The present disclosure relates generally to a domestic food processor, and more particularly to a food processor having an external control for adjusting the cutting thickness of the food processor.
A food processor is a motorized domestic appliance for manipulating (e.g., chopping, slicing, dicing, shredding, grating, or blending) food items. Such an appliance includes a bowl with a removable lid. Food items are inserted into the bowl through a feed tube formed in the lid where they are cut by motor-driven cutting tool.
Food processors typically come equipped with a number of interchangeable cutting tools for slicing, shredding, or other food processing operations. One common cutting tool is a rotating disk-type cutter. Such a cutting tool includes a rotating disk having a cutting blade fixed thereto. The cutting blade is secured to the rotating disk at a location adjacent to an aperture formed in the disk so that pieces of food cut by the blade fall through the aperture and collect in the bottom of the bowl.
According to one aspect of this disclosure, a food processor includes a base having a motor positioned therein. A removable bowl is coupled to the base. A removable lid is coupled to the bowl so as to define a processing chamber. The lid has a feed tube that opens into the bowl. A cutting assembly is positioned in the processing chamber. The cutting assembly is driven by the motor to cut food items advanced through the feed tube. The cutting assembly is positionable between a plurality of cutting positions to produce cut food items of varying thicknesses. An adjustment assembly is operable to move the cutting assembly between the plurality of cutting positions. The adjustment assembly includes a user-operated control device positioned outside of the processing chamber.
The user-operated control device may include a control knob that has a grip located outside of the processing chamber and a shaft extending through the lid into the processing chamber.
The cutting assembly may include a cutting blade and a rotating disk, with the adjustment assembly being operable to change the distance between the blade and the rotating disk. The cutting blade may move relative to the rotating disk, or the rotating disk may move relative to the cutting blade.
The adjustment assembly may include a screw-type drive assembly coupled to the shaft of the control knob.
According to another aspect, a food processor includes a base having a motor positioned therein. A removable bowl is coupled to the base. A removable lid is coupled to the bowl. The lid has a feed tube that opens into the bowl. A cutting assembly is positioned in the processing chamber. The cutting assembly is driven by the motor to cut food items advanced through the feed tube. The cutting assembly includes a rotating disk and a cutting blade, with the cutting blade being upwardly and downwardly movable relative to the rotating disk so as to adjust the distance therebetween. An adjustment assembly is operable to move the cutting blade relative to the rotating disk. The adjustment assembly includes a user-operated control device positioned outside of the bowl.
The user-operated control device may include a control knob that has a grip located outside of the processing chamber and a shaft extending through the lid into the processing chamber.
The adjustment assembly may include a screw-type drive assembly coupled to the cutting blade. Rotation of the screw-type drive assembly in a first direction causes upward movement of the cutting blade, whereas rotation of the screw-type drive assembly in a second direction causes downward movement of the cutting blade. The user-operated control device is operable to rotate the screw-type drive assembly.
The screw-type drive assembly includes an internally-threaded outer screw and an externally-threaded center screw positioned in the outer screw. In such an arrangement, the cutting blade may be secured to the outer screw such that rotation of the center screw in the first direction causes upward movement of the outer screw and the cutting blade, with rotation of the center screw in the second direction causing downward movement of the outer screw and the cutting blade.
According to yet another aspect, a food processor includes a base having a motor positioned therein. A removable bowl is coupled to the base. A removable lid is coupled to the bowl. The lid has a feed tube that opens into the bowl. A cutting assembly is positioned in the processing chamber. The cutting assembly is driven by the motor to cut food items advanced through the feed tube. The cutting assembly includes a rotating disk and a cutting blade, with the rotating disk being upwardly and downwardly movable relative to the cutting blade so as to adjust the distance therebetween. An adjustment assembly is operable to move the rotating disk relative to the cutting blade. The adjustment assembly includes a user-operated control device positioned outside of the bowl.
The user-operated control device may include a control knob that has a grip located outside of the processing chamber and a shaft extending through the lid into the processing chamber.
The adjustment assembly may include a screw-type drive assembly coupled to the rotating disk. Rotation of the screw-type drive assembly in a first direction causes upward movement of the rotating disk, whereas rotation of the screw-type drive assembly in a second direction causes downward movement of the rotating disk. The user-operated control device is operable to rotate the screw-type drive assembly.
The screw-type drive assembly includes an internally-threaded outer screw and an externally-threaded center screw positioned in the outer screw. In such an arrangement, the rotating disk may be secured to the outer screw such that rotation of the center screw in the first direction causes upward movement of the outer screw and the rotating disk, with rotation of the center screw in the second direction causing downward movement of the outer screw and the rotating disk.
The detailed description particularly refers to the following figures, in which:
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referring to
As will be understood by those skilled in the art, the control unit may comprise analog and/or digital circuitry to process electrical signals received from the motor 14 (or other components of the food processor 10) and provide electrical control signals to the motor or other components of the food processor 10. For example, the control unit may be embodied as a microcontroller that executes firmware routines to control the operation of the food processor 10.
A removable bowl 22 is secured to the base 12. The bowl's handle facilitates placement of the bowl 22 on the base 12. The bowl 22 includes a removable lid 26 secured to its upper peripheral edge. The lid 26 has a feed tube 28 formed therein through which food items such as fruits and vegetables are inserted into the bowl 22 to be processed by the food processor 10. Collectively, the lid 26 and the bowl 22 define a processing chamber 24 where food items are processed by the cutting blade 18.
The bowl 22, lid 26, and feed tube 28 are generally made of a transparent or translucent material, so that the contents of the food processor 10 can be viewed by a user without removing the lid 26 from the bowl 22. Moreover, one or more locking mechanisms may be used to lock the bowl to the base 12 and the lid 26 to the bowl 22.
As shown in
A thickness adjustment assembly 44 is operable by a user to vary the cutting thickness of the food processor 10 thereby creating thicker or thinner pieces of cut food items. The adjustment assembly 44 includes user-activated control device that is located outside of the processing chamber 24 defined by the bowl 22 and the lid 26. What is meant herein by the term “outside” as it relates to the location of the user-activated control device relative to the bowl or the processing chamber is that the structure of the control device contacted by the user to operate the device is positioned external to the bowl and lid so that it may be operated by the user while the lid is secured to the bowl thereby allowing the cutting thickness of the food processor to be adjusted without removing the lid from the bowl. For example, in the illustrative embodiment described herein, the external control device is embodied as a control knob that includes a grip extending out of the lid that may be rotated by a user to change the cutting thickness of the food processor without removing the lid from the bowl. In such a configuration, the user rotates the control knob one direction or the other to change (i.e., increase or decrease) the distance D between the cutting edge 40 of the cutting blade 18 and the upper surface 42 of the rotating disk 34. It should be appreciated that other user-activated control devices, such as levers, dials, buttons, or the like, may be substituted for the control knob.
As shown in
Food items inserted through the feed tube 28 are urged into contact with the upper surface 42 of the rotating disk 34 while being acted upon (i.e., cut) by the cutting blade 18. As shown in
The hub 46 of the rotating disk 34 has a socket 54 formed in its lower end. A drive spline 56 formed in the upper end of the drive stem 30 is received into the socket 54 thereby coupling the drive stem 30 (and hence the output shaft 16 of the motor 14) to the hub 46 of the rotating disk 34. As such, rotation of the output shaft 16 causes rotation of the disk 34. It should be appreciated that the position of the socket and the spline may be reversed with the spline being formed in the hub 46 and the socket being formed in the drive stem 30. The hub 46 of the rotating disk 34 has an upwardly facing pocket 58 formed in its upper end. The pocket 58 is coaxial with the socket 54, with their respective center lines being coincident with the axis of rotation 60 of the motor's output shaft 16.
As shown in
The outer screw 62 translates upwardly and downwardly within the hub 46 of the rotating disk 34 to change the thickness of the food items being processed by the food processor 10. In particular, when the outer screw 62 is moved upwardly within the hub 46, the distance D between the cutting edge 40 of the cutting blade 18 and the upper surface 42 of the rotating disk 34 increases thereby producing thicker pieces of food items. Oppositely, when the outer screw 62 is moved downwardly within the hub 46, the distance D between the cutting edge 40 of the cutting blade 18 and the upper surface 42 of the rotating disk 34 decreases thereby producing thinner pieces of food items.
The external threads 68 of the center screw 64 threadingly engage the internal threads 70 of the outer screw 62 to move the outer screw 62 (and hence the cutting blade 18) upwardly and downwardly within the hub 46 in such a manner. For example, clockwise rotation of the center screw 64 may cause upward movement of the outer screw 62 (and hence the cutting blade 18), while counter-clockwise rotation of the center screw 64 causes downward movement of the outer screw 62 (and hence the cutting blade 18). As can be seen from
The center screw 64 has a keyed socket 72 formed in its upper end. In the exemplary embodiment described herein, the keyed socket 72 is a hexagonally-shaped recess. The keyed socket 72 is configured (i.e., sized) to receive a complimentary-shaped keyed spline 74 formed on the end of the elongated shaft 76 of a control knob 78. It should be appreciated that the locations of the keyed structures may be reversed with the spline formed on the end of the center screw 64 and the socket formed in the end of the control knob's shaft 76. It should be appreciated that other mechanical arrangements may be used to selectively couple the control knob to the center screw.
As can be seen best in
As shown in
When the control knob 78 is positioned in its engaged position (as shown in
Referring now to
As shown in
As shown in
In a similar manner to as described above in regard to the embodiment of
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such an illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
For example, while food processor 10 is herein illustrated as a conventional domestic food processor, the features and aspects disclosed herein can also be implemented in other types of food processing devices such as automatic food slicers, dicers, ice shavers and the like.
There are a plurality of advantages of the present disclosure arising from the various features of the method, apparatus, and system described herein. It will be noted that alternative embodiments of the method, apparatus, and system of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the method, apparatus, and system that incorporate one or more of the features of the present invention and fall within the spirit and scope of the present disclosure as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2189199 | Criner | Feb 1940 | A |
2480717 | Dodegge | Aug 1949 | A |
3199860 | Moberg | Aug 1965 | A |
3623525 | Kieves | Nov 1971 | A |
3704736 | Pratley | Dec 1972 | A |
4190208 | Schaeffer et al. | Feb 1980 | A |
4283979 | Rakocy et al. | Aug 1981 | A |
4364525 | McClean | Dec 1982 | A |
4369680 | Williams | Jan 1983 | A |
4560111 | Cavalli | Dec 1985 | A |
4570519 | Motosko, II | Feb 1986 | A |
4624166 | Kreth et al. | Nov 1986 | A |
4688478 | Williams | Aug 1987 | A |
4733589 | Wolff | Mar 1988 | A |
4877191 | Golob et al. | Oct 1989 | A |
4878625 | Newnan | Nov 1989 | A |
4998677 | Gallaher | Mar 1991 | A |
5046252 | Ayuta et al. | Sep 1991 | A |
5197681 | Liebermann | Mar 1993 | A |
5395060 | Hackel et al. | Mar 1995 | A |
5577430 | Gunderson et al. | Nov 1996 | A |
7004056 | Shorter et al. | Feb 2006 | B2 |
7322112 | Boerner | Jan 2008 | B2 |
7681817 | Orent | Mar 2010 | B2 |
7694615 | DiPietro | Apr 2010 | B2 |
20060075872 | Wangler | Apr 2006 | A1 |
20060150791 | Chase et al. | Jul 2006 | A1 |
20070044621 | Rote et al. | Mar 2007 | A1 |
20070209528 | Chang | Sep 2007 | A1 |
20070261523 | Hussey et al. | Nov 2007 | A1 |
20080115677 | Tseng et al. | May 2008 | A1 |
20080156913 | Orent | Jul 2008 | A1 |
20080163768 | Glucksman et al. | Jul 2008 | A1 |
20090301319 | Bigge et al. | Dec 2009 | A1 |
20090314168 | Krasznai | Dec 2009 | A1 |
20110139017 | Beber et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
201101452 | Aug 2008 | CN |
101496699 | Aug 2009 | CN |
3644267 | Jul 1988 | DE |
010075 | Feb 1984 | EP |
0100755 | Feb 1984 | EP |
0244016 | Nov 1987 | EP |
2582497 | Dec 1986 | FR |
2602660 | Feb 1988 | FR |
2862199 | May 2005 | FR |
1153123 | Jun 1989 | JP |
1299522 | Dec 1989 | JP |
4099551 | Mar 1992 | JP |
4099552 | Mar 1992 | JP |
0221986 | Mar 2002 | WO |
03057355 | Jul 2003 | WO |
2009076585 | Jun 2009 | WO |
Entry |
---|
Wolfgang Puck Professional Series 12-Cup Food Processor Use and Care, Jul. 13, 2007, GP. 1-23, W. P. Appliances, Inc. Model WPMFP20C, Rev 1.0, Downloaded From TSCDIST—FoodProcManual on Apr. 12, 2010. |
Ellie; Home Cooking in Montana; Product Review . . . Cuisinart Elite 12 Cup Food Processor Model FP-12DC; Mar. 30, 2010; 17 Pages. |
Number | Date | Country | |
---|---|---|---|
20110139017 A1 | Jun 2011 | US |