized in digital packets of predetermined lengths. Of course, other PLC's use other protocols that may be equally applicable to the system.
Controller 312 is configured to transmit the data in a first “direct” mode or a second “polled” mode of operation. In the direct mode of operation, controller 312 transmits one or all of the signals indicative of bulk density at predetermined time intervals, typically every ten (10) to fifty (50) milliseconds. In the direct mode, this is done without prompting by any other device connected to communication lines 324. In the polled mode of operation, controller 312 is configured to receive a predetermined packet of digital information from controller 200 indicative of a request for bulk density data. In response to this, controller 312 is configured to packetize the latest signals indicative of bulk density and to transmit them to controller 200 over communication lines 324 including signals based on weight, on volume, and on combined weight and volume. The polled mode of operation reduces data congestion on communication lines 324. Alternatively, controller 312 is configured to operate in a combined mode of operation in which the signals indicative of bulk density are transmitted at a predetermined interval yet controller 312 will also respond to queries for information from other devices on signal lines 324 (such as controller 200) by packetzing and transmitting specifically requested bulk density data as described above in the polled mode of operation.
Referring back to
In short, changing any of the operational parameters of items 202-230 changes the bulk density of the particulate food matter. No specific bulk density, and hence no specific operational parameter is claimed in this application. Such a specific bulk density would only be applicable to a particular food item or desired texture or bulk density. Any specific recipe or set of processing parameters used to produce particulate food matter forms no part of this invention.
While the embodiments illustrated in the FIGURES and described above are presently preferred, it should be understood that these embodiments are offered by way of example only. The invention is not intended to be limited to any particular embodiment, but is intended to extend to various modifications that nevertheless fall within the scope of the appended claims.
For example, some cup fillers vary the volumes of their cups not by moving a bottom plate up and down and holding a top plate stationary, but by moving the top plate up and down and holding the bottom plate stationary. In such a cup filler, rather than determining the distance between the top plate and the bottom plate by monitoring the changing position or motion of the bottom plate, one would instead monitor the changing position or motion of the top plate using a sensor such as device 314.
This application claims benefit of provisional patent application No. 60/345,972 filed Nov. 9, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3430751 | Bateson | Mar 1969 | A |
4844937 | Wilkinson et al. | Jul 1989 | A |
5018960 | Singer | May 1991 | A |
5182127 | Schwab et al. | Jan 1993 | A |
5457303 | Shute et al. | Oct 1995 | A |
5510130 | Holtz et al. | Apr 1996 | A |
5709902 | Bartolomei et al. | Jan 1998 | A |
5919503 | Leusner | Jul 1999 | A |
6273153 | Reinsch | Aug 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
60345972 | Nov 2001 | US |