The present disclosure relates generally to a domestic food processor, and more particularly to a food processor having a control for adjusting the cutting thickness of the food processor.
A food processor is a motorized domestic appliance for manipulating (e.g., chopping, slicing, dicing, shredding, grating, or blending) food items. Such an appliance includes a bowl with a removable lid. Food items are inserted into the bowl through a feed tube formed in the lid where they are cut by motor-driven cutting tool.
Food processors typically come equipped with a number of interchangeable cutting tools for slicing, shredding, or other food processing operations. One common cutting tool is a rotating disk-type cutter. Such a cutting tool includes a rotating disk having a cutting blade fixed thereto. The cutting blade is secured to the rotating disk at a location adjacent to an aperture formed in the disk so that pieces of food cut by the blade fall through the aperture and collect in the bottom of the bowl.
According to one aspect of this disclosure, a food processor includes a base having a motor positioned therein, a removable bowl coupled to the base, and a removable lid coupled to the bowl. The lid has a feed tube that opens into the bowl. A cutting blade is positioned in the bowl and driven by the motor to cut food items advanced through the feed tube. The food processor also includes a rotating disk upwardly and downwardly movable relative to the cutting blade to adjust the distance therebetween, and a user-operated pin positioned below the rotating disk. The user-operated pin is movable between a first position in which the rotating disk is prevented from moving upwardly and downwardly relative to the cutting blade, and a second position in which the rotating disk is permitted to move upwardly and downwardly relative to the cutting blade. In some embodiments, the rotating disk may include a sleeve extending downwardly from a lower surface thereof, and the cutting blade may be coupled to a central shaft positioned in the sleeve of the rotating disk.
In some embodiments, the user-operated pin may include a pin body extending from a first end through a sidewall of the sleeve to a second end received in an aperture formed in the central shaft. In some embodiments, the sidewall of the sleeve may include a first plurality of teeth, an outer surface of the pin body may have a second plurality of teeth extending therefrom, and a number of the first plurality of teeth may be engaged with the second plurality of teeth when the user-operated pin is in the first position.
Additionally, in some embodiments, the first plurality of teeth may be spaced apart from the second plurality of teeth when the user-operated pin is moved to the second position. In some embodiments, the food processor may also include a spring having a first spring end positioned at a bottom of the aperture of the central shaft and a second spring end coupled to the second end of the user-operated pin. The spring may bias the user-operated pin in the first position. In some embodiments, a guide pin may extend outwardly from the bottom of the aperture, and the spring may extend over the guide pin.
In some embodiments, the food processor may also include a lever pivotably coupled to a sidewall of the sleeve and may have a first lever end contacting the second end of the user-operated pin. Movement of the user-operated pin between the first position and the second position may cause the lever to pivot about an axis between a first lever position and a second lever position. In some embodiments, the lever may extend from the first lever end to a second lever end. The second lever end may be coupled with the central shaft when the lever is at the first lever position. In some embodiments, the central shaft may have an outer surface with a plurality of teeth extending therefrom, and the second lever end may be engaged with a number of the plurality of teeth when the lever is at the first lever position, thereby preventing the rotating disk from moving relative to the cutting blade.
In some embodiments, the second lever end may be spaced apart from the plurality of teeth at the second lever position, thereby permitting movement of the rotating disk relative to the cutting blade. In some embodiments, the food processor may also include a spring having a first end coupled to a sidewall of the sleeve and a second end coupled to the second lever end. The spring may bias the lever in the first lever position, thereby maintaining the user-operated pin in the first position and preventing movement of the rotating disk relative to the cutting blade. Additionally, in some embodiments, a button may be secured to a first end of the user-operated pin, and depressing the button moves the user-operated pin from the first position to the second position.
According to another aspect, a food slicer assembly for a food processor is disclosed. The food slicer assembly includes a cutting blade, a rotating disk upwardly and downwardly movable relative to the cutting blade to adjust the distance therebetween, and a locking mechanism positioned below a lower surface of the rotating disk. The locking mechanism includes a user-operated pin that is movable between a first position in which the locking mechanism prevents the rotating disk from moving upwardly and downwardly relative to the cutting blade, and a second position in which the locking mechanism permits the rotating disk to move upwardly and downwardly relative to the cutting blade.
In some embodiments, the food slicer assembly may further include a sleeve extending downwardly from the lower surface of the rotating disk, and a central shaft positioned in the sleeve. The central shaft may have the cutting blade coupled thereto. In some embodiments, the locking mechanism may include a first plurality of teeth extending from a sidewall of the sleeve. The user-operated pin may extend through the sleeve into the central shaft and may have a second plurality of teeth extending therefrom. The second plurality of teeth may be engaged with a number of the first plurality of teeth when the user-operated pin is in the first position and spaced apart from the first plurality of teeth when the user-operated pin is moved to the second position.
In some embodiments, the locking mechanism may include a plurality of teeth extending from the central shaft, and a lever extending from a first end coupled to the user-operated pin to a second end. The second end of the lever may be engaged with a number of the teeth when the user-operated pin is in the first position and spaced apart from the plurality of teeth when the user-operated pin is in the second position. In some embodiments, the lever may be pivotably coupled to the sleeve.
According to another aspect, the food processor includes a base having a motor positioned therein, a removable bowl coupled to the base, a cutting blade positioned in the bowl and secured to a central shaft driven by the motor, and a rotating disk having the central shaft extending therethrough. The rotating disk is upwardly and downwardly movable between a plurality of positions relative to the cutting blade. The food processor also includes a locking mechanism positioned below a lower surface of the rotating disk. The locking mechanism includes a user-operated pin extending through the rotating disk that is movable between a first position in which the rotating disk is prevented from moving upwardly and downwardly relative to the cutting blade, and a second position in which the rotating disk is permitted to move upwardly and downwardly relative to the cutting blade.
In some embodiments, the locking mechanism may include a first plurality of teeth extending from a sidewall of the rotating disk, and the user-operated pin may have a second plurality of teeth extending therefrom. The second plurality of teeth may be engaged with a number of the first plurality of teeth when user-operated pin is in the first position and spaced apart from the first plurality of teeth when the user-operated pin is moved to the second position.
According to another aspect of this disclosure, a food processor includes a base having a motor positioned therein, a removable bowl coupled to the base, and a removable lid coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. The food processor also includes a blade assembly positioned in the processing chamber and driven by the motor, and the blade assembly has a flange extending therefrom. A rotating disk is movably coupled to the blade assembly, and the rotating disk has a plurality of slots formed therein. Each of the slots is sized to receive the flange of the blade assembly. The rotating disk is movable relative to the blade assembly between a plurality of cutting positions to produce cut food items of varying thicknesses, and the flange of the blade assembly is received into one of the plurality of slots at each of the plurality of cutting positions.
In some embodiments, the rotating disk may include a blade support pivotably coupled to an outer rim of the rotating disk. The plurality of slots may be formed in the blade support. In some embodiments, the blade support may be movable between a first position where the flange of the blade assembly is received in one of the plurality of slots, and a second position where the flange of the blade assembly is spaced apart from each of the plurality of slots. Additionally, in some embodiments, the rotating disk may be prevented from moving relative to the blade assembly when the blade support is placed in the first position, and the rotating disk may be permitted to move relative to the blade assembly when the blade support is placed in the second position.
In some embodiments, the outer rim of the rotating disk may have an opening defined therein, and the blade support may have a body positioned in the opening when the blade support is placed in the first position. The body of the blade support may extend outwardly from the opening when the blade support is placed in the second position.
In some embodiments, the rotating disk may include a locking device configured to maintain the blade support in the first position. In some embodiments, the locking device may include a tab extending from the blade support, and the tab may be received in a recess formed in the outer rim of the rotating disk when the blade support is placed in the first position.
In some embodiments, the plurality of slots may include at least five slots. Additionally, in some embodiments, the blade assembly may include a cutting blade secured to a mounting arm extending from a central shaft. In some embodiments, the flange of the blade assembly received in one of the plurality of slots may be an outer edge of the cutting blade when the rotating disk is placed at a first cutting position, and the flange of the blade assembly received in one of the plurality of slots may be an arcuate lip of the mounting arm when the rotating disk is placed at a second cutting position.
According to another aspect, a food slicer assembly for a food processor is disclosed. The food slicer assembly includes a cutting blade having an outer edge, and a rotating disk movable to a plurality of positions relative to the cutting blade to adjust the distance therebetween. The rotating disk has an outer rim positioned adjacent to the outer edge of the cutting blade, and a blade support coupled to the outer rim, the blade support includes a plurality of slots, each of which is sized to receive the outer edge of the cutting blade. The outer edge of the cutting blade is received in a first slot at a first position of the rotating disk.
In some embodiments, the food slicer assembly may further include a central shaft secured to an inner edge of the cutting blade, and a mounting arm secured to the central shaft and positioned below the cutting blade. In some embodiments, the mounting arm may have an arcuate lip extending parallel to the outer edge of the cutting blade. The lip may be received in the first slot of the blade support at a second position of the rotating disk.
In some embodiments, the blade support may include a body extending from a first end, and the first end may be hinged to the outer rim of the rotating disk such that the blade support is rotatable about a vertical axis. In some embodiments, when the rotating disk is at the first position, the outer edge of the cutting blade may be received in the first slot when the blade support is placed at a first position about the vertical axis, and the outer edge of the cutting blade may be spaced apart from each of the plurality of slots when the blade support is placed at a second position about the vertical axis.
Additionally, the first end of the body of the blade support may be coupled to the outer rim of the rotating disk via a pivot joint. The pivot joint may have the vertical axis extending therethrough.
According to another aspect, a food processor includes a base having a motor positioned therein, a removable bowl coupled to the base, a removable lid coupled to the bowl. The lid has a feed tube that opens into the bowl. A blade assembly is positioned in the bowl and is driven by the motor, and a rotating disk is movable between a plurality of cutting positions relative to the blade assembly. The rotating disk has a blade support that includes a slot corresponding to each of the plurality of cutting positions, each slot being sized to receive a flange of the blade assembly.
In some embodiments, the blade assembly may include a cutting blade having an outer edge. The rotating disk may have an outer rim positioned adjacent to the outer edge of the cutting blade, and the blade support may be pivotably coupled to the outer rim. In some embodiments, the blade support may be pivotable between a first position where the outer edge of the cutting blade is received in one slot of the blade support, and a second position where the outer edge of the cutting blade may be spaced apart from the blade support.
In some embodiments, the flange of the blade assembly received in one of the plurality of slots may be the outer edge of the cutting blade when the rotating disk is placed at a first cutting position.
According to another aspect of the disclosure, a food processing device is disclosed. The food processing device includes a base having a motor positioned therein, a removable bowl coupled to the base, and a removable lid coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. The food processing device also includes a blade assembly positioned in the processing chamber, which is driven by the motor and includes a cutting blade to cut food items advanced through the feed tube, and a rotating disk upwardly and downwardly movable relative to the cutting blade to adjust the distance between an upper surface of the rotating disk and the cutting blade. The food processing device also includes an adjustment assembly operable to move the rotating disk relative to the cutting blade. The adjustment assembly includes a control knob coupled to the blade assembly and is positioned above the upper surface of the rotating disk, and a threaded sleeve coupled to the rotating disk and is positioned in the control knob.
In some embodiments, the rotating disk may divide the processing chamber into an upper compartment and a lower compartment, and the blade assembly may include a mounting arm having a ramp defined therein to guide food items from the upper compartment to the lower compartment. In some embodiments, the ramp may have an inclined surface extending outwardly in a radial direction from a first end to a second end.
The inclined surface may have a first angle of inclination at the first end and a second angle of inclination at the second end. In some embodiments, the first angle of inclination may be greater than or equal to the second angle of inclination. Additionally, in some embodiments, the first angle of inclination may be approximately 25 degrees. In some embodiments, the second angle of inclination may be approximately 15 degrees.
In some embodiments, the rotating disk may have a counterweight secured thereto, and the threaded sleeve may be positioned between the mounting arm and the counterweight. In some embodiments, rotation of the control knob in a first direction may cause upward movement of the rotating disk, and rotation of the control knob in a second direction may cause downward movement of the rotating disk.
In some embodiments, the blade assembly may include a central shaft coupled to the control knob, and the central shaft may be received in the threaded sleeve. Rotation of the control knob may cause the threaded sleeve to move upwardly and downwardly along the central shaft.
According to another aspect, a food slicer assembly for a food processor is disclosed. The food slicer assembly includes a cutting blade, a mounting arm, which has a ramp defined therein, that is positioned below the cutting blade, and a rotating disk movable to a plurality of positions relative to the cutting blade to adjust the distance between its upper surface and the cutting blade. An adjustment assembly is operable to move the rotating disk relative to the cutting blade. The adjustment assembly includes an internally-threaded control knob positioned above the upper surface of the rotating disk, and an externally-threaded sleeve coupled to the rotating disk that is positioned in the control knob.
In some embodiments, the food slicer assembly may further include a central shaft that is coupled at an upper end to the control knob and is positioned in the sleeve. The mounting arm may extend outwardly from a first end secured to the central shaft to a second end positioned adjacent to an outer rim of the rotating disk. In some embodiments, the ramp may have an inclined surface extending in a radial direction from the first end of the mounting arm to the second end of the mounting arm. The inclined surface may have a first angle of inclination at the first end that is greater than or equal to a second angle of inclination at the second end. In some embodiments, the rotating disk may include a counterweight, and the sleeve may be positioned between the counterweight and the mounting arm.
According to another aspect, a food processor includes a base having a motor positioned therein, a removable bowl coupled to the base, and a removable lid coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. A cutting blade is positioned in the bowl and driven by the motor to cut food items advanced through the feed tube. A rotating disk is upwardly and downwardly movable relative to the cutting blade to adjust the distance therebetween. The rotating disk divides the processing chamber into an upper compartment and a lower compartment. A ramp is positioned below the cutting blade to guide food items from the upper compartment into the lower compartment. The food processor further includes an adjustment assembly operable to move the rotating disk relative to the cutting blade. The adjustment assembly includes a user-operated control device positioned above the rotating disk.
In some embodiments, the adjustment assembly may include an externally-threaded sleeve coupled to the rotating disk, and the user-operated control device may include an internally-threaded control knob having a grip.
According to another aspect of the disclosure, a food processor includes a base having a motor positioned therein, a removable bowl coupled to the base, and a removable lid coupled to the bowl so as to define a processing chamber. The removable lid has a feed tube that opens into the bowl. The food processor also includes a cutting assembly positioned in the processing chamber that is driven by the motor to cut food items advanced through the feed tube. The cutting assembly is positionable between a plurality of cutting positions to produce cut food items of varying thicknesses. The food processor also includes an adjustment assembly positioned in the base. The adjustment assembly includes a first sleeve secured to the base, a second sleeve rotatably coupled to the first sleeve, and a user-operated control device operable to rotate the second sleeve relative to the first sleeve to move the cutting assembly between the plurality of cutting positions. In some embodiments, the first sleeve may have an externally-threaded body, and the second sleeve may have an internally-threaded body positioned over the externally-threaded body of the first sleeve.
In some embodiments, the cutting assembly may include a cutting blade and a rotating disk that may be supported by the second sleeve. In some embodiments, rotation of the second sleeve in a first direction may cause upward movement of the second sleeve and the rotating disk relative to the cutting blade, and rotation of the second sleeve in a second direction may cause downward movement of the second sleeve and the rotating disk relative to the cutting blade.
Additionally, in some embodiments, the food processor may further include a drive shaft connected at a first end to the motor and at a second end to the cutting assembly to transmit a driving force from the motor to the cutting assembly. In some embodiments, the first sleeve may include a bearing rotatably supporting the drive shaft, and the drive shaft may extend through an opening defined in the second sleeve. The opening may be sized such that the drive shaft does not contact the second sleeve.
In some embodiments, the food processor may further include a first adaptor removably coupled to the rotating disk, and a second adaptor secured to a lower end of the first adaptor. The second sleeve may include a bearing rotatably supporting the second adaptor. In some embodiments, the lower end of the first adaptor may include a first plurality of teeth, and the second adaptor may include a second plurality of teeth interdigitated with the first plurality of teeth to secure the second adaptor to the first adaptor.
Additionally, in some embodiments, the adjustment assembly may further comprise a gear assembly positioned in the base and coupled to the second sleeve. The gear assembly may be operable to rotate the second sleeve relative to the first sleeve. The user-operated control device may be coupled to the gear assembly and be configured to operate the gear assembly such that the second sleeve is rotated relative to the first sleeve to move the cutting assembly between the plurality of cutting positions.
In some embodiments, the second sleeve may have a groove defined therein. The gear assembly may have a first gear including a first plurality of teeth defined on an outer surface and a spline extending from an inner surface thereof. The spline may be received in the groove of the second sleeve. A second gear including a second plurality of teeth may be interdigitated with the first plurality of teeth. The user-operated control device may cause rotation of the second gear and the first gear.
In some embodiments, the user-operated control device may include a lever extending outwardly from the base and positionable between a plurality of adjustment positions relative to the base. The lever may be coupled to the second gear such that movement of the lever between the plurality of adjustment positions may cause rotation of the second sleeve relative to the first sleeve to move the cutting assembly between the plurality of cutting positions.
In some embodiments, the food processor may further include a locking mechanism to inhibit movement of the lever. Additionally, in some embodiments, the locking mechanism may include a plurality of notches formed in the second gear, and each notch may correspond to one of the plurality of adjustment positions. The locking mechanism may also include a pin positioned below the second gear that is configured to be received in each of the plurality of notches, and a spring coupled to the pin. The spring may bias the pin into the notch corresponding to a present adjustment position of the lever to inhibit movement of the lever.
According to another aspect, the food processor includes a base having a motor positioned therein, a removable bowl coupled to the base, and a removable lid coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. The food processor also includes a cutting assembly, which is positioned in the processing chamber and driven by the motor to cut food items advanced through the feed tube. The cutting assembly includes a cutting blade and a rotating disk having an upper surface. The rotating disk is upwardly and downwardly movable relative to the cutting blade to adjust the distance between the upper surface of the rotating disk and the cutting blade. The food processor also has an adjustment assembly including a screw-type drive assembly positioned in the base. The screw-type drive assembly is operable to move the rotating disk relative to the cutting blade while the rotating disk and the cutting assembly is driven by the motor.
In some embodiments, the screw-type drive assembly may support the rotating disk. Rotation of the screw-type drive assembly in a first direction may cause upward movement of the rotating disk, and rotation of the screw-type drive assembly in a second direction may cause downward movement of the rotating disk.
In some embodiments, the screw-type drive assembly may include an externally-threaded first sleeve and an internally-threaded second sleeve positioned over the first sleeve. The rotating disk may be supported by the second sleeve such that rotation of the second sleeve in the first direction may cause upward movement of the second sleeve and the rotating disk and rotation of the second sleeve in the second direction may cause downward movement of the second sleeve and the rotating disk.
In some embodiments, the adjustment assembly may further include a gear assembly positioned in the base and coupled to the second sleeve. The gear assembly may be configured to rotate the second sleeve relative to the first sleeve. Additionally, in some embodiments, the adjustment assembly may further include a lever coupled to the screw-type drive assembly. The lever may extend outwardly from the base and be movable relative to the base, and movement of the lever may cause the screw-type drive assembly to move the rotating disk relative to the cutting blade. In some embodiments, the food processor may include a locking mechanism to inhibit movement of the lever.
According to another aspect, the food processor includes a base having a motor positioned therein, a removable bowl coupled to the base, and a removable lid coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. A cutting assembly is positioned in the processing chamber and driven by the motor to cut food items advanced through the feed tube. The cutting assembly is positionable between a plurality of cutting positions to produce cut food items of varying thicknesses. An adjustment assembly is positioned in the base that is operable to move the cutting assembly between the plurality of cutting positions while the cutting assembly is driven by the motor.
In some embodiments, the adjustment assembly may include a lever extending outwardly from the base. The lever may be positionable between a plurality of adjustment positions corresponding to the plurality of cutting positions of the cutting assembly such that movement of the lever between the plurality of adjustment positions moves the cutting assembly between the plurality of cutting positions. In some embodiments, the adjustment assembly may include a screw-type drive assembly operable to move the cutting assembly between the plurality of cutting positions, and a second motor rotatably coupled to the screw-type drive assembly. The second motor may be configured to operate the screw-type drive assembly to move the cutting assembly between the plurality of cutting positions when the second motor is energized.
According to another aspect, a food processor includes a base having a motor positioned therein, a bowl removably coupled to the base, and a lid removably coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. The food processor also includes a cutting assembly positioned in the processing chamber and driven by the motor to cut food items advanced through the feed tube. The cutting assembly is positionable between a plurality of cutting positions to produce cut food items of varying thicknesses. The food processor includes an adjustment assembly that is operable to move the cutting assembly between the plurality of cutting positions while the cutting assembly is driven by the motor. The adjustment assembly includes a sleeve rotatably coupled to the base, a gear assembly positioned in the base and operable to rotate the sleeve, and a user-operated control device configured to operate the gear assembly to rotate the sleeve. In the food processor, rotation of the sleeve causes the cutting assembly to move between the plurality of cutting positions while the cutting assembly is driven by the motor.
In some embodiments, the user-operated control device may include a control knob having a grip and a shaft extending inwardly from the control knob into the base.
In some embodiments, the cutting assembly may include a cutting blade and a rotating disk. Rotation of the sleeve in a first direction may cause upward movement of the rotating disk relative to the cutting blade, and rotation of the sleeve in a second direction may cause downward movement of the rotating disk relative to the cutting blade.
Additionally, in some embodiments, the gear assembly may include a first gear including a first plurality of teeth, and the first gear may be movably coupled to the sleeve such that rotation of the first gear causes rotation of the sleeve. The gear assembly may also include a second gear including a second plurality of teeth interdigitated with the first plurality of teeth such that rotation of the second gear causes rotation of the first gear. In some embodiments, the first gear may be a worm gear.
In some embodiments, the user-operated control device may include a grip formed on the second gear, and the grip may be operable by a user to rotate the second gear.
In some embodiments, the user-operated control device may include a ring having a third plurality of teeth defined on an inner surface. The third plurality of teeth may be interdigitated with a number of the second plurality of teeth such that rotation of the ring causes rotation of the second gear. In some embodiments, the bowl may include a lower rim and the ring may be rotatably coupled to the lower wall of the bowl. In some embodiments, the ring may have a grip formed thereon that is operable by a user to rotate the ring.
Additionally, in some embodiments, the food processor may also include a drive shaft configured to transmit a driving force from the motor to the cutting assembly. The drive shaft may extend through an opening defined in the sleeve, and the opening may be sized such that the sleeve is spaced apart from the drive shaft.
In some embodiments, the user-operated control device may include a lever extending outwardly from the base and movable relative to the base. The lever may be coupled to the gear assembly such that movement of the lever relative to the base causes the gear assembly to rotate the sleeve.
According to another aspect, the food processor includes a base having a motor positioned therein, a bowl removably coupled to the base, and a lid removably coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. The food processor also includes a cutting assembly positioned in the processing chamber and driven by the motor to cut food items advanced through the feed tube. The cutting assembly is positionable between a plurality of cutting positions to produce cut food items of varying thicknesses. The food processor also includes an adjustment assembly having a user-operated control device that is operable to move the cutting assembly between the plurality of cutting positions while the cutting assembly is driven by the motor. The user-operated control device includes a shaft extending outwardly from the base and a control knob coupled to the shaft, and rotation of the control knob causes the cutting assembly to move between the plurality of cutting positions while the cutting assembly is driven by the motor.
In some embodiments, the adjustment assembly may include a gear assembly located in the base that is operable to move the cutting assembly between the plurality of cutting positions. Rotation of the control knob may cause the gear assembly to move the cutting assembly between the plurality of cutting positions.
In some embodiments, the adjustment assembly may further include an adaptor having a first end coupled to the cutting assembly, and a sleeve rotatably coupled to the base and to a second end of the adaptor. The sleeve may have an inner surface with a groove defined therein. The gear assembly of the food processor may include a first gear including a first plurality of teeth defined on an outer surface and a spline extending from an inner surface. The spline may be received in the groove of the sleeve such that rotation of the first gear causes rotation of the sleeve.
In some embodiments, the gear assembly may include a rack and pinion configured to translate rotation of the control knob into rotation of the first gear. In some embodiments, the rack may include a second plurality of teeth interdigitated with the first plurality of teeth of the first gear. Additionally, in some embodiments, the control knob may be secured to a first end of the shaft and the pinion may be secured to a second end of the shaft. The pinion may include a third plurality of teeth interdigitated with a fourth plurality of teeth defined on the rack.
In some embodiments, the first gear may be a worm gear and the gear assembly may include a second gear including a second plurality of teeth interdigitated with a number of the first plurality of teeth of the worm gear.
In some embodiments, the cutting assembly may include a cutting blade and a rotating disk, and rotation of the control knob in a first direction may cause upward movement of the rotating disk relative to the cutting blade, and rotation of the control knob in a second direction may cause downward movement of the rotating disk relative to the cutting blade.
According to another aspect, a food processor includes a base having a motor positioned therein, a bowl removably coupled to the base, and a lid removably coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. The food processor also includes a cutting assembly positioned in the processing chamber and driven by the motor to cut food items advanced through the feed tube. The cutting assembly is positionable between a plurality of cutting positions to produce cut food items of varying thicknesses. The food processor also includes an adjustment assembly that has a gear assembly positioned in the base and a user-operated control device. The gear assembly is operable to move the cutting assembly between the plurality of cutting positions while the cutting assembly is driven by the motor. The user-operated control device includes a thumbwheel positioned in a slot defined in the base. The thumbwheel is configured to operate the gear assembly to move the cutting assembly.
According to another aspect, a food processor includes a base having a motor positioned therein, a bowl removably coupled to the base, and a lid removably coupled to the bowl so as to define a processing chamber. The bowl is configured to rotate relative to the base about an axis, and the lid has a feed tube that opens into the bowl. The food processor also includes a cutting assembly positioned in the processing chamber and driven by the motor to cut food items advanced through the feed tube. The cutting assembly includes a cutting blade and a rotating disk having an upper surface. The rotating disk is movable relative to the cutting blade to adjust a distance defined between the upper surface of the rotating disk and the cutting blade. The food processor also includes an adjustment assembly positioned in the base. The adjustment assembly is operable to move the rotating disk relative to the cutting blade while the cutting assembly is driven by the motor. The bowl is configured to engage the adjustment assembly such that rotation of the bowl in a first direction about the axis causes upward movement of the rotating disk relative to the cutting blade, and rotation of the bowl in a second direction causes downward movement of the rotating disk relative to the cutting blade.
In some embodiments, the adjustment assembly may include an adaptor coupled to the rotating disk, a sleeve rotatably coupled to the adaptor and to the base, and a gear assembly positioned in the base. The gear assembly may be configured to translate rotation of the bowl into rotation of the sleeve. Rotation of the sleeve may cause movement of the rotating disk relative to the cutting blade.
In some embodiments, the sleeve may have a groove defined therein. The gear assembly may include a first gear including a first plurality of teeth defined on an outer surface and a spline extending from an inner surface. The spline may be received in the groove of the sleeve such that rotation of the first gear causes rotation of the sleeve. The gear assembly may also include a second gear including a second plurality of teeth interdigitated with the first plurality of teeth such that rotation of the second gear causes rotation of the first gear.
Additionally, in some embodiments, the bowl may include a third plurality of teeth that are interdigitated with a number the second plurality of teeth of the second gear such that rotation of the bowl about the axis causes rotation of the second gear. In some embodiments, the bowl may include an inner wall and an arm extending inwardly from the inner wall to a first end. The first end of the arm may have the third plurality of teeth defined thereon.
In some embodiments, the base may have a slot defined therein sized to receive the first end of the arm. Additionally, in some embodiments, the slot may include a first section in which the bowl is engaged with the adjustment assembly and a second section in which the bowl is disengaged with the adjustment assembly.
In some embodiments, the food processor may further include a drive shaft configured to transmit a driving force from the motor to the cutting assembly, and the drive shaft may extend through an opening defined in the sleeve. The opening may be sized such that the sleeve is spaced apart from the drive shaft. Additionally, in some embodiments, the food processor may include a drive stem coupled to the drive shaft. The cutting assembly may further include a blade carrier having the cutting blade secured thereto, and the drive stem may have a keyed end that is received in a corresponding socket defined in the blade carrier. In some embodiments, the lid may include a sleeve that contacts an upper end of the blade carrier to position the blade carrier on the drive stem.
In some embodiments, the food processor may further include a locking mechanism configured to inhibit rotation of the bowl about the axis. In some embodiments, the locking mechanism may include a pin extending from a lower surface of the bowl, and a plurality of notches defined in an upper surface of base. Each notch may be sized to receive the pin of the bowl.
According to another aspect, a food processor includes a base having a motor positioned therein, a bowl removably coupled to the base, and a lid removably coupled to the bowl so as to define a processing chamber. The bowl is configured to rotate relative to the base about an axis, and the lid has a feed tube that opens into the bowl. The food processor also includes a cutting assembly positioned in the processing chamber and driven by the motor to cut food items advanced through the feed tube. The cutting assembly is positionable between a plurality of cutting positions to produce cut food items of varying thicknesses. The food processor includes an adjustment assembly attached to the base. The adjustment assembly is operable to move the cutting assembly between the plurality of cutting positions while the cutting assembly is driven by the motor. The bowl is configured to engage the adjustment assembly such that rotation of the bowl about the axis operates the adjustment assembly to move the cutting assembly between the plurality of cutting positions.
In some embodiments, the adjustment assembly may include an adaptor coupled to the cutting assembly, a sleeve rotatably coupled to the adaptor and to the base, and a gear rotatably coupled to the base. The gear may be configured to translate rotation of the bowl into rotation of the sleeve, and rotation of the sleeve may cause movement of the cutting assembly between the plurality of cutting positions.
In some embodiments, the sleeve may have a groove defined therein, and the gear may include a first plurality of teeth defined on an outer surface and a spline extending from an inner surface. The spline may be received in the groove of the sleeve such that rotation of the gear causes rotation of the sleeve, and the bowl may include a second plurality of teeth that are interdigitated with the first plurality of teeth such that rotation of the bowl causes rotation of the gear.
In some embodiments, the adaptor may include a first adaptor removably coupled to the cutting assembly and a second adaptor torsionally secured to a lower end of the first adaptor. The sleeve may include a bearing rotatably supporting the second adaptor. Additionally, in some embodiments, the lower end of the first adaptor may include a first plurality of teeth. The second adaptor may include a second plurality of teeth interdigitated with the first plurality of teeth to torsionally secure the second adaptor to the first adaptor.
In some embodiments, the gear may be a first gear movably coupled to the sleeve such that rotation of the first gear causes rotation of the sleeve. The first gear may include a first plurality of teeth, and the adjustment assembly may further include a second gear including a second plurality of teeth interdigitated with the first plurality of teeth such that rotation of the second gear causes rotation of the first gear.
In some embodiments, the bowl may include an inner wall and an arm extending inwardly from the inner wall to a first end. The first end of the arm may have a third plurality of teeth defined thereon that are interdigitated with the second plurality of teeth of the second gear such that rotation of the bowl about the axis causes rotation of the second gear.
According to another aspect, a food processor includes a base having a motor positioned therein, a bowl removably coupled to the base, and a lid removably coupled to the bowl so as to define a processing chamber. The bowl is configured to rotate about an axis relative to the base, and the lid has a feed tube that opens into the bowl. A cutting assembly is positioned in the processing chamber and driven by the motor to cut food items advanced through the feed tube. The cutting assembly is positionable between a plurality of cutting positions to produce cut food items of varying thicknesses. The food processor also includes an adjustment assembly having a gear assembly positioned in the base, and the gear assembly is operable to move the cutting assembly between the plurality of cutting positions while the cutting assembly is driven by the motor. The bowl is configured to engage the gear assembly such that rotation of the bowl about the axis relative to the base operates the adjustment assembly to move the cutting assembly between the plurality of cutting positions.
The detailed description particularly refers to the following figures, in which:
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referring to
As will be understood by those skilled in the art, the control unit may comprise analog and/or digital circuitry to process electrical signals received from the motor 14 (or other components of the food processor 10) and provide electrical control signals to the motor or other components of the food processor 10. For example, the control unit may be embodied as a microcontroller that executes firmware routines to control the operation of the food processor 10.
A removable bowl 22 is secured to the base 12. The bowl's handle facilitates placement of the bowl 22 on the base 12. The bowl 22 includes a removable lid 26 secured to its upper peripheral edge. The lid 26 has a feed tube 28 formed thereon through which food items such as cheeses, meats, fruits, and vegetables are inserted into the bowl 22 to be processed by the food processor 10. Collectively, the lid 26 and the bowl 22 define a processing chamber 24 where food items are processed by the cutting blade 18.
The bowl 22, lid 26, and feed tube 28 are generally made of a transparent or translucent plastic material, so that the contents of the food processor 10 can be viewed by a user without removing the lid 26 from the bowl 22. Moreover, one or more locking mechanisms may be used to lock the bowl to the base 12 and the lid 26 to the bowl 22.
As shown in
As shown in
An inner edge 58 of the cutting blade 18 is received in a slot 60 formed between the hub 52 and the upper end 50 of the central shaft 46. As shown in
As shown in
The rotating disk 34 includes a planar body 80 and a central sleeve 82 extending downwardly from a lower surface 84 thereof. It will be appreciated that one or more of the components of the rotating disk 34 may be formed from plastic or a metallic material. The rotating disk 34 includes a passageway 86 that extends through the sleeve 82 and receives the central shaft 46 of the blade assembly 36. The planar body 80 also has a contoured opening 88 extending from the upper surface 44 to the lower surface 84. The contoured opening 88 is sized to receive the mounting arm 62 of the blade assembly 36. When the blade assembly 36 is positioned in the rotating disk 34, a gap or throat 92 is defined between the cutting edge 42 and the body 80, as shown in
During operation, the motor 14 causes the blade assembly 36 to rotate. The blade assembly 36 acts on a sidewall 94 of the sleeve 82 such that the rotating disk 34 and the blade assembly 36 rotate together. Food items inserted through the feed tube 28 are urged into contact with the upper surface 44 of the rotating disk 34 while being acted upon (i.e., cut) by the cutting blade 18. Cut food items, along with other food items small enough to fit within the throat 92, pass from the upper compartment 38 into the lower compartment 40 through the throat 92.
As best seen in
A rim 90 extends upwardly from the outer perimeter of the disk's planar body 80. The rotating disk 34 has a diameter that is slightly less than the inner diameter of the bowl 22 such that the rim 90 is positioned adjacent to, but spaced slightly apart from, the inner wall of the bowl to permit rotation of the disk 34 within the bowl 22. The rotating disk 34 also includes a blade support 100 pivotably coupled to the rim 90.
As best seen in
The blade support 100 has a body 102 extending from an end 104 hinged to the rim 90 at a pivot joint 106. The pivot joint 106 includes a cylindrical pivot pin 108 that extends through, and is positioned in, the rim 90 and the end 104. It will be appreciated that in other embodiments the pivot pin 108 may be formed as part of the blade support 100. As shown in
When the blade support 100 is in the engaged position (see
The rotating disk 34 includes a locking device 114 that secures the blade support 100 in the engaged position. In the illustrative embodiment, the locking device 114 includes a rectangular tab 116 extending from an end 118 of the body 102. When the blade support 100 is in the engaged position, the tab 116 is received in a recess 120 formed in the rim 90. Another recess 122 formed in the end 118 of the body 102 permits a user to apply sufficient force to release the blade support 100. It will be appreciated that in other embodiments the locking device 114 may take the form of a latch, pin, or other mechanism configured to maintain the blade support 100 in the engaged position.
As discussed above, the rotating disk 34 is movable upwardly and downwardly between a plurality of cutting positions relative to the cutting blade 18. As shown in
As shown in
As shown in
The shaft 134 of the user-operated pin 132 extends through a vertically-extending slot 150 defined in the sidewall 94 of the sleeve 82. The sidewall 94 includes a plurality of teeth 152 that extend into the slot 150. As indicated by arrow 154 in
As shown in
To change the distance D between the cutting edge 42 of the cutting blade 18 and the upper surface 44 of the rotating disk 34, the user unlocks the blade support 100 from the rim 90 and pivots the blade support 100 about the axis 112 from the engaged position to the disengaged position. The user then presses the button-head 142 to depress the user-operated pin 132. The spring 168 is compressed and the teeth 148 are moved out of contact with the teeth 152 of the sleeve 82. When the teeth 148 of the user-operated pin are spaced apart from the teeth 152 of the sleeve, the user may slide the rotating disk 34 upwardly or downwardly to another cutting position.
Once the rotating disk 34 is at the desired cutting position, the user releases the button-head 142, and the spring 168 urges the user-operated pin 132 away from the bottom 160 of the aperture 140, thereby reengaging the teeth 148 with the teeth 152 and locking the rotating disk 34 into the desired cutting position. The user pivots the blade support 100 from the disengaged position back to the engaged position, thereby preventing substantial deflection of the cutting blade 18 and providing an additional locking feature to prevent the upward/downward movement of the rotating disk 34 relative to the cutting blade 18.
It will be appreciated that in other embodiments the slicer assembly 32 may not include the blade support 100. In such embodiments, changing the distance D between the cutting edge 42 of the cutting blade 18 and the upper surface 44 of the rotating disk 34 would involve operating only the user-operated pin 132 of the locking mechanism 130. Similarly, in other embodiments including the blade support 100, the locking mechanism 130 may be omitted and replaced with a different thickness adjustment assembly operable by a user to vary the cutting thickness of the food processor 10. In those embodiments, changing the distance D between the cutting edge 42 of the cutting blade 18 and the upper surface 44 of the rotating disk 34 would involve, first, moving the blade support 100 to the disengaged position, which would release the rotating disk 34 for upward and downward movement, and, second, operating the thickness adjustment assembly.
Referring now to
The slicer assembly 200, like the slicer assembly 32 described above in reference to
The rotating disk 34 includes a central sleeve 214 extending downwardly from a lower surface 84 thereof. A passageway 216 extends through the sleeve 214 and receives the central shaft 202 of the blade assembly 36. Similar to the locking mechanism 130 described above in reference to
Each locking mechanism 230 includes a user-operated pin 232 and a lever 234 coupled thereto. The user-operated pin 232 includes a shaft 236 that is positioned in a through-hole 238 formed in a sidewall 240 of the sleeve 214. The shaft 236 extends from an end 242 positioned outside of the sleeve 214 to an end 244 positioned in the passageway 216. The user-operated pin 232 moves back and forth within the through-hole 238, as indicated by arrow 246, between a locked position and an unlocked position.
The lever 234 is positioned within the passageway 216 and is pivotably coupled to the sidewall 240 of the sleeve 214. The lever 234 has a lever body 250 that extends from an upper end 252 to a lower end 254. The upper end 252 of lever body 250 includes a tip 256 that is sized to engage with the teeth 210 formed on the central shaft 202. The lower end 254 is coupled to the end 244 of the user-operated pin 232. As shown in
The lever body 250 is pivotably coupled to the sidewall 240 at a pivot joint 260. The pivot joint 260 includes a cylindrical pivot pin 262 that extends through lever body 250 and the sidewall 240. The lever body 250 pivots about an axis defined by the pivot joint 260 between an engaged position and a disengaged position. In the engaged position, the tip 256 of the lever 234 is engaged with a number of the teeth 210 of the central shaft 202. When the lever 234 is in the engaged position, the rotating disk 34 is prevented from moving relative to the cutting blade 18. In the disengaged position, the tip 256 of the lever is spaced apart from the teeth 210 of the central shaft 202 such that the lever 234 does not prevent the rotating disk 34 from being moved to another cutting position.
A spring 266 is positioned in the passageway 216 of the sleeve 214 and is coupled to the upper end 252 of the lever body 250. The spring 266 extends from a spring end 268 coupled to the lever body 250 to a spring end 270 coupled to the sidewall 240 of the sleeve 214. The spring 266 biases the upper end 252 of the lever 234 toward the central shaft 202 thereby engaging the tip 256 with the teeth 210 of the central shaft 202.
When the user depresses the user-operated pin 232 of each locking mechanism 230, the user-operated pin 232 is moved from the locked position to the unlocked position. The shaft 236 of the user-operated pin 232 acts on the lower end 254 of the lever 234, thereby causing the lever 234 to pivot from the engaged position to the disengaged position. As the upper end 252 moves away from the central shaft 202, the spring 266 is compressed. Thus, when the user-operated pin 232 is in the unlocked position, the lever 234 is in the disengaged position.
When the user releases the user-operated pin 232, the spring 266 urges the upper end 252 toward the central shaft 202 thereby re-engaging the tip 256 with the teeth 210. As the lever 234 moves back to the engaged position, the lever body 250 urges the user-operated pin 232 back to the locked position.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such an illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
For example, while food processor 10 is herein illustrated as a conventional domestic food processor, the features and aspects disclosed herein can also be implemented in other types of food processing devices such as automatic food slicers, dicers, ice shavers and the like. Similarly, the blade support could be removable from the rotating disk 34 instead of being pivotably coupled to the rim. Additionally, the rotating disk could be directly coupled to the motor, and the blade could be movable relative to the rotating disk.
Referring to
As will be understood by those skilled in the art, the control unit may comprise analog and/or digital circuitry to process electrical signals received from the motor 314 (or other components of the food processor 310) and provide electrical control signals to the motor or other components of the food processor 310. For example, the control unit may be embodied as a microcontroller that executes firmware routines to control the operation of the food processor 310.
A removable bowl 322 is secured to the base 312. The bowl's handle facilitates placement of the bowl 322 on the base 312. The bowl 322 includes a removable lid 326 secured to its upper peripheral edge. The lid 326 has a feed tube 328 formed thereon through which food items such as cheeses, meats, fruits, and vegetables are inserted into the bowl 322 to be processed by the food processor 310. Collectively, the lid 326 and the bowl 322 define a processing chamber 324 where food items are processed by the cutting blade 318.
The bowl 322, lid 326, and feed tube 328 are generally made of a transparent or translucent plastic material, so that the contents of the food processor 310 can be viewed by a user without removing the lid 326 from the bowl 322. Moreover, one or more locking mechanisms may be used to lock the bowl to the base 312 and the lid 326 to the bowl 322.
As shown in
As shown in
An inner edge 358 of the cutting blade 318 is received in a slot 360 formed between the hub 352 and the upper end 350 of the central shaft 346. As shown in
As shown in
The rotating disk 334 includes a planar body 380 and a central sleeve 382 extending downwardly from a lower surface 384 thereof. It will be appreciated that one or more of the components of the rotating disk 334 may be formed from plastic or a metallic material. The rotating disk 334 includes a passageway 386 that extends through the sleeve 382 and receives the central shaft 346 of the blade assembly 336. The planar body 380 also has a contoured opening 388 extending from the upper surface 344 to the lower surface 384. The contoured opening 388 is sized to receive the mounting arm 362 of the blade assembly 336. When the blade assembly 336 is positioned in the rotating disk 334, a gap or throat 392 is defined between the cutting edge 342 and the body 380, as shown in
During operation, the motor 314 causes the blade assembly 336 to rotate. The blade assembly 336 acts on a sidewall 394 of the sleeve 382 such that the rotating disk 334 and the blade assembly 336 rotate together. Food items inserted through the feed tube 328 are urged into contact with the upper surface 344 of the rotating disk 334 while being acted upon (i.e., cut) by the cutting blade 318. Cut food items, along with other food items small enough to fit within the throat 392, pass from the upper compartment 338 into the lower compartment 340 through the throat 392.
As best seen in
A rim 390 extends upwardly from the outer perimeter of the disk's planar body 380. The rotating disk 334 has a diameter that is slightly less than the inner diameter of the bowl 322 such that the rim 390 is positioned adjacent to, but spaced slightly apart from, the inner wall of the bowl to permit rotation of the disk 334 within the bowl 322. The rotating disk 334 also includes a blade support 400 pivotably coupled to the rim 90.
As best seen in
The blade support 400 has a body 402 extending from an end 404 hinged to the rim 390 at a pivot joint 406. The pivot joint 406 includes a cylindrical pivot pin 408 that extends through, and is positioned in, the rim 390 and the end 404. It will be appreciated that in other embodiments the pivot pin 408 may be formed as part of the blade support 400. As shown in
When the blade support 400 is in the engaged position (see
The rotating disk 334 includes a locking device 414 that secures the blade support 400 in the engaged position. In the illustrative embodiment, the locking device 414 includes a rectangular tab 416 extending from an end 418 of the body 402. When the blade support 400 is in the engaged position, the tab 416 is received in a recess 420 formed in the rim 390. Another recess 422 formed in the end 418 of the body 402 permits a user to apply sufficient force to release the blade support 400. It will be appreciated that in other embodiments the locking device 414 may take the form of a latch, pin, or other mechanism configured to maintain the blade support 400 in the engaged position.
As discussed above, the rotating disk 334 is movable upwardly and downwardly between a plurality of cutting positions relative to the cutting blade 318. As shown in
As shown in
As shown in
The shaft 434 of the user-operated pin 432 extends through a vertically-extending slot 450 defined in the sidewall 394 of the sleeve 382. The sidewall 394 includes a plurality of teeth 452 that extend into the slot 450. As indicated by arrow 454 in
As shown in
To change the distance D between the cutting edge 442 of the cutting blade 418 and the upper surface 344 of the rotating disk 334, the user unlocks the blade support 400 from the rim 390 and pivots the blade support 400 about the axis 412 from the engaged position to the disengaged position. The user then presses the button-head 442 to depress the user-operated pin 432. The spring 468 is compressed and the teeth 448 are moved out of contact with the teeth 452 of the sleeve 382. When the teeth 448 of the user-operated pin are spaced apart from the teeth 452 of the sleeve, the user may slide the rotating disk 334 upwardly or downwardly to another cutting position.
Once the rotating disk 334 is at the desired cutting position, the user releases the button-head 442, and the spring 468 urges the user-operated pin 432 away from the bottom 460 of the aperture 440, thereby reengaging the teeth 448 with the teeth 452 and locking the rotating disk 334 into the desired cutting position. The user pivots the blade support 400 from the disengaged position back to the engaged position, thereby preventing substantial deflection of the cutting blade 318 and providing an additional locking feature to prevent the upward/downward movement of the rotating disk 334 relative to the cutting blade 318.
It will be appreciated that in other embodiments the slicer assembly 332 may not include the blade support 400. In such embodiments, changing the distance D between the cutting edge 342 of the cutting blade 318 and the upper surface 344 of the rotating disk 334 would involve operating only the user-operated pin 432 of the locking mechanism 430. Similarly, in other embodiments including the blade support 400, the locking mechanism 430 may be omitted and replaced with a different thickness adjustment assembly operable by a user to vary the cutting thickness of the food processor 310. In those embodiments, changing the distance D between the cutting edge 342 of the cutting blade 318 and the upper surface 344 of the rotating disk 334 would involve, first, moving the blade support 400 to the disengaged position, which would release the rotating disk 334 for upward and downward movement, and, second, operating the thickness adjustment assembly.
Referring now to
The slicer assembly 500, like the slicer assembly 332 described above in reference to
The rotating disk 334 includes a central sleeve 514 extending downwardly from a lower surface 384 thereof. A passageway 516 extends through the sleeve 514 and receives the central shaft 502 of the blade assembly 336. Similar to the locking mechanism 430 described above in reference to
Each locking mechanism 530 includes a user-operated pin 532 and a lever 534 coupled thereto. The user-operated pin 532 includes a shaft 536 that is positioned in a through-hole 538 formed in a sidewall 540 of the sleeve 514. The shaft 536 extends from an end 542 positioned outside of the sleeve 514 to an end 544 positioned in the passageway 516. The user-operated pin 532 moves back and forth within the through-hole 538, as indicated by arrow 546, between a locked position and an unlocked position.
The lever 534 is positioned within the passageway 516 and is pivotably coupled to the sidewall 541 of the sleeve 514. The lever 534 has a lever body 550 that extends from an upper end 552 to a lower end 554. The upper end 552 of lever body 550 includes a tip 556 that is sized to engage with the teeth 510 formed on the central shaft 502. The lower end 554 is coupled to the end 544 of the user-operated pin 532. As shown in
The lever body 550 is pivotably coupled to the sidewall 540 at a pivot joint 560. The pivot joint 560 includes a cylindrical pivot pin 562 that extends through lever body 550 and the sidewall 540. The lever body 550 pivots about an axis defined by the pivot joint 560 between an engaged position and a disengaged position. In the engaged position, the tip 556 of the lever 534 is engaged with a number of the teeth 510 of the central shaft 502. When the lever 534 is in the engaged position, the rotating disk 334 is prevented from moving relative to the cutting blade 318. In the disengaged position, the tip 556 of the lever is spaced apart from the teeth 510 of the central shaft 502 such that the lever 534 does not prevent the rotating disk 334 from being moved to another cutting position.
A spring 566 is positioned in the passageway 516 of the sleeve 514 and is coupled to the upper end 552 of the lever body 550. The spring 566 extends from a spring end 568 coupled to the lever body 550 to a spring end 570 coupled to the sidewall 540 of the sleeve 514. The spring 566 biases the upper end 552 of the lever 534 toward the central shaft 502 thereby engaging the tip 556 with the teeth 510 of the central shaft 502.
When the user depresses the user-operated pin 532 of each locking mechanism 530, the user-operated pin 532 is moved from the locked position to the unlocked position. The shaft 536 of the user-operated pin 532 acts on the lower end 554 of the lever 534, thereby causing the lever 534 to pivot from the engaged position to the disengaged position. As the upper end 552 moves away from the central shaft 502, the spring 566 is compressed. Thus, when the user-operated pin 532 is in the unlocked position, the lever 534 is in the disengaged position.
When the user releases the user-operated pin 532, the spring 566 urges the upper end 552 toward the central shaft 502 thereby re-engaging the tip 556 with the teeth 510. As the lever 534 moves back to the engaged position, the lever body 550 urges the user-operated pin 532 back to the locked position.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such an illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
For example, while food processor 310 is herein illustrated as a conventional domestic food processor, the features and aspects disclosed herein can also be implemented in other types of food processing devices such as automatic food slicers, dicers, ice shavers and the like. Similarly, the blade support could be removable from the rotating disk 334 instead of being pivotably coupled to the rim. Additionally, the rotating disk could be directly coupled to the motor, and the blade could be movable relative to the rotating disk.
Referring to
As will be understood by those skilled in the art, the control unit may comprise analog and/or digital circuitry to process electrical signals received from the motor 614 (or other components of the food processor 610) and provide electrical control signals to the motor or other components of the food processor 610. For example, the control unit may be embodied as a microcontroller that executes firmware routines to control the operation of the food processor 610.
A removable bowl 622 is secured to the base 612. The bowl's handle facilitates placement of the bowl 622 on the base 612. The bowl 622 includes a removable lid 626 secured to its upper peripheral edge. The lid 626 has a feed tube 628 formed thereon through which food items such as fruits and vegetables are inserted into the bowl 622 to be processed by the food processor 610. Collectively, the lid 626 and the bowl 622 define a processing chamber 624 where food items are processed by the cutting blade 618.
The bowl 622, lid 626, and feed tube 628 are generally made of a transparent or translucent plastic material, so that the contents of the food processor 610 can be viewed by a user without removing the lid 626 from the bowl 622. Moreover, one or more locking mechanisms may be used to lock the bowl to the base 612 and the lid 626 to the bowl 622.
As shown in
The rotating disk 634 includes a planar body 652 and a rim 654 that extends upwardly from the outer perimeter of the planar body 652. The rotating disk 634 has a diameter that is slightly less than the inner diameter of the bowl 622 such that the rim 654 is positioned adjacent to, but spaced slightly apart from, the inner wall of the bowl to permit rotation of the disk 634 within the bowl 622. In the exemplary embodiment described herein, the rotating disk 634 is embodied as a monolithic structure (e.g., a single molded or cast part). However, it should be appreciated that the components of the rotating disk 634 (e.g., body 652 and rim 654) may be embodied as separate components secured to one another by an adhesive or other suitable fastener.
The thickness adjustment assembly 636 is operable by a user to vary the cutting thickness of the food processor 610 thereby creating thicker or thinner pieces of cut food items. The adjustment assembly 636 includes a hub 660 and a user-operated control device 662. The hub 660 includes a base 664 and a hollow sleeve 666 extending upwardly therefrom. A number of fasteners 668 (i.e., screws) extend through the planar body 652 into the base 664, thereby rigidly securing the rotating disk 634 to the hub 660. It will be appreciated that in other embodiments the hub 660 and the rotating disk 634 may be integrally formed as a monolithic structure. As shown in
The user-operated control device 662 is positioned above the upper surface 646 of the rotating disk 634. As shown in
As shown in
As shown in
The cutting blade 618 is secured to an upper surface 716 of the mounting arm 710. A number of fasteners 720 (i.e., screws) positioned at a rear edge 722 of the cutting blade 618 extend into the mounting arm 710, thereby rigidly securing the cutting blade 618 to the mounting arm 710. It will be appreciated that in other embodiments the fasteners 720 may take the form of T-stakes, pins, posts, or other structures capable of securing the cutting blade 618 to the mounting arm 710. Additionally, the mounting arm 710 may include an overmold that receives the cutting blade 618.
As shown in
During operation, the user may change the cutting position of the rotating disk 634 using the control knob 674. When the control knob 674 is rotated, the hub 660 translates upwardly and downwardly along the central shaft 698 to change the thickness of the food items being processed by the food processor 610. In particular, counter-clockwise rotation of the control knob 674 causes downward movement of the hub 660 (and hence rotating disk 634), which increases the distance D between the cutting edge 644 of the cutting blade 618 and the upper surface 646 of the rotating disk 634 and thereby produces thicker pieces of food items. Oppositely, when the control knob 674 is rotated clockwise, the hub 660 is moved upwardly along the central shaft 698 and the distance D between the cutting edge 644 of the cutting blade 618 and the upper surface 646 of the rotating disk 634 is decreased, thereby producing thinner pieces of food items.
When the food processor 610 is activated, the motor 614 causes the blade assembly 638 to rotate. The blade assembly 638 acts on the hub 660 secured to the rotating disk 634 such that the rotating disk 634 and the blade assembly 638 rotate together. Food items inserted through the feed tube 628 are urged into contact with the upper surface 646 of the rotating disk 634 while being acted upon (i.e., cut) by the cutting blade 618. Cut food items, along with other food items small enough to fit within the throat 724, pass from the upper compartment 640 through the throat 724.
A ramp 730 defined in the mounting arm 710 guides food items from the upper compartment 640 to the lower compartment 642. As shown in
As shown in
Referring to
As will be understood by those skilled in the art, the control unit may comprise analog and/or digital circuitry to process electrical signals received from the motor 814 (or other components of the food processor 810) and provide electrical control signals to the motor or other components of the food processor 810. For example, the control unit may be embodied as a microcontroller that executes firmware routines to control the operation of the food processor 810.
A removable receptacle or bowl 820 is secured to the base 812. The bowl's handle facilitates placement of the bowl 820 on the base 812. The bowl 820 includes a removable lid 822 secured to its upper peripheral edge. The lid 822 has a feed tube 824 formed thereon through which food items such as fruits and vegetables are inserted into the bowl 820 to be processed by the food processor 810. Collectively, the lid 822 and the bowl 820 define a processing chamber 826 where food items are processed by the cutting assembly 816.
The bowl 820, lid 822, and feed tube 824 are generally made of a transparent or translucent plastic material so that the contents of the food processor 810 can be viewed by a user without removing the lid 822 from the bowl 820. Moreover, one or more locking mechanisms may be used to lock the bowl to the base 812 and the lid 822 to the bowl 820.
As shown in
A thickness adjustment assembly 842 is operable by a user to vary the cutting thickness of the food processor 810 while the cutting assembly 816 is driven by the motor 814, thereby creating thicker or thinner pieces of cut food items during a cutting operation. The adjustment assembly 842 includes a user-operated control device 844 that is located outside of the processing chamber 826 defined by the bowl 820 and the lid 822. What is meant herein by the term “outside” as it relates to the location of the user-operated control device relative to the bowl or the processing chamber is that the structure of the control device contacted by the user to operate the device is positioned external to the bowl and lid so that it may be operated by the user while the lid is secured to the bowl, thereby allowing the cutting thickness of the food processor to be adjusted while the cutting assembly 816 is driven by the motor 814.
For example, in the illustrative embodiment described herein, the external control device 844 is embodied as a control lever 846 that extends outwardly from the base 812 and is movable relative to the base 812 to change the cutting thickness of the cutting assembly 816 without removing the lid 822 from the bowl 820. In such a configuration, the user moves the control lever 846 one direction or the other to change (i.e., increase or decrease) the distance D between the cutting edge 838 of the cutting blade 830 and the upper surface 840 of the rotating disk 832. It should be appreciated that other user-operated control devices, such as knobs, dials, buttons, servo-motors, or the like, may be substituted for the control lever 846.
Referring now to
The blade assembly 856 also includes a mounting arm 862 that extends outwardly from the central shaft 854. The cutting blade 830 is secured to the upper surface of the mounting arm 862. In the exemplary embodiment, the central shaft 854 and the mounting arm 862 are formed from a metallic material as a single monolithic component. It should be appreciated that in other embodiments the shaft 854 and the arm 862 may be formed as separate components, which are then joined together during final assembly by an adhesive or other suitable fastener.
A number of fasteners 864 (i.e., screws) positioned at a rear edge 866 of the cutting blade 830 extend into the mounting arm 862, thereby rigidly securing the cutting blade 830 to the mounting arm 862. It will be appreciated that in other embodiments the fasteners 864 may take the form of T-stakes, pins, posts, or other structures capable of securing the cutting blade 830 to the arm 862. As best seen in
The rotating disk 832 includes a central hub 870, a planar body 872 extending radially outward the central hub 870, and a rim 874 extending upwardly from the outer perimeter of the planar body 872. The rotating disk 832 has a diameter that is slightly less than the inner diameter of the bowl 820 such that the rim 874 is positioned adjacent to, but is slightly spaced apart from, the inner wall of the bowl to permit rotation of the disk 832 within the bowl 820. In the exemplary embodiment described herein, the planar body 872 and the rim 874 are embodied as a monolithic structure (e.g., a single molded or cast part). However, it should be appreciated that all of the components of the rotating disk 832 (e.g., hub 870, body 872, and rim 874) may be integrated into a single monolithic structure or may be formed as separate components secured to one another by an adhesive or other suitable fastener.
The hub 870 of the rotating disk 832 has a sidewall 876 that defines a passageway 878 extending through the hub 870. The central shaft 854 of the blade assembly 856 is positioned in the passageway 878. The hub 870 also has a pocket 880 defined in the sidewall 876 that opens into the passageway 878. The mounting arm 862 of the blade assembly 856 is received in the pocket 880, thereby torsionally securing the blade assembly 856 to the rotating disk 832. As such, rotation of the blade assembly 856 by the output shaft 850 causes rotation of the rotating disk 832.
The mounting arm 862 extends outwardly from the pocket 880 and is positioned in an oblong opening 882 formed in the rotating disk 832. The rotating disk 832 is permitted to vertically slide relative to the mounting arm 862 and the blade 830. In use, when the cutting thickness is adjusted, the rotating disk 832 slides upwardly or downwardly relative to the blade assembly 856 (e.g., cutting blade 830). Because the blade assembly 856 is fixed to the drive stem 852, the cutting blade 830 is maintained in its vertical position such that, as the rotating disk 832 moves upwardly or downwardly, the distance D defined between the cutting edge 838 of the cutting blade 830 and the upper surface 840 of the rotating disk 832 changes, thereby changing the cutting thickness. As seen in
As described above, the food processor 810 includes the thickness adjustment assembly 842, which is operable to move the rotating disk 832 relative to the cutting blade 830. The adjustment assembly 842 includes a two-piece adaptor 884 coupled to the hub 870 of the rotating disk 832, a lift device 886 supporting the adaptor 884 and the rotating disk 832, and a gear assembly 888 positioned in the base 812. The adaptor 884 includes an upper shaft 890 secured to the hub 870 of the rotating disk 832 and a lower shaft 892 rotatably coupled to the lift device 886. The upper shaft 890 has a cylindrical body 894 that extends from an upper end 896 to a lower end 898. The upper end 896 of the upper shaft 890 has a pair of tabs 900 extending outwardly therefrom. Each tab 900 is positioned in a corresponding slot 902 defined in the hub 870, thereby securing the shaft 890 to the rotating disk 832 such that rotation of the rotating disk 832 causes rotation of the shaft 890. At the lower end 898 of the shaft 890, a plurality of teeth 910 are formed in the body 894 to secure the upper shaft 890 to the lower shaft 892, as described in greater detail below.
The shaft 890 of the adaptor 884 also includes an opening 904 that is defined in the upper end 896 of the cylindrical body 894. The body 894 includes an inner wall 906 extending downwardly from the opening 904 and defining a passageway 908 through the body 894. When assembled, the shaft 890 is positioned over the drive stem 852 and the lower end of the central shaft 854 of the blade assembly 856 such that the stem 852 and shaft 854 are received in the passageway 908.
The lower shaft 892 of the adaptor 884 is torsionally secured to the lower end 898 of the shaft 890 such that the rotation of the shaft 890 causes rotation of the shaft 892. The lower shaft 892, like the upper shaft 890, has a cylindrical body 912 extending from an upper end 914 to a lower end 916. The body 912 includes a plurality of teeth 918, which are formed at the upper end 914. When the adaptor 84 is assembled, the teeth 918 of the lower shaft 892 are interdigitated with the teeth 910 of the upper shaft 890, thereby securing the shaft 890, 892 together. It will be appreciated that in other embodiments a combination of pins and slots as well as other fastening means may be used to torsionally secure the shafts 890 to the shaft 892.
As shown in
The sleeve 922 includes an upper rim 924 that contacts the lower surface 926 of the central shaft 854 of the blade assembly 856 when the upper shaft 890 is secured to the rotating disk 832. A flange 928 extends outwardly from the upper rim 924. Similarly, the inner wall 906 of the upper shaft 890 includes an inner flange 930 extending inwardly into the passageway 908. A biasing element, such as a spring 932, is positioned between the flanges 928, 930. The spring 932 urges the shaft 890 downward to maintain engagement between the teeth 910, 918 such that the shafts 890, 892 remain coupled together.
The lift device 886 is operable to move the adaptor 884 (and hence rotating disk 832) upwardly and downwardly relative to the base. The lift device 886 includes a screw-type drive assembly having an internally-threaded upper sleeve 940 and an externally-threaded lower sleeve 942. The internal threads 944 of the upper sleeve 940 threadingly engage the external threads 946 of the lower sleeve 942 to move the upper sleeve 940 upwardly and downwardly relative to the base 812. For example, counter-clockwise rotation of the upper sleeve 940 may cause downward movement of the upper sleeve 940, while clockwise rotation of the upper sleeve 940 may cause upward movement of the upper sleeve 940.
The lower end 916 of the shaft 892 of the adaptor 884 is rotatably coupled to the upper sleeve 940 of the lift device 886 via a bearing 948. In that way, the shaft 892 (and hence cutting assembly 816) is permitted to rotate relative to the upper sleeve 940. At the same time, the bearing 948 fixes the axial position of the shaft 892 relative to the upper sleeve 940 such that upward and downward movement of the upper sleeve 940 causes upward and downward movement of the shaft 892.
In use, the thickness of food items being processed by the food processor 810 changes as the upper sleeve 940 translates upwardly and downwardly because the adaptor 884 moves with the upper sleeve 940. In particular, as the upper sleeve 940 moves downwardly along the lower sleeve 942, the lower shaft 892 of the adaptor 884 moves downwardly with the upper sleeve 940. The spring 832 within the upper shaft 890 urges the upper shaft 890 to move downwardly with the lower shaft 892. Because the upper shaft 890 is secured to the hub 870 of the rotating disk 832, that vertical movement of the upper shaft 890 of the adaptor 884 causes vertical movement of the rotating disk 832 relative to the cutting blade 830. As such, when the upper sleeve 940 is moved downwardly, the rotating disk 832 is moved downwardly, and the distance D between the cutting edge 838 of the cutting blade 830 and the upper surface 840 of the rotating disk 832 is increased, thereby producing thicker pieces of food items. Oppositely, as the upper sleeve 940 translates upwardly along the lower sleeve 942, the rotating disk 832 moves upwardly, and the distance D between the cutting edge 838 of the cutting blade 830 and the upper surface 840 of the rotating disk 832 decreases, thereby producing thinner pieces of food items.
While the lift device 886 is operable to change the vertical position of the rotating disk 832, the lift device 886 is isolated from the rotational force of the motor 814 such that the lift device 886 is not driven along with the cutting assembly 816. As described above, the adaptor 884, which rotates with the cutting assembly 816, is rotatably coupled to the upper sleeve 940 via the bearing 948. Additionally, in the illustrative embodiment, the upper sleeve 940 has a hollow passageway 950 extending therethrough. The output shaft 850 of the motor 814 is positioned in the hollow passageway 950, and the hollow passageway 950 is sized such that the output shaft 850 is spaced apart from the upper sleeve 940. The output shaft 850 is rotatably coupled to the lower sleeve 942 via a pair of bearings 952 such that the output shaft 850 is permitted to rotate relative to the lower sleeve 942. As such, rotational force from the output shaft 850 is not transmitted to the sleeves 940, 942 of the lift device 886.
The lower sleeve 942 is secured to the base 812 such that the sleeve 942 does not rotate. The base 812 has a compartment 960 that is defined by an outer wall 962. A platform 964 is positioned within the compartment 960, and the lower sleeve 942 is secured to the platform 964. As best seen in
As best seen in
The upper sleeve 940 of the lift device 886 is movably coupled to the guide gear 972. The upper sleeve 940 includes an outer surface 994 having a plurality of grooves 996 defined therein. Each groove 996 is sized to receive one of the splines 992 of the gear 972, thereby coupling the sleeve 940 to the guide gear 972 and permitting the sleeve 940 to translate upwardly and downwardly relative to the gear 972. As such, rotation of the guide gear 972 causes rotation of the upper sleeve 940 relative to the lower sleeve 942. As described above, rotation of the upper sleeve 940 causes movement of the upper sleeve 940 upwardly or downwardly and changes the thickness of food items being processed by the food processor 810.
As best seen in
The external control device 844 is configured to operate the lift device 886 and the gear assembly 888 to move the rotating disk 832 upwardly and downwardly and thereby change the thickness of food items processed by the food processor 810. The control lever 846 of the external control device 844 is coupled to the drive gear 970. The lever 846 includes an arm 1010 having a guide slot 1014 defined therein. The shaft 1004 of the gear 970 is positioned in the guide slot 1014, thereby coupling the lever 846 to the gear 970.
The arm 1010 extends outwardly through a horizontal track 1012 defined in the outer wall 962 of the base 812. A grip 1016 of the user-operated device 844 is secured at the end of the arm 1010 positioned outside the base 812. When the food processor is assembled, the grip 1016 is positioned below the removable bowl 820. The arm 1010, like the drive gear 970, is pivotally coupled to the platform 964 such that the grip 1016 is movable between a plurality of adjustment positions relative to the base 812.
In use, movement of the grip 1016 of the control lever 846 relative to the base 812 causes the arm 1010 to pivot and advance the shaft 1004 of the gear 970 along the slot 1006. As the shaft 1004 advances along the slot 1006, the drive gear 970 and guide gear 972 rotate. As described above, rotation of the guide gear 972 causes movement of the upper sleeve 940 upwardly or downwardly and changes the thickness of food items being processed by the food processor 810. Each adjustment position of the grip 1016 corresponds to one of the preset cutting positions of the cutting assembly 816.
Referring now to
As shown in
In use, a user operates the controls 818 to energize the motor 814 to rotate the output shaft 850 and the drive stem 852. Because the cutting assembly 816 is secured to the drive stem 852 via the central shaft 854, rotation of the output shaft 850 causes rotation of the cutting assembly 816. While the motor 814 is energized, the user may advance food items into the processing chamber 826 through the feed tube 824 to be cut by the rotating cutting assembly 816.
If the user desires to change the cutting thickness during the cutting operation, the user may grab the grip 1016 and advance the control lever 846 along the track 1012 to another adjustment position. Movement of the control lever 846 causes the control lever 846 to pivot and rotate the drive gear 970 and guide gear 972. As described above, rotation of the guide gear 972 causes rotation of the upper sleeve 940 relative to the lower sleeve 942 and moves the upper sleeve 940 upwardly or downwardly relative to the base 812. Because the adaptor 884 is secured to both the upper sleeve 940 and the rotating disk 832, movement of the upper sleeve 940 causes movement of the disk 832 relative to the cutting blade 830, thereby changing the distance D between the cutting edge 838 of the cutting blade 30 and the upper surface 840 of the rotating disk 832 and, consequently, the thickness of food items being processed by the food processor 810.
Referring now to
The food processor 1110 has a base 812 that houses a motor 814 and a control unit. Under the control of the control unit, the motor 814 drives a cutting assembly 816 to cut food items such as cheeses, meats, fruits, and vegetables. The base 812 also includes one or more buttons, switches, dials, or other types of controls 818. A user operates the controls 818 to control the operation of the motor 814 and hence the food processor 1110. For example, one of the controls 818 may be operable to turn the motor 814 on and off while another control 818 may change the motor's speed.
As will be understood by those skilled in the art, the control unit may comprise analog and/or digital circuitry to process electrical signals received from the motor 814 (or other components of the food processor 1110) and provide electrical control signals to the motor or other components of the food processor 1110. For example, the control unit may be embodied as a microcontroller that executes firmware routines to control the operation of the food processor 1110.
The food processor 1110 also includes a removable receptacle or bowl 820 secured to the base 812, and the bowl 820 has a removable lid 822 secured to its upper peripheral edge. Collectively, the lid 822 and the bowl 820 define a processing chamber 826 where food items are processed by the cutting assembly 816.
As shown in
The food processor 1110 also includes a thickness adjustment assembly 1142, which is operable by a user to vary the cutting thickness of the food processor 810 while the cutting assembly 816 is driven by the motor 814, thereby creating thicker or thinner pieces of cut food items during a cutting operation. Like the thickness adjustment assembly 842 of the embodiment of
In other embodiments, the adjustment assembly may include other electromechanical components such that the user may adjust the cutting thickness at the touch of a button while the cutting assembly 816 is driven by the motor 814. The electromechanical components may include, for example, a small motor that would directly operate a screw-type drive assembly without a gear assembly while the other motor drives the cutting assembly. The electromechanical components may also include control circuitry to process electrical signals received from the second motor and provide electrical control signals to the second motor. For example, the control circuitry may be embodied as a microcontroller that executes firmware routines to control the operation the second motor to adjust the cutting thickness of the cutting assembly. Additional controls or buttons to control the operation of the second motor may be added to the food processor.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such an illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
For example, while food processor 810 is herein illustrated as a conventional domestic food processor, the features and aspects disclosed herein can also be implemented in other types of food processing devices such as automatic food choppers, slicers, dicers, ice shavers and the like. Additionally, while the cutting assembly 816 was illustratively embodied as an adjustable slicing disk attachment, the concept of an adjustable cutting assembly 816 can also be implemented with other cutting attachments, such as, for example, a shredding disk, grate/shaving disk, julienne disk, and the like.
It will also be appreciated that in other embodiments the threaded sleeves 940, 942 of the lift device 886 may be replaced with a series of ramp structures or cams that slide relative to one another to change the position of the rotating disk 832 relative to the cutting blade 830. Additionally, it will also be appreciated that in other embodiments the rotating disk may be vertically fixed and the cutting blade may be configured to move relative to the rotating disk to change the cutting thickness.
Other embodiments of a food processor are shown in greater detail in
Referring now to
As shown in
The removable lid 1228 is configured to be secured to the rim 1222 of the bowl 820. In that way, the removable lid 1228 and the bowl 820 cooperate to define the processing chamber 826. The lid 1228 also has a feed tube 824 formed thereon through which food items such as fruits and vegetables may be inserted into the bowl 820 to be processed by the food processor 810. The lid 1228 of the food processor 1210 includes a shell 1230, and the feed tube 824 extends upwardly from the outer surface 1234 of the shell 1230. The shell 1230 has a sleeve 1236 that extends downwardly from an inner surface 1238 thereof. The sleeve 1236 has an opening 1240 defined in a lower end 1242, and an inner wall 1244 that extends from the opening 1240 to define an aperture 1246 in the sleeve 1236.
As described above, the cutting assembly 1216 of the food processor 1210 is driven by the motor 814 to cut food items. The motor 814 includes an output shaft 850 extending upwardly from the base 812. The output shaft 850 is coupled to a drive stem 1252, which is in turn configured to be secured to the cutting assembly 1216. The cutting assembly 1216 includes a rotating disk 1232 and a blade assembly 1256, and the blade assembly 1256 includes a cutting blade 830 that is secured to a blade carrier 1248. The blade carrier 1248 has a central shaft 1254 and a mounting arm 862 that extends outwardly from the central shaft 1254. The cutting blade 830 is secured to the upper surface of the mounting arm 862 via a number of fasteners 864. Like the embodiments of
The central shaft 1254 of the blade carrier 1248 has a socket 1258 formed in its lower end, and the drive stem 1252 has an upper end 1260 that is keyed to match the configuration of the socket 1258. In the illustrative embodiment, the upper end 1260 includes two flat surfaces (not shown) connected at each end by a curved surface (not shown), and the socket 1258 has a corresponding geometric shape that is sized to receive the upper end 1260 of the drive stem 1252. When the cutting assembly 1216 is seated on the drive stem 1252, as shown in
It should be appreciated that in other embodiments the arrangement of the socket and keyed end may be reversed, with the keyed end being formed on the central shaft 1254 and the socket being defined in the drive stem 1252. It should also be appreciated that in other embodiments other methods of attachment may be used to secure the drive stem to the cutting assembly.
As shown in
The rotating disk 1232 of the cutting assembly 1216 includes a central hub 1270, a planar body 872 extending radially outward the central hub 1270, and a rim 874 extending upwardly from the outer perimeter of the planar body 872. The hub 1270 of the rotating disk 1232 has a sidewall 1276 that defines a passageway 1278 extending through the hub 1270. As shown in
The food processor 1210 also includes a thickness adjustment assembly 842, which is operable to move the rotating disk 1232 relative to the cutting blade 830. The adjustment assembly 842 includes a two-piece adaptor 884, a lift device 886 supporting the adaptor 884 and the rotating disk 1232, and a gear assembly 888 positioned in the base 812. The lift device 886 is operable to move the adaptor 884 (and hence rotating disk 1232) upwardly and downwardly relative to the base 812 of the food processor 1210, and the gear assembly 888 is configured to operate the lift device 886. As in the embodiment described above in regard to
As shown in
The upper shaft 890 of the adaptor 884 also includes an inner wall 906 that defines a passageway 908 through the body 894. When assembled with the base 812 and the cutting assembly 1216, the upper shaft 890 is positioned over the drive stem 1252 and the lower end of the central shaft 1254 of the blade assembly 1256 such that the stem 1252 and the shaft 1254 are received in the passageway 808 of the upper shaft 890.
As shown in
The sleeve 922 of the biasing mechanism 920 includes an upper rim 924 that contacts the lower surface 926 of the central shaft 1254 of the blade assembly 856 when the upper shaft 890 is secured to the rotating disk 832. A flange 928 extends outwardly from the upper rim 924 of the sleeve 922. Similarly, the inner wall 906 of the upper shaft 890 includes an inner flange 930 extending inwardly into the passageway 908. A biasing element, such as a spring 932, is positioned between the flanges 928, 930.
To assemble the food processor 1210 for use, the user may operate the thickness adjustment assembly 842 to position the lift device 886 in a position corresponding to the minimal cutting thickness, as shown in
The user may secure the upper shaft 890 of the adaptor 884 to the hub 1270 of the rotating disk 1232. To do so, the user may align the cutting assembly 1216 with the drive stem 1252 and advance the cutting assembly 1216 downward so that the drive stem 1252 enters the socket 1258 defined in the central shaft 1254 of the blade carrier 1248. The user may continue to advance the cutting assembly 1216 downward until the tabs 900 of the adaptor 884 are received in the slots 902 defined in the hub 1270, as shown in
The user may attach the lid 1228 to the upper rim 1222 of the bowl 820. To do so, the user aligns the sleeve 1234 of the lid 1228 with the tip 1268 of the center rod 1262 of the drive stem 1252. The user then advances the lid 1228 downward such that the lower end 1242 of the sleeve 1234 engages the upper end 1260 of the blade carrier 1248. As the user continues to advance the lid 1228 downward, the bias exerted by the spring 932 is overcome, and the cutting blade 830 is moved downward such that the distance D defined between the cutting edge 838 of the cutting blade 830 and the upper surface 840 of the rotating disk 832 is decreased. As shown in
It should be appreciated that the user may also attach the upper shaft 890 of the adaptor 884 to the cutting assembly 1216 prior to attaching the assembly to the lower shaft 892 of the adaptor 884. Additionally, it should also be appreciated that the food processor 1210 may be assembled with the lift device 886 in a position corresponding to any cutting thickness, including, for example, the maximum cutting thickness, rather than the minimal cutting thickness as shown in the illustrative embodiment.
Referring now to
The base 1412 houses a motor 814 and a control unit. A bowl 820 may be secured to the base 1412, and a lid (not shown) may be secured to the bowl 820. Collectively, the lid and the bowl 820 define a processing chamber 826. Under the control of the control unit, the motor 814 drives a cutting assembly, such as, for example, the cutting assembly 816, which was described above in reference to
The motor 814 includes an output shaft 850 extending upwardly from the base 812. The output shaft 850 is coupled to a drive stem (not shown), which is in turn configured to be secured to the cutting assembly. As described above in reference to
The thickness adjustment assembly 1442, like the adjustment assembly 842 of
The adjustment assembly 1442 also includes a gear assembly 1488 is positioned in the base 1412. Similar to the gear assembly 888 described above in reference to
The lift device 886 of the adjustment assembly 1442 includes a screw-type drive assembly that may be operated to adjust the position of the rotating disk of the cutting assembly relative to the base 812. As described above, it should be appreciated that in other embodiments the lift device may take the form of, for example, a series of ramp structures or cams that slide relative to one another to change the cutting thickness of the cutting assembly. The screw-type drive assembly includes an internally-threaded upper sleeve 940 that threadingly engages an externally-threaded lower sleeve (not shown) such that the upper sleeve 940 may be moved upwardly or downwardly relative to the base 812 by rotating the upper sleeve 940. For example, counter-clockwise rotation of the upper sleeve 940 may cause downward movement of the upper sleeve 940, while clockwise rotation of the upper sleeve 940 may cause upward movement of the upper sleeve 940.
As shown in
As shown in
The guide gear 972 of the gear assembly 1488 has a body 982 configured to be rotatably coupled to the platform 964. The body 982 of the gear 972 has a plurality of teeth 976 defined on an outer surface 980 thereof. A number of the teeth 1496 of the drive gear 1490 are interdigitated with a number of the teeth 976 of the guide gear 972 such that rotation of the drive gear 1490 causes rotation of the guide gear 972.
The upper sleeve 940 of the lift device 886 is movably coupled to the guide gear 972. The body 982 of the guide gear 972 includes an opening 984 and an inner wall 188 extending downwardly from the opening 984. A plurality of splines 992 extend inwardly from the inner wall 988 of the gear 972. The upper sleeve 940 of the lift device 886 includes an outer surface 994 that has a plurality of grooves 996 defined therein, and each groove 996 is sized to receive one of the splines 992 of the gear 972, thereby coupling the sleeve 940 to the guide gear 972. As such, rotation of the guide gear 972 causes rotation of the upper sleeve 940 relative to the lower sleeve, which results in the sleeve 940 translating upwardly or downwardly relative to the base 1412.
As described above, the adjustment assembly 1442 includes a thumbwheel 1446 that is configured to operate the gear assembly 1288 (and hence the lift device 886) to change the thickness of the food items produced by the food processor. In the illustrative embodiment, the thumbwheel 1446 includes a grip 1500 defined on a portion of the outer surface 1498 of the drive gear 1490. As shown in
As shown in
In use, a user operates the controls 818 to energize the motor 814 to rotate the output shaft 850. When the cutting assembly is secured the output shaft 850 via the drive stem, rotation of the output shaft 850 causes rotation of the cutting assembly. While the motor 814 is energized, the user may advance food items into the processing chamber 826 to be cut by the rotating cutting assembly.
If the user desires to change the cutting thickness during the cutting operation, the user may grasp the grip 1500 and rotate the thumbwheel 1446. As described above, rotation of the grip 1500 causes rotation of the drive gear 1490. As the drive gear 1490 is rotated, the guide gear 972 is also rotated, which causes the upper sleeve 940 of the lift device 886 to rotate and translate upwardly or downwardly relative to the base 1412. As described above, the vertical movement of the upper sleeve 940 moves the adaptor 884 and the rotating disk relative to the cutting blade and the base 1412 while the cutting blade remains fixed vertically. In that way, the thickness of food items cut by the cutting assembly may be adjusted while the cutting assembly is driven by the motor 814.
Referring now to
Under the control of the control unit, the motor 814 drives a cutting assembly 816 to cut food items such as cheeses, meats, fruits, and vegetables in the processing chamber 826. In other embodiments, the food processor 1510 may include another cutting assembly, such as, for example, the cutting assembly 1416, which was described above in reference to
The cutting assembly 816 of the food processor 1510 is driven by the motor 814 to cut food items. The motor 814 includes an output shaft 850 extending upwardly from the base 812. The output shaft 850 is coupled to a drive stem 852, which is in turn configured to be secured to the cutting assembly 816. As described above in reference to
The food processor 1510 includes another embodiment of a thickness adjustment assembly (hereinafter adjustment assembly 1542) that is operable by a user to vary the cutting thickness of the cutting assembly 816 during a cutting operation. The adjustment assembly 1542 includes a user-operated control device 1544 that is located outside of the processing chamber 826 of the food processor 1510. In the illustrative embodiment of
The thickness adjustment assembly 1542 also includes a two-piece adaptor 884 that is coupled to the cutting assembly 816, as shown in
The lift device 886 of the adjustment assembly 1542 includes a screw-type drive assembly that may be operated to adjust the position of the rotating disk of the cutting assembly relative to the base 812. The screw-type drive assembly includes an internally-threaded upper sleeve 940 (see
As shown in
As shown in
The worm gear 1596 of the gear assembly 1588 has a body 1598 that is rotatably coupled to the base 1512. The body 1598 of the gear 1596 has a plurality of teeth 1602 defined thereon. The screw 1594 of the drive gear 1590 also includes a plurality of teeth 1606 that are interdigitated with a number of the teeth 1602 of the worm gear 1596. As a result, rotation of the drive gear 1490 causes rotation of the worm gear 1596.
The upper sleeve 940 of the lift device 886 is movably coupled to the worm gear 1596. As shown in
The gear assembly 1588 also includes a drive shaft 1510 connected to the screw 1594. The shaft 1510 has an external gear, such as, for example, a spur gear 1512 attached at an end 1514 thereof. As shown in
In use, a user may operate the controls 818 to energize the motor 814 to rotate the output shaft 850. Because the cutting assembly 816 is secured the output shaft 850 via the drive stem 852, rotation of the output shaft 850 causes rotation of the cutting assembly 816. While the motor 814 is energized, the user may advance food items into the processing chamber 826 to be cut by the rotating cutting assembly.
If the user desires to change the cutting thickness during the cutting operation, a user may grasp the grip 1552 of the control knob 1546 and rotate the control knob 1546 clockwise or counter-clockwise while the cutting assembly 816 is driven by the motor 814. As the control knob 1546 is rotated, the spur gear 1620 on the shaft 1548 acts on the spur gear 1512 of the drive gear 1590 to rotate the drive gear 1590 about its longitudinal axis 1626. Rotation of the drive gear 1590 causes the screw 1594 to act on the worm gear 1596, which results in rotation of the worm gear 1596. As described above, rotation of the worm gear 1596 causes rotation of the upper sleeve 940, and the sleeve 940 (and hence the adaptor 884 and the rotating disk 832) translates upwardly or downwardly relative to the base 1512. In that way, the distance D defined between a cutting edge 838 of a cutting blade 830 and an upper surface 840 of the rotating disk 832 of the cutting assembly 816 may be changed, resulting in thicker or thinner food items.
It should be appreciated that the food processor 1510 may include one or more position markings that correspond to preset cutting positions for the cutting assembly 816. It should also be appreciated that the food processor 1510, like the food processor 810 described above in regard to
Similar to the gear assembly 1588, the gear assembly 1688 is configured to operate the lift device 886. The gear assembly 1688 is positioned in the compartment 960 of the base 1512, and the gear assembly 1688 includes a guide gear 1690, a rack gear 1692, and a pinion gear 1694 that are movably coupled to the base 1512. The guide gear 1690 of the gear assembly 1688 has a body 982 configured to be rotatably coupled to the base 1512. The body 982 of the gear 1590 has a plurality of teeth 976 defined on an outer surface 980 thereof.
As shown in
As described above, the external control device 1544 of the food processor 1510 includes a control knob 1546 and a shaft 1548 extending inwardly from the control knob 1546 into the base 1512. The shaft 1548 has the pinion gear 1694 of the gear assembly 1688 secured at an end 1622 thereof. The pinion gear 1694 is an external gear that has a plurality of teeth 1696 defined on an outer surface thereof.
The pinion gear 1694 of the gear assembly 1688 meshes with the rack gear 1692. The rack gear 1692 includes a rectangular body 1700 that is configured to slide along a longitudinal axis 1702. The rack gear 1692 has a plurality of teeth 1704 defined on one side 1706 of the body 1700 and another plurality of teeth 1708 defined on a bottom side 1810. As shown in
In use, while the cutting assembly is driven by the motor 814, a user may grasp the grip 1552 of the control knob 1546 and rotate the control knob 1546 clockwise or counter-clockwise while the cutting assembly 816 is driven by the motor 814. As the control knob 1546 is rotated, the pinion gear 1594 of the gear assembly 1688 is rotated. Rotation of the pinion gear 1694 causes the rack gear 1692 to slide along the axis 1702 and thereby rotate the guide gear 1690. As described above, rotation of the guide gear 1690 causes rotation of the upper sleeve 940, and the sleeve 940 (and hence the adaptor 884 and the rotating disk 832) translates upwardly or downwardly relative to the base 1512. In that way, the distance D defined between a cutting edge 838 of a cutting blade 830 and an upper surface 840 of the rotating disk 832 of the cutting assembly 816 may be changed, resulting in thicker or thinner food items.
Referring now to
The base 1812 of the food processor 1810 houses a motor 814 and a control unit. Under the control of the control unit, the motor 814 drives a cutting assembly 816 to cut food items such as cheeses, meats, fruits, and vegetables. The base 1812 also includes one or more buttons, switches, dials, or other types of controls 818. A user operates the controls 818 to control the operation of the motor 814 and hence the food processor 1810.
The removable receptacle or bowl 1820 is secured to the base 1812 and has a removable lid 822 secured thereto. The bowl 1820 has an upper rim 1822 and an inner wall 1824 that extends downwardly from the upper rim 1822 to define part of a processing chamber 826 where food items may be processed by the cutting assembly 816. The removable lid 822 is secured to the rim 1822 of the bowl 1820. In that way, the removable lid 822 and the bowl 1820 cooperate to define the processing chamber 826.
The bowl 1820 of the food processor 1810 has a lower rim 1826 that is positioned below the processing chamber 826. The strip 1846 of the control device 1844 is attached to the lower rim 1826, and is configured to rotate relative to the lower rim 1826. In the illustrative embodiment, a portion of the strip 1846 is received in a track (not shown) defined in the lower rim 1826 such that the strip 1846 is rotatably coupled to the bowl 1820. It should be appreciated that in other embodiments the strip 1846 may be secured to the bowl 1820 by any combination of pins, tabs, slots, or openings that permit the strip 1846 to rotate relative to the bowl 1820. It should also be appreciated that in other embodiments the control strip may be rotatably coupled to the base rather than the bowl or may be a separate component.
The cutting assembly 816 of the food processor 1810 is driven by the motor 814 to cut food items. The motor 814 includes an output shaft 850 extending upwardly from the base 812. The output shaft 850 is coupled to a drive stem 852, which is in turn configured to be secured to the cutting assembly 816. As described above in reference to
As shown in
The lift device 886 of the adjustment assembly 1842 includes a screw-type drive assembly that may be operated to adjust the position of the rotating disk of the cutting assembly relative to the base 1812. The screw-type drive assembly includes an internally-threaded upper sleeve 940 that threadingly engages an externally-threaded lower sleeve (not shown) such that the upper sleeve 940 may be moved upwardly or downwardly relative to the base 1812 by rotating the upper sleeve 940.
As shown in
As shown in
The guide gear 972 of the gear assembly 1888 has a body 982 that is configured to be rotatably coupled to the platform 964. The body 982 of the gear 972 has a plurality of teeth 976 defined on an outer surface 980 thereof. A number of the teeth 1976 of the drive gear 1970 are interdigitated with a number of the teeth 976 of the guide gear 972 such that rotation of the drive gear 1970 causes rotation of the guide gear 972.
The upper sleeve 940 of the lift device 886 is movably coupled to the guide gear 972. The body 982 of the guide gear 972 includes an opening 984 defined in an upper surface 986 and an inner wall 988 extending downwardly from the opening 984. A plurality of splines 992 extend inwardly from the inner wall 988 of the gear 972. The upper sleeve 940 of the lift device 886 includes an outer surface 994 that has a plurality of grooves 996 defined therein, and each groove 996 is sized to receive one of the splines 992 of the gear 972, thereby coupling the sleeve 940 to the guide gear 972. As such, rotation of the guide gear 972 causes the rotation of the upper sleeve 940 relative to the lower sleeve 942, which results in the sleeve 940 translating upwardly or downwardly relative to the base 1912.
As shown in
In use, a user may operate the controls 818 to energize the motor 814 to rotate the output shaft 850. Because the cutting assembly 816 is secured the output shaft 850 via the drive stem 852, rotation of the output shaft 850 causes rotation of the cutting assembly. While the motor 814 is energized, the user may advance food items into the processing chamber 826 to be cut by the rotating cutting assembly.
To adjust the cutting thickness while the cutting assembly 816 is driven by the motor 814, the user may grasp the grip 1848 to rotate the control strip 1846. The control strip 1046 acts on the drive gear 1970 and thereby causes the drive gear 1970 to begin rotating. The rotation of the drive gear 1970 causes the rotation of the guide gear 972, which results in the upper sleeve 940 of the lift device 886 to rotate and translate upwardly or downwardly relative to the base 1812. As described above, the vertical movement of the upper sleeve 940 moves the adaptor 884 and the rotating disk 832 relative to the base 1412 while the cutting blade 830 remains fixed vertically. In that way, the thickness of food items cut by the cutting assembly may be adjusted while the cutting assembly is driven by the motor 814.
It should be appreciated that the food processor 1810 may include a locking mechanism similar to the locking mechanism 1020 described above in reference to
Referring now to
The base 2012, like the base 812 described above in reference to
The base 2012 of the food processor 2010 includes one or more buttons, switches, dials, or other types of controls 818. A user operates the controls 818 to control the operation of the motor 814 and hence the food processor 2010. The motor 814 includes an output shaft 850 that is configured to be coupled to a drive stem (not shown), which is in turn configured to be secured to the cutting assembly. In that way, driving force generated by the motor 814 may be transferred to the cutting assembly. As shown in
As shown in
The bowl 2020 also includes a lower wall 2064 that is positioned below the processing chamber 826. The lower wall 2064 and the bottom wall 2062 define a lower chamber 2066 that is sized to receive the mounting platform 2050 of the base 2012. The bowl 2020 has a handle 2068 that facilitates placement of the bowl 2020 on the base 2012, and the handle 2068 is received in an opening 2070 defined in the lower wall 2064. The handle 2068 has an arm 2072 that extends inwardly from the lower wall 2064 to an end 2074. As shown in
Returning to
The thickness adjustment assembly 2042, like the adjustment assembly 842 of
The adjustment assembly 2042 of the food processor 2010 also includes a gear assembly 2188 positioned in the base 2012 Similar to the gear assembly 888 described above in reference to
The lift device 886 of the adjustment assembly 2042 includes a screw-type drive assembly that may be operated to adjust the position of the rotating disk of the cutting assembly relative to the cutting blade and to the base 812. The screw-type drive assembly includes an internally-threaded upper sleeve 940 that threadingly engages an externally-threaded lower sleeve (not shown) such that the upper sleeve 940 may be moved upwardly or downwardly relative to the base 2012 by rotating the upper sleeve 940.
As shown in
As shown in
The guide gear 972 of the gear assembly 2188 has a body 982 configured to be rotatably coupled to the base 2012. The body 982 of the gear 972 has a plurality of teeth 976 defined on an outer surface 980 thereof. A number of the teeth 2194 of the drive gear 2190 are interdigitated with a number of the teeth 976 of the guide gear 972 such that rotation of the drive gear 2190 causes rotation of the guide gear 972.
As in the embodiment of
As shown in
In use, a user may align the arm 2072 of the bowl 2020 with the opening 2080 of the base 2012. The bowl 2020 may be advanced downward such that the arm 2072 is received in the pocket 2086 and the lower wall 2064 of the bowl 2020 is advanced into contact with the rim surface 2054 of the base 2012. When the arm 2072 is positioned in the pocket 2086, the teeth 2076 of the arm 2072 are spaced apart from and not in contact with the teeth 2194 of the drive gear 2190. The user may grasp the handle 2068 and rotate the bowl 2020 in the direction indicated by arrow 2198 so that the arm 2072 is advanced into the track 2088. As the bowl 2020 is rotated, the teeth 2076 of the arm 2072 mesh with a number of the teeth 2194 of the drive gear 2190, thereby rotating the drive gear 2190. The rotation of the drive gear 2190 causes the guide gear 972 to rotate. As described above, rotation of the guide gear 972 causes downward movement of the upper sleeve 940. When the bowl 1220 is rotated to one of the preset positions, the convex lower end 2208 of the pin 2204 is received the notch 2206 corresponding to that position, and further movement of the bowl 2020 is inhibited.
A user may operate the controls 818 to energize the motor 814 to rotate the output shaft 850. Because the cutting assembly is secured the output shaft 850 via the drive stem, rotation of the output shaft 850 causes rotation of the cutting assembly. While the motor 814 is energized, the user may advance food items into the processing chamber 826 to be cut by the rotating cutting assembly.
If the user desires to change the cutting thickness during the cutting operation, the user may lift the bowl 2020 to remove the pin 2204 from that notch 2206 and then rotate the bowl 2020 to the next position. As the bowl 2020 is rotated, the teeth 2076 of the arm 2072 mesh with a number of the teeth 2194 of the drive gear 2190, thereby rotating the drive gear 2190. The rotation of the drive gear 2190 causes the guide gear 972 to rotate. As described above, rotation of the guide gear 972 causes movement of the upper sleeve 940 upwardly or downwardly and changes the thickness of food items being processed by the food processor 2010.
Referring now to
The base 2212 houses a motor 814 and a control unit (not shown). Under the control of the control unit, the motor 814 drives the cutting assembly 1216 to cut food items such as cheeses, meats, fruits, and vegetables. The bowl 2220 is rotatably coupled to the base 812. The bowl 820 has an upper rim 2224 and an inner wall 2226 that extends downwardly from the upper rim 2224 to a bottom wall 2228 to define part of a processing chamber 2230 where food items may be processed by the cutting assembly 1216. The removable lid 1228 is secured to the rim 2224 of the bowl 2220. In that way, the removable lid 1228 and the bowl 2220 cooperate to define the processing chamber 2230.
As shown in
As described above, the cutting assembly 1216 of the food processor 2210 is driven by the motor 814 to cut food items. The motor 814 includes an output shaft 850 extending upwardly from the base 2212. The output shaft 850 is coupled to a drive stem 1252, which is in turn configured to be secured to the cutting assembly 1216. As described above in reference to
The food processor 2210 also includes a thickness adjustment assembly 2242, which is operable to move the rotating disk 1232 relative to the cutting blade 830. The adjustment assembly 2242 includes a two-piece adaptor 884, a lift device 886 supporting the adaptor 884 and the rotating disk 1232, and a gear assembly 2288 attached to the base 2212. The lift device 886 is operable to move the adaptor 884 (and hence rotating disk 1232) upwardly and downwardly relative to the base 2212 of the food processor 2210, and the gear assembly 2288 is configured to operate the lift device 886.
The lift device 886 of the adjustment assembly 2242 includes a screw-type drive assembly that may be operated to adjust the position of the rotating disk of the cutting assembly relative to the base 812. The screw-type drive assembly includes an internally-threaded upper sleeve 940 that threadingly engages an externally-threaded lower sleeve 942 such that the upper sleeve 940 may be moved upwardly or downwardly relative to the base 2212 by rotating the upper sleeve 940.
As shown in
The gear assembly 2288 of the adjustment assembly 2242 includes a guide gear 2292 that is positioned on a top surface 2294 of the base 2212. The upper sleeve 940 of the lift device 886 is movably coupled to the guide gear 2292. Like the embodiment of
The guide gear 2292 has a body 2296 rotatably coupled to the base 2212. The body 2296 has a plurality of teeth 2298 defined on an outer surface thereof. A number of the teeth 2298 of the guide gear 2292 are interdigitated with a number of the teeth of the bowl 2220 when the bowl 2220 is positioned on the base 2212 such that rotation of the bowl 2220 causes rotation of the guide gear 2292.
In use, a user may position the bowl 2220 over the output shaft 850 and advance the bowl 2220 into contact with the base 2212. The teeth of the bowl 2220 mesh with the teeth 2298 of the guide gear 2292. The user may grasp the bowl handle (not shown) and rotate the bowl 2220 about the axis 2222. As the bowl 2220 is rotated, the guide gear 2292 is rotated. As described above, rotation of the guide gear 2292 causes downward movement of the upper sleeve 940 and hence movement of the rotating disk 1232 relative to the cutting blade 830.
A user may operate the controls 818 to energize the motor 814 to rotate the output shaft 850. Because the cutting assembly 1216 is secured on the output shaft 850 via the drive stem 1252, rotation of the output shaft 850 causes rotation of the cutting assembly. While the motor 814 is energized, the user may advance food items into the processing chamber 826 to be cut by the rotating cutting assembly 1216. While the cutting assembly 1216 is driven by the motor 814, the user may rotate the bowl 2220 to move the rotating disk 1232 relative to the cutting blade 30, thereby changing the cutting thickness of the cutting assembly 1216.
It should be appreciated that the food processor 2210 or any of the food processors described above may include a locking mechanism configured to inhibit movement of the bowl relative to the base and thereby maintain the cutting assembly at a particular cutting position. It should also be appreciated that the gear assembly may include other gear arrangements to translate the rotation of the bowl into movement of the rotating disk or the cutting blade to adjust the cutting thickness of the cutting assembly.
Additionally, as described above, the adjustment assemblies may include electromechanical components such that the user may adjust the cutting thickness at the touch of a button while the cutting assembly is driven by the motor. It should therefore be appreciated that any of the embodiments described above in which the user manually adjusts the cutting thickness of the cutting assembly (e.g., the embodiments of
There are a plurality of advantages of the present disclosure arising from the various features of the method, apparatus, and system described herein. It will be noted that alternative embodiments of the method, apparatus, and system of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the method, apparatus, and system that incorporate one or more of the features of the present invention and fall within the spirit and scope of the present disclosure as defined by the appended claims.
The present application is a Continuation-in-Part of U.S. patent application Ser. No. 14/220,203 entitled, now U.S. Pat. No. 10,105,864, “FOOD PROCESSOR WITH A LOCKABLE ADJUSTABLE BLADE ASSEMBLY,” filed Mar. 20, 2014, which is a divisional of U.S. patent application Ser. No. 12/769,746, now U.S. Pat. No. 8,720,325, entitled “FOOD PROCESSOR WITH A LOCKABLE ADJUSTABLE BLADE ASSEMBLY,” filed on Apr. 29, 2010. The present application is also a Continuation-in-Part of U.S. patent application Ser. No. 15/000,712 entitled “FOOD PROCESSING DEVICE WITH AN EXTERNALLY OPERATED ADJUSTMENT MECHANISM,” filed Jan. 19, 2016, which is a divisional of U.S. patent application Ser. No. 14/000,416, now U.S. Pat. No. 9,265,381, entitled “FOOD PROCESSING DEVICE WITH AN EXTERNALLY OPERATED ADJUSTMENT MECHANISM,” filed Sep. 23, 2013, which is a National Stage Entry of PCT/CN2011/001487 entitled “A FOOD PROCESSING DEVICE WITH AN EXTERNALLY OPERATED ADJUSTMENT MECHANISM,” filed on Sep. 1, 2011. The present application is also a Continuation-in-Part of U.S. patent application Ser. No. 14/000,413, now U.S. Pat. No. 9,655,474, entitled “FOOD PROCESSING DEVICE WITH AN EXTERNALLY OPERATED ADJUSTMENT MECHANISM,” filed on Sep. 23, 2013, which is a National Stage Entry of PCT/CN2011/000311, entitled “A FOOD PROCESSING DEVICE WITH AN EXTERNALLY OPERATED ADJUSTMENT MECHANISM,” filed on Feb. 25, 2011. Each of the above-identified applications are hereby incorporated by reference. Cross-reference is made to U.S. Pat. No. 8,985,010, entitled “Food Processor With Cutting Blade Assembly Support,” filed Apr. 29, 2010, and U.S. Pat. No. 8,439,285, entitled “Adjustable Food Processor With Guide Ramp,” filed Apr. 29, 2010, each of which is assigned to the same assignee as the present application, each of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1489695 | Burns et al. | Apr 1924 | A |
1628941 | White | May 1927 | A |
1826242 | Dehuff | Oct 1931 | A |
2001036 | Prince | May 1935 | A |
2070545 | Gilbert | Feb 1937 | A |
2074162 | Bowman | Mar 1937 | A |
2146710 | Bloomfield | Feb 1939 | A |
2189199 | Criner | Feb 1940 | A |
2284155 | Landgraf | May 1942 | A |
2304476 | Poplawski | Dec 1942 | A |
2305288 | Cavalleri | Dec 1942 | A |
2409067 | Reed | Oct 1946 | A |
2480717 | Dodegge | Aug 1949 | A |
2510934 | Schildknecht | Jun 1950 | A |
2530455 | Forss | Nov 1950 | A |
2537852 | Peterson | Jan 1951 | A |
2585255 | Kochner et al. | Feb 1952 | A |
2664002 | Anderson | Dec 1953 | A |
2710098 | Tilton | Jun 1955 | A |
2722114 | Kochner | Nov 1955 | A |
D176257 | Hill et al. | Dec 1955 | S |
2733052 | Luther | Jan 1956 | A |
2794627 | Rodwick | Jun 1957 | A |
D181541 | Madl et al. | Nov 1957 | S |
2867420 | Pots | Jan 1959 | A |
2905452 | Appleton | Sep 1959 | A |
D187684 | Hauser et al. | Apr 1960 | S |
2946299 | Clifford | Jul 1960 | A |
2992715 | Blachly | Jul 1961 | A |
3171636 | Barlow et al. | Mar 1965 | A |
3176968 | Appleton | Apr 1965 | A |
3180627 | Belonga | Apr 1965 | A |
3199860 | Moberg | Aug 1965 | A |
3220450 | Aronson, II et al. | Nov 1965 | A |
3373975 | Congdon | Mar 1968 | A |
3542238 | Uhi | May 1968 | A |
3493215 | Edwards et al. | Feb 1970 | A |
3502848 | Fink | Mar 1970 | A |
3550657 | Swanke | Dec 1970 | A |
3612126 | Emmons et al. | Oct 1971 | A |
3623525 | Kieves | Nov 1971 | A |
3635147 | Lee | Jan 1972 | A |
3704736 | Pratley | Dec 1972 | A |
3738616 | Copeland et al. | Jun 1973 | A |
3783727 | Brignard et al. | Jan 1974 | A |
3784118 | Hurwitz | Jan 1974 | A |
3881705 | Greenspan | Jun 1975 | A |
3901484 | Ernster | Aug 1975 | A |
3960369 | Sommer | Jun 1976 | A |
4078481 | Wunderlin | Mar 1978 | A |
4087053 | Voglesonger | May 1978 | A |
4108054 | Klocker et al. | Aug 1978 | A |
4137834 | Uibel | Feb 1979 | A |
4190208 | Schaeffer et al. | Feb 1980 | A |
4213569 | Amiot | Jul 1980 | A |
4216917 | Clare et al. | Aug 1980 | A |
4234605 | Takeuchi | Nov 1980 | A |
4277181 | Stahly et al. | Jul 1981 | A |
4283979 | Rakocy et al. | Aug 1981 | A |
4337000 | Lehmann | Jun 1982 | A |
4362219 | Carlsson | Dec 1982 | A |
4364525 | McClean | Dec 1982 | A |
4369680 | Williams | Jan 1983 | A |
4371118 | Sontheimer et al. | Feb 1983 | A |
4417506 | Herbst et al. | Nov 1983 | A |
4429624 | Linn | Feb 1984 | A |
4487509 | Boyce | Dec 1984 | A |
4512522 | Williams | Apr 1985 | A |
4560111 | Cavalli | Dec 1985 | A |
4570519 | Motosko, II | Feb 1986 | A |
4624166 | Kreth et al. | Nov 1986 | A |
D287327 | Cavalli | Dec 1986 | S |
4629131 | Podell | Dec 1986 | A |
4649810 | Wong | Mar 1987 | A |
4674690 | Ponikwia et al. | Jun 1987 | A |
4688478 | Williams | Aug 1987 | A |
4693610 | Weiss | Sep 1987 | A |
4706896 | Moon-Kau | Nov 1987 | A |
4714203 | Williams | Dec 1987 | A |
4733589 | Wolff | Mar 1988 | A |
D295012 | Gelber | Apr 1988 | S |
4802407 | Negri et al. | Feb 1989 | A |
4817512 | Vangen | Apr 1989 | A |
4818116 | Pardo | Apr 1989 | A |
4819882 | Stottmann et al. | Apr 1989 | A |
4820054 | Wong | Apr 1989 | A |
4854717 | Crane et al. | Aug 1989 | A |
4877191 | Golob et al. | Oct 1989 | A |
4878627 | Otto | Nov 1989 | A |
4883144 | Haushalter et al. | Nov 1989 | A |
4931345 | Böttger et al. | Jun 1990 | A |
4938125 | Wong | Jul 1990 | A |
4942807 | Wong | Jul 1990 | A |
D310153 | Kaiser | Aug 1990 | S |
4959256 | Piera | Sep 1990 | A |
4959517 | Jump et al. | Sep 1990 | A |
4984512 | Takahashi et al. | Jan 1991 | A |
4998677 | Gallaher | Mar 1991 | A |
5009510 | Pardo | Apr 1991 | A |
5022315 | Bertram et al. | Jun 1991 | A |
5031518 | Bordes | Jul 1991 | A |
5037033 | Stottmann et al. | Aug 1991 | A |
5041324 | Siegling et al. | Aug 1991 | A |
D319950 | Maass | Sep 1991 | S |
5046252 | Ayuta et al. | Sep 1991 | A |
D320716 | Maass | Oct 1991 | S |
5054383 | Cho | Oct 1991 | A |
D322193 | Maass | Dec 1991 | S |
5071077 | Arroubi et al. | Dec 1991 | A |
5074201 | Takeyama et al. | Dec 1991 | A |
5166480 | Böttger et al. | Nov 1992 | A |
5174403 | Geiger | Dec 1992 | A |
5197681 | Liebermann | Mar 1993 | A |
5228381 | Virgilio et al. | Jul 1993 | A |
D339715 | Barrault | Sep 1993 | S |
5272961 | Campbell et al. | Dec 1993 | A |
5289760 | Barradas | Mar 1994 | A |
D347144 | Brady | May 1994 | S |
5329069 | Amsel et al. | Jul 1994 | A |
5363746 | Gordon | Nov 1994 | A |
5402710 | Chen | Apr 1995 | A |
5463937 | Belongia et al. | Nov 1995 | A |
5469782 | Wong | Nov 1995 | A |
5486665 | Le Rouzic | Jan 1996 | A |
5493955 | Belongia et al. | Feb 1996 | A |
5513557 | Chiang | May 1996 | A |
5533797 | Gelber | Jul 1996 | A |
5549386 | Pardo et al. | Aug 1996 | A |
5567049 | Beaudet et al. | Oct 1996 | A |
5577430 | Gunderson et al. | Nov 1996 | A |
D381553 | Candianides | Jul 1997 | S |
D387948 | Leverrier | Dec 1997 | S |
D390416 | Hippen et al. | Feb 1998 | S |
5749285 | Dörner et al. | May 1998 | A |
D394986 | Lallemand | Jun 1998 | S |
5758963 | Xie et al. | Jun 1998 | A |
5768978 | Dörner et al. | Jun 1998 | A |
5771784 | Sham | Jun 1998 | A |
D396990 | Leverrier | Aug 1998 | S |
5794524 | Kemker et al. | Aug 1998 | A |
5799567 | Dörner | Sep 1998 | A |
5816136 | Stallings | Oct 1998 | A |
5819636 | Khashoggi | Oct 1998 | A |
5823675 | Myerly | Oct 1998 | A |
5839356 | Dornbush et al. | Nov 1998 | A |
5852968 | Sundquist | Dec 1998 | A |
D404244 | Jozancy | Jan 1999 | S |
5893319 | Bois | Apr 1999 | A |
5957577 | Dickson et al. | Sep 1999 | A |
6019238 | Kindig et al. | Feb 2000 | A |
6026735 | Waterworth | Feb 2000 | A |
6035563 | Hoefer et al. | Mar 2000 | A |
6035766 | Schirmer | Mar 2000 | A |
D424865 | Crescenzi et al. | May 2000 | S |
6065861 | Chen | May 2000 | A |
D427016 | Kindig et al. | Jun 2000 | S |
6113966 | Belongia et al. | Sep 2000 | A |
D432864 | Kindig et al. | Oct 2000 | S |
6164196 | Deschamps et al. | Dec 2000 | A |
6188046 | Barrow | Feb 2001 | B1 |
6192790 | Balandier | Feb 2001 | B1 |
6193181 | Astegno et al. | Feb 2001 | B1 |
6230612 | Rossi | May 2001 | B1 |
D444995 | Thackray | Jul 2001 | S |
6254019 | Galbreath | Jul 2001 | B1 |
6259068 | Barrow | Jul 2001 | B1 |
6289793 | Hu et al. | Sep 2001 | B1 |
6315226 | Trick et al. | Nov 2001 | B1 |
6318247 | Di Nunzio et al. | Nov 2001 | B1 |
6321641 | Wang | Nov 2001 | B1 |
6350053 | Morin | Feb 2002 | B1 |
6373031 | Barrow | Apr 2002 | B1 |
6382454 | Buffard et al. | May 2002 | B1 |
D466761 | Baerenrodt et al. | Dec 2002 | S |
6527433 | Daniels, Jr. | Mar 2003 | B2 |
6550372 | Sharples | Apr 2003 | B1 |
6551693 | Buffard et al. | Apr 2003 | B1 |
6517908 | Bohannon et al. | Jun 2003 | B1 |
6572254 | Marriere et al. | Jun 2003 | B1 |
6596380 | Buffard et al. | Jul 2003 | B1 |
6609455 | Fouquet | Aug 2003 | B2 |
6616324 | Planca et al. | Sep 2003 | B1 |
6632013 | Wulf et al. | Oct 2003 | B2 |
6637381 | Planca et al. | Oct 2003 | B2 |
6640692 | Hilgers | Nov 2003 | B1 |
D484357 | Seum et al. | Dec 2003 | S |
6655264 | Rossi | Dec 2003 | B2 |
6669359 | Ancona et al. | Dec 2003 | B1 |
D488344 | Seum et al. | Apr 2004 | S |
D488957 | Holderfield et al. | Apr 2004 | S |
6715706 | Planca et al. | Apr 2004 | B1 |
6726353 | Beaudet et al. | Apr 2004 | B1 |
6761326 | Astegno et al. | Jul 2004 | B2 |
6786141 | Tompa et al. | Sep 2004 | B2 |
6805312 | Capp | Oct 2004 | B2 |
6823772 | Payen et al. | Nov 2004 | B2 |
6845707 | Xu et al. | Jan 2005 | B1 |
D502047 | Ledingham et al. | Feb 2005 | S |
D502842 | Hallar | Mar 2005 | S |
6966698 | Daniels, Jr. | Nov 2005 | B2 |
7018091 | Arroubi et al. | Mar 2006 | B2 |
D519314 | Blaise | Apr 2006 | S |
7034477 | Herrada et al. | Apr 2006 | B2 |
D520808 | Beesley et al. | May 2006 | S |
7063009 | Lin | Jun 2006 | B2 |
7069838 | Payen | Jul 2006 | B2 |
D526531 | Drees et al. | Aug 2006 | S |
D528363 | Ulanski et al. | Sep 2006 | S |
D528364 | Kolar et al. | Sep 2006 | S |
D530565 | Grcic | Oct 2006 | S |
D533395 | Drees et al. | Dec 2006 | S |
D547601 | Ting et al. | Jul 2007 | S |
7270156 | Beesley et al. | Sep 2007 | B2 |
D552412 | Steiner | Oct 2007 | S |
D557976 | Olson et al. | Dec 2007 | S |
7314308 | Fallowes et al. | Jan 2008 | B2 |
7318666 | Lin | Jan 2008 | B1 |
7322112 | Boemer | Jan 2008 | B2 |
7325479 | Laigneau et al. | Feb 2008 | B2 |
7328864 | Narai et al. | Feb 2008 | B2 |
7339142 | Pessayre et al. | Mar 2008 | B2 |
7371003 | Hamelin | May 2008 | B2 |
D577257 | Kuan | Sep 2008 | S |
D577537 | Lee | Sep 2008 | S |
D578341 | Picozza et al. | Oct 2008 | S |
7461589 | Sinton | Dec 2008 | B2 |
7481154 | Murat et al. | Jan 2009 | B2 |
D587064 | Mark | Feb 2009 | S |
7487715 | Rossi | Feb 2009 | B2 |
7488515 | Groll | Feb 2009 | B2 |
7495196 | Groll | Feb 2009 | B2 |
D587526 | Barnard et al. | Mar 2009 | S |
D588406 | Ulanski | Mar 2009 | S |
7520663 | Kolar et al. | Apr 2009 | B1 |
D592447 | Blaise | May 2009 | S |
D594697 | Lavy | Jun 2009 | S |
D595087 | Metaxatos et al. | Jun 2009 | S |
7566472 | Coudurier | Jul 2009 | B2 |
7598464 | Deng | Oct 2009 | B2 |
7617766 | Tracy et al. | Nov 2009 | B2 |
D605462 | Picozza et al. | Dec 2009 | S |
7624674 | Chameroy et al. | Dec 2009 | B2 |
7648264 | Breviere et al. | Jan 2010 | B2 |
7669521 | Cartigny et al. | Mar 2010 | B2 |
7681817 | Orent | Mar 2010 | B2 |
7694615 | DiPietro | Apr 2010 | B2 |
D616244 | Thai et al. | May 2010 | S |
D617136 | Bock et al. | Jun 2010 | S |
7753223 | Boozer et al. | Jul 2010 | B2 |
D621656 | Ulanski et al. | Aug 2010 | S |
7775705 | Kozlowski et al. | Aug 2010 | B2 |
7780337 | Peng | Aug 2010 | B2 |
7800022 | Kim | Sep 2010 | B2 |
7827906 | Carter | Nov 2010 | B1 |
7833637 | Tuffe et al. | Nov 2010 | B2 |
D631282 | Ferraby | Jan 2011 | S |
7878702 | Peng | Feb 2011 | B2 |
7878703 | Stephens et al. | Feb 2011 | B2 |
D637862 | Fouquet | May 2011 | S |
D637870 | Bock | May 2011 | S |
7959347 | Pryor, Jr. et al. | Jun 2011 | B2 |
D642858 | Lazzer | Aug 2011 | S |
7993054 | Wulf et al. | Aug 2011 | B2 |
7993694 | Goderiaux et al. | Aug 2011 | B2 |
D644478 | Czach | Sep 2011 | S |
D644480 | Czach et al. | Sep 2011 | S |
8042990 | Pryor, Jr. et al. | Oct 2011 | B2 |
8070010 | Coudurier | Dec 2011 | B2 |
8087603 | Kolar et al. | Jan 2012 | B2 |
8122815 | Wolfe | Feb 2012 | B2 |
8122821 | Sands | Feb 2012 | B2 |
8152083 | Bower et al. | Apr 2012 | B2 |
8161867 | Dutertre et al. | Apr 2012 | B2 |
D662359 | Boozer et al. | Jun 2012 | S |
8210737 | Wong | Jul 2012 | B2 |
8227072 | Le Bris et al. | Jul 2012 | B2 |
D667683 | Czach et al. | Sep 2012 | S |
8287180 | Kolar et al. | Oct 2012 | B2 |
D670531 | Carlson | Nov 2012 | S |
8372496 | Le Bris et al. | Feb 2013 | B2 |
8403555 | Wu | Mar 2013 | B2 |
D683180 | Carlson | May 2013 | S |
8438971 | Thurley | May 2013 | B1 |
8499963 | Muller et al. | Aug 2013 | B2 |
8501289 | Le Bris et al. | Aug 2013 | B2 |
8529120 | Ulanski | Sep 2013 | B2 |
8544381 | Cartigny et al. | Oct 2013 | B2 |
D694572 | Kobos et al. | Dec 2013 | S |
D694573 | Norland et al. | Dec 2013 | S |
D694574 | Norland et al. | Dec 2013 | S |
D694582 | Norland | Dec 2013 | S |
D694583 | Norland | Dec 2013 | S |
8640606 | Wolfe | Feb 2014 | B2 |
8647735 | Le Bris et al. | Feb 2014 | B2 |
D702993 | Lownds | Apr 2014 | S |
8745904 | Paccaud | Jun 2014 | B2 |
8752481 | Williams et al. | Jun 2014 | B2 |
D711682 | Norland et al. | Aug 2014 | S |
8814011 | Ulanski | Aug 2014 | B2 |
8887628 | Cai | Nov 2014 | B2 |
RE45308 | Kolar et al. | Dec 2014 | E |
8901942 | Fergen et al. | Dec 2014 | B2 |
8985488 | Hidalgo Garcia et al. | Mar 2015 | B2 |
D731234 | Weaden et al. | Jun 2015 | S |
D731236 | Yin | Jun 2015 | S |
9049967 | Golino et al. | Jun 2015 | B1 |
RE45655 | Kolar et al. | Aug 2015 | E |
D739679 | Benoit et al. | Sep 2015 | S |
9149065 | Hoare et al. | Oct 2015 | B2 |
9198540 | Carlson | Dec 2015 | B2 |
D747135 | Ha | Jan 2016 | S |
D755004 | Bock et al. | May 2016 | S |
9380913 | Golino | Jul 2016 | B2 |
9474417 | Pryor, Jr. et al. | Oct 2016 | B1 |
D770226 | McConnell et al. | Nov 2016 | S |
D772008 | McConnell et al. | Nov 2016 | S |
D772009 | McConnell et al. | Nov 2016 | S |
9500235 | Kanning | Nov 2016 | B2 |
9545175 | Audette | Jan 2017 | B2 |
D782247 | Kim et al. | Mar 2017 | S |
D783356 | Kim et al. | Apr 2017 | S |
9635981 | Barnard et al. | May 2017 | B2 |
D798109 | Ulanski et al. | Sep 2017 | S |
9750372 | Foxlee et al. | Sep 2017 | B2 |
9775467 | Sapire | Oct 2017 | B2 |
9855535 | Arnett et al. | Jan 2018 | B2 |
20010032856 | Casey | Oct 2001 | A1 |
20020181322 | Brunswick et al. | Dec 2002 | A1 |
20030081498 | Buchsteiner | May 2003 | A1 |
20040001387 | Hallar et al. | Jan 2004 | A1 |
20040065211 | McNair | Apr 2004 | A1 |
20040145965 | Chan et al. | Jul 2004 | A1 |
20040146621 | Kennedy et al. | Jul 2004 | A1 |
20050058018 | Hooper et al. | Mar 2005 | A1 |
20050120888 | Wang | Jun 2005 | A1 |
20050152215 | Stuart et al. | Jul 2005 | A1 |
20050257692 | Marcato | Nov 2005 | A1 |
20060044935 | Benelli et al. | Mar 2006 | A1 |
20060075872 | Wangler | Apr 2006 | A1 |
20060117961 | Guo | Jun 2006 | A1 |
20060150791 | Chase et al. | Jul 2006 | A1 |
20060163396 | Kennedy et al. | Jul 2006 | A1 |
20060254429 | Sinton | Nov 2006 | A1 |
20060286255 | Xu et al. | Dec 2006 | A1 |
20070044621 | Rite et al. | Mar 2007 | A1 |
20070051249 | Obersteiner | Mar 2007 | A1 |
20070209528 | Chang | Sep 2007 | A1 |
20070261523 | Hussey et al. | Nov 2007 | A1 |
20080115677 | Tseng | May 2008 | A1 |
20080156913 | Orent | Jul 2008 | A1 |
20080163768 | Glucksman et al. | Jul 2008 | A1 |
20080213447 | Payen et al. | Sep 2008 | A1 |
20080271609 | Pahl et al. | Nov 2008 | A1 |
20080298172 | Krasznai | Dec 2008 | A1 |
20090090254 | Herren | Apr 2009 | A1 |
20090120301 | Severnak | May 2009 | A1 |
20090139383 | Tsai | Jun 2009 | A1 |
20090158941 | Lee | Jun 2009 | A1 |
20090260523 | Peng | Oct 2009 | A1 |
20090301319 | Bigge et al. | Dec 2009 | A1 |
20090310436 | Huang et al. | Dec 2009 | A1 |
20090314168 | Krasznai | Dec 2009 | A1 |
20100012639 | Merrell et al. | Jan 2010 | A1 |
20100028514 | Goderiaux et al. | Feb 2010 | A1 |
20100107893 | Goodrick-Meech | May 2010 | A1 |
20100116145 | Tracy et al. | May 2010 | A1 |
20100147160 | Oochi | Jun 2010 | A1 |
20100256804 | Freeman | Oct 2010 | A1 |
20100308142 | Krasznai et al. | Dec 2010 | A1 |
20110014342 | Picozza et al. | Jan 2011 | A1 |
20110017750 | Fortkamp | Jan 2011 | A1 |
20110063941 | Seidler et al. | Mar 2011 | A1 |
20110139017 | Beber et al. | Jun 2011 | A1 |
20110185917 | Goderiaux et al. | Aug 2011 | A1 |
20110188340 | Kolar et al. | Aug 2011 | A1 |
20110214574 | Chang | Sep 2011 | A1 |
20110232506 | Cai | Sep 2011 | A1 |
20110248108 | Carriere | Oct 2011 | A1 |
20110265664 | Goncalves et al. | Nov 2011 | A1 |
20120042786 | Fedell | Feb 2012 | A1 |
20120138716 | Taguchi et al. | Jun 2012 | A1 |
20120181363 | Huang | Jul 2012 | A1 |
20120286080 | Sladecek | Nov 2012 | A1 |
20130003490 | Kemker et al. | Jan 2013 | A1 |
20130032038 | Lee et al. | Feb 2013 | A1 |
20130074700 | Cheung | Mar 2013 | A1 |
20130149444 | Le Bris et al. | Jun 2013 | A1 |
20130233181 | Allen et al. | Sep 2013 | A1 |
20130327232 | Charles et al. | Dec 2013 | A1 |
20130334349 | Carden | Dec 2013 | A1 |
20140102951 | Riha et al. | Apr 2014 | A1 |
20140134305 | Wolfe | May 2014 | A1 |
20140217211 | Sanford | Aug 2014 | A1 |
20140263340 | Audette | Sep 2014 | A1 |
20140299691 | Zakowski | Oct 2014 | A1 |
20150000534 | Hager et al. | Jan 2015 | A1 |
20150014227 | Riha, IV et al. | Jan 2015 | A1 |
20150098299 | Sapire | Apr 2015 | A1 |
20150201787 | Holzbauer et al. | Jul 2015 | A1 |
20150238042 | Tonelli et al. | Aug 2015 | A1 |
20150282672 | Baker | Oct 2015 | A1 |
20160035335 | Kolar et al. | Feb 2016 | A1 |
20160256839 | Dickson, Jr. et al. | Sep 2016 | A1 |
20160287011 | Deshayes et al. | Oct 2016 | A1 |
20160287018 | Thomas et al. | Oct 2016 | A1 |
20160296899 | Hoare et al. | Oct 2016 | A1 |
20160331182 | Golino | Nov 2016 | A1 |
20170086623 | Lee | Mar 2017 | A1 |
20170340169 | Brunner | Nov 2017 | A1 |
20180116466 | Pilch et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1115128 | Jul 2003 | CN |
1575716 | Feb 2005 | CN |
1656989 | Aug 2005 | CN |
201101452 | Aug 2008 | CN |
101496699 | Dec 2011 | CN |
21116675 | Oct 1971 | DE |
3644267 | Jul 1988 | DE |
4414824 | Nov 1995 | DE |
4414825 | Nov 1995 | DE |
10226939 | Jan 2003 | DE |
10226940 | Jan 2003 | DE |
10210442 | Sep 2003 | DE |
202004012729 | Feb 2005 | DE |
102005028758 | Jan 2007 | DE |
102008038783 | Feb 2010 | DE |
202010012730 | Dec 2010 | DE |
102009055795 | May 2011 | DE |
202011050875 | Dec 2012 | DE |
102012104639 | Jan 2013 | DE |
102012101775 | Sep 2013 | DE |
0100755 | Feb 1984 | EP |
0244016 | Nov 1987 | EP |
0248490 | Dec 1987 | EP |
0350380 | Jan 1990 | EP |
0556467 | Aug 1993 | EP |
0432615 | Feb 1994 | EP |
0584140 | Mar 1994 | EP |
0699409 | Mar 1996 | EP |
072356 | Jul 1996 | EP |
0893087 | Jan 1999 | EP |
0949878 | Oct 1999 | EP |
0963726 | Dec 1999 | EP |
0966909 | Dec 1999 | EP |
1430824 | Jun 2004 | EP |
1472962 | Nov 2004 | EP |
1479947 | Nov 2004 | EP |
1566130 | Aug 2005 | EP |
1616514 | Jan 2006 | EP |
1647217 | Apr 2006 | EP |
1731068 | Dec 2006 | EP |
1483996 | Oct 2007 | EP |
1922960 | May 2008 | EP |
2071989 | Jun 2009 | EP |
2134221 | Dec 2009 | EP |
2269491 | Jan 2011 | EP |
2326220 | Jun 2011 | EP |
2237710 | Jul 2011 | EP |
2240054 | Jul 2011 | EP |
2355681 | Aug 2011 | EP |
2359696 | Aug 2011 | EP |
2368470 | Sep 2011 | EP |
2394547 | Dec 2011 | EP |
2427088 | Mar 2012 | EP |
2429363 | Mar 2012 | EP |
2434933 | Apr 2012 | EP |
2508110 | Oct 2012 | EP |
2522261 | Nov 2012 | EP |
2529650 | Dec 2012 | EP |
2594175 | May 2013 | EP |
2633791 | Sep 2013 | EP |
2637519 | Sep 2013 | EP |
2640236 | Sep 2013 | EP |
3146875 | Mar 2017 | EP |
2447703 | Aug 1980 | FR |
2500737 | Sep 1982 | FR |
2578159 | Sep 1986 | FR |
2582497 | Dec 1986 | FR |
2602660 | Feb 1988 | FR |
2646074 | Oct 1990 | FR |
2862199 | May 2005 | FR |
2939238 | Jun 2010 | FR |
1264448 | Feb 1972 | GB |
2075626 | Nov 1981 | GB |
2196238 | Apr 1988 | GB |
1153123 | Jun 1989 | JP |
1299522 | Dec 1989 | JP |
4099551 | Mar 1992 | JP |
4099552 | Mar 1992 | JP |
20090011969 | Nov 2009 | KR |
9107862 | May 1991 | WO |
9220269 | Nov 1992 | WO |
9529614 | Nov 1995 | WO |
9529615 | Nov 1995 | WO |
9529617 | Nov 1995 | WO |
9917648 | Apr 1999 | WO |
20000019878 | Apr 2000 | WO |
0174174 | Oct 2001 | WO |
0221986 | Mar 2002 | WO |
200230253 | Apr 2002 | WO |
2003057355 | Jul 2003 | WO |
2005037036 | Apr 2005 | WO |
20060128221 | Dec 2006 | WO |
2008027255 | Mar 2008 | WO |
2008142284 | Nov 2008 | WO |
2009076885 | Jun 2009 | WO |
2010067030 | Jun 2010 | WO |
2010128256 | Nov 2010 | WO |
2011007242 | Jan 2011 | WO |
2012062988 | May 2012 | WO |
2012113106 | Aug 2012 | WO |
2012113107 | Aug 2012 | WO |
2012113125 | Aug 2012 | WO |
2012159530 | Nov 2012 | WO |
2013041466 | Mar 2013 | WO |
2013045819 | Apr 2013 | WO |
2013120145 | Aug 2013 | WO |
2013131731 | Sep 2013 | WO |
2013140056 | Sep 2013 | WO |
2013167839 | Nov 2013 | WO |
Entry |
---|
Wolfgang Puck Professional Series 12-Cup Food Processor Use and Care, Jul. 3, 2007, 46 pages. |
Ellie; Home Cooking in Montana: Product Review . . . Cuisinart Elite 12 cup Food Processor Model FP-12DC; Mar. 30, 2012; 6 pages. |
European Patent Application No. 11859159.3, filing date PCT, Feb. 25, 2011, national phase entry EP Aug. 23, 2013, Applicant: Whirlpool Corporation, European Search Report re: same, dated Jun. 27, 2014. 2 pages. |
European Patent Application No. 11859310.2, filing date PCT, Sep. 1, 2011, national phase entry EP Aug. 23, 2013, Applicant: Whirlpool Corporation, European Search Report re: same, dated Jun. 27, 2014. 2 pages. |
European Patent Application No. 11859075.1, filing date PCT, Feb. 25, 2011, national phase entry EP Aug. 23, 2013, Applicant Whirlpool Corporation, European Search Report re: same, dated Jul. 30, 2014. 5 pages. |
Partial European Search Report, Application No. 111163933.2, dated Aug. 12, 2011, 3 pages. |
European Search Report, Application No. 11163932.4, dated Jul. 28, 2011, 6 pages. |
European Search Report, Application No. 111639316, dated Aug. 19, 2011, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20170080592 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14000416 | US | |
Child | 15000712 | US | |
Parent | 12769746 | Apr 2010 | US |
Child | 14220203 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15000712 | Jan 2016 | US |
Child | 15370434 | US | |
Parent | 14220203 | Mar 2014 | US |
Child | 15000712 | US | |
Parent | 15000712 | US | |
Child | 15000712 | US | |
Parent | 14000413 | US | |
Child | 14000416 | US | |
Parent | 14220203 | US | |
Child | 14000416 | US |