The present invention relates generally to the service of food at a desired temperature and, more particularly, to systems and apparatus for heating and cooling food for preparation and serving.
Perishable foods for home, market, catering and restaurant buffets are conventionally chilled by ice or commercially manufactured containers of freezable material, or by refrigeration systems. When the ice melts and the freezable material warms, these cooling media lose their ability to keep foods safe and may render them unsuitable or hazardous for consumption. Typical refrigeration systems are bulky and costly, requiring condensers, coils and harmful chemicals and, further, must be serviced and maintained. Additionally, they are not easily adapted for portability.
Other foods need to be heated or kept warm for home, market, catering and restaurant buffet service. Conventional sources of heat include flame and electricity, e.g. by use of alcohol-based combustible gels, such as those offered under the tradename STERNO, or by electric hot plates. Flame sources often produce local hot spots and uneven heating and may produce fumes, odors, or other combustion products. The indoor pollution and health risks to food service workers and patrons from these combustion products are beginning to be viewed with concern by those in the industry.
U.S. Pat. Nos. 8,307,761 and 8,661,970 to Shackleford et al. discloses a food counter apparatus, which uses pans or trays placed into wells that can be heated by electrical resistance heaters or cooled by refrigerated circulated through tubing from a condenser. Such systems may have issues with efficiency and require long times to reach a desired temperature. Consequently, a system or method that allows for a transport cabinet to both heat and cool food which is efficient and capable of reaching a desired temperature in a short amount of time would be an improvement in the art. Such a system that was able to combine the cooling and heating functions into a single system rather than requiring multiple systems in a single apparatus would be an additional improvement in the art.
The present invention provides systems and apparatus for heating or cooling food to an appropriate temperature for service in pans or trays held in wells in a countertop apparatus. A table includes heating/cooling system for operative connection to one or more wells. The heating/cooling system comprises at least one manifold having a plurality of openings, each allowing a seal to be made against a first surface of a Peltier chip defines a flow path for a heat transfer fluid which directly contacts the first surfaces of a plurality of Peltier chips. The fluid then circulates through tubing from the manifold to the wells. A second opposite manifold also has a plurality of openings, each allowing a seal to be made against a second surface of a Peltier chip to define a flow path for a heat transfer fluid which directly contacts the second surfaces of the plurality of Peltier chips. The fluid then circulates through tubing from the manifold to a separate radiator. The manifolds may be joined to form a block enclosing the chips. One or more fans may be placed to encourage airflow through the radiators and coolant reservoirs and pumps may be included, as needed. Application of current in a first direction to the Peltier chips can heat the wells and reversal of the current may be used to cool the wells, with each wellbeing independently controllable. In some embodiments, the wells may be interchangeable and reconfigurable.
It will be appreciated by those of ordinary skill in the art that the various drawings are for illustrative purposes only. The nature of the present disclosure invention, as well as other varying embodiments, may be more clearly understood by reference to the following detailed description, the attached appendix, and to the drawings.
The present disclosure relates to systems, methods and apparatus for heating or cooling food to, or maintaining food at, an appropriate temperature for preparation or service in a standard food preparation or service tray, such as a chafing dish or wells in a food preparation counter. It will be appreciated by those skilled in the art that the embodiments herein described, while illustrating certain embodiments, are not intended to limit the disclosure. Those skilled in the art will also understand that various combinations or modifications of the embodiments presented herein can be made without departing from the scope of this disclosure and that all such alternate embodiments are within the scope of this description. Similarly, while the drawings depict illustrative embodiments of the devices and components illustrate the principles upon which those devices and components are based, they are only illustrative, and any modifications of the features presented here are to be considered within the scope of this disclosure.
The countertop apparatus 10 may be a table or “rolling island” which can be moved on casters or may be a cabinet with a countertop installed at a fixed location. In some embodiments, it may be implemented as a standalone device, sized for placement on a preexisting countertop.
At an upper end of the countertop apparatus 10, is an upper surface with one or more wells 100 for holding a tray or pan 200. In the depicted embodiment, the wells 100 are defined by a ridge or lip 104 that surrounds an opening in the upper surface of the apparatus. Several bridge members 102 may be movable to alter the size of the wells, allowing for the accommodation of differently sized pans or trays 200.
Disposed in the apparatus 10 under the wells are the components of the heating/cooling system 300. In the depicted embodiment, these are viewable through the wells 100, but it will be appreciated that in other embodiments, the wells 100 may have sides and floor to protect the system 300 components from inadvertent spills or dropped trays 200. In some such embodiments, the wells may thus either be formed as a series of wells or as one large well with moveable bridge members to allow different configurations. In some smaller embodiments, such as those for use on a preexisting table or countertop, only a single well may be present.
As best depicted in
One or more manifold blocks 500 contain a plurality of Peltier chips. Suitable Peltier chips are disclosed in pending U.S. patent application Ser. No. 14/597,438 filed Jan. 15, 2015 and published as publication number US 2015/0201749, which is incorporated by reference herein in its entirety. Each Peltier chip is a thermoelectric converter element whose effect is based on the Peltier principle in that they are capable of both cooling and heating by virtue of the fact that between their electrodes a temperature differential is created whose directionality is a function of the direction of the current. It will be appreciated that a suitable number of chips may be used, which are sufficient to heat or cool the trays 200 to a suitable temperature and maintain the trays at that temperature. In the depicted embodiment, two blocks 500 are depicted in each system 300, each block 500 containing four chips. It will be appreciated, that a single block 500 holding a differing number of chips may be used or the systems 300 may use different numbers of blocks 500 for differing applications. Currently, a design using eight Peltier chips for each individual well is preferred.
A typical Peltier chip currently in use may be operated at from about 11 to about 15 volts to achieve optimal performance. It will be appreciated that different voltages may be used as the particular chips may vary.
Each manifold block 500 may be formed from two manifolds, which are joined face to face with the Peltier chips sandwiched therebetween, as discussed in U.S. patent application Ser. No. 14/597,438. Each manifold contains a plurality of recesses for receiving a Peltier chip and each recess contains a flow path, which may be formed as a channel having a Z, S or other shape to direct the flow of a heat transfer liquid from one opening to another. A shelf or notch may hold a seal, such as an O-ring and may provide a seat for a chip. The flow paths direct the flow of a heat transfer liquid directly against the surface of the Peltier chips. Each manifold block also contains channels directing the fluid from the flow paths to tubing connected to the manifold. From the first manifold block 500, tubing 101 is attached to the manifold on a first side and flows to a radiator R and the return tube 103 returns the fluid which has transferred its thermal energy using the radiator R back to the manifold block 500 (in the depicted embodiment, the two blocks 500 are connected by a short tube T, and effectively act as a single block), which may be via a reservoir and a pump.
Turning to
A recessed notch 516 is present to hold a seal, such as an O-ring, and a recessed seat 518 may be provided for placement of a Peltier chip. It will be appreciated that as depicted, in certain embodiments, multiple recesses with associated notches may be present.
In use, the seal may be an O-ring that it significantly thicker in height than the recessed depth of notch 516. This allows the O-ring to function both as a sealing element and as an adjustment element to account for any variations that may occur between various chips due to manufacturing differences. It also allows the O-ring to function as a cushion, protecting the chip from forces that may otherwise damage it during assembly of the block 500A or during operation.
Returning to
Each pump may be any pump with sufficient power to circulate heat transfer fluid through the tubing at a rate sufficient to allow the system to function at an acceptable rate of heating or cooling. Typically, centrifugal-type pumps may be used, although it may be possible to utilize a larger in-line pump.
Each radiator R is typically finned to provide a larger surface area for convection heat exchange to the surrounding air. Since the apparatus 10 is used for heating or cooling food, a non-toxic heat transfer fluid may be used. One such fluid is water, although other acceptable commercially available non-toxic coolants, such as PAHNOL, offered by Houton Chemical, may be used.
The radiator R is positioned where it has access to the environment surrounding the apparatus 10. For example, it may be disposed at a side of the apparatus aligned with a vent. One or more fans may be associated with the radiator 200 to create a desired airflow upon activation. It will be appreciated that in some embodiments, the radiator R may comprise one or more separate radiators positioned at different locations to facilitate rapid heat transfer. For example, where system 10 is formed as a countertop unit, the radiators may be positioned at vents along the base thereof. Where it is a counter unit, similar to that depicted in
For use, the fans may be directly attached to the radiator(s) R by screws, by a suitable thermal epoxy, by attachment using a mounting bracket, or in any other suitable manner. For example, the fans may be attached to a grillwork, which is then strapped to the radiator.
Electric power for the system may be provided by a battery. Such a battery powered device is extremely portable and may be used in locations where connection to an electrical outlet is undesirable or impossible. Of course, it will be appreciated that a transformer and line connection may be used to provide connection to any standard electrical outlet for power. Currently, it is preferred to operate the components of the apparatus 10 at a voltage of up to about 15V.
Turning to
For example, in
It will be appreciated that the outer layer 2002A may be formed of a high temperature plastic material by vacuum forming over a blank. In other embodiments, the outer layer 2002A may be formed by injection molding, rotational molding, machining, or as is otherwise know in the art using suitable materials. Where possible, plastic materials that have insulating properties may be used to increase efficiency by insulating the fluid in the flow space from the surrounding external environment.
In some embodiments, the tray 200 may be fixedly mounted in the well and in others it may be removable. In use, water may be placed in the bottom of the tray 200 to serve as a “steam tray” with another pan or tray placed therein, similar to a traditional chafing dish. In others, the tray may be constructed of materials that allow for direct contact with the food, eliminating the need for an internal tray or additional water. For such embodiments, the tray may be constructed to allow for cleaning by placement in a commercial dishwasher. In some embodiments, the ports may work in a “quick connect” mode, allowing for a fast attachment and detachment when trays 200 are exchanged.
In some embodiments where the tray 200 is used as a well, a fan assembly may be placed inside the tray to circulate fluid (such as air) therein during operation under an inserted pan.
It will be appreciated that although depicted as traditional rectangular food service trays herein, that trays 200 and wells of the present system may be formed in other shapes, to appear as platters, serving bowls, and so forth for a desired appearance, as with countertop units or for buffet service.
Turning to
The layers may be attached to one another along the respective rims 2102 and 2107 to define the overhanging rim of the tray 200T. A gasket 2109 may be placed between the rims to seal a flow space between the upper and lower layers. A gasket formed of a suitable substance and corresponding to the shape of the rims may be used, as may any other suitable gasket. In the depicted embodiment, the layers are secured by a number of bolts B and corresponding nuts N placed through securing holes H, although it will be appreciated that any suitable fastener may be used.
Access to the flow space is provided by ports 2108 and 2106. Upon installation in the well 100, ports 2108 and 2106 are attached to tubes 201 and 203. Fluid then may flow from manifold block 500 or 500A to the flow space and return thereto. As temperature controlled fluid passes through the flow space, the upper surface of the tray 200T is heated or cooled to the desired temperature. Where useful, a particular flow path may be defined by structures present in the flow space. For example, suitable walls could be formed on the upper or lower layer sides defining the flow space to form flow channels for fluid. Alternatively, a separate structure may be inserted therein, such as a serpentine cut neoprene insert.
In some embodiments, the tray 200T may be fixedly mounted in the well and in others it may be removable. In use, the tray 200T may be used to provide a heated or cooled surface for the presentation of food. For some embodiments, at least the upper layer 2100 of the tray may be constructed of materials that allow for direct contact with the food, eliminating the need for an external trays or pans. For such embodiments, the tray may be constructed to allow for cleaning by placement in a commercial dishwasher. In some embodiments, the ports may include fitting allowing for connection in a “quick connect” mode, allowing for a fast attachment and detachment when trays are exchanged.
Tray 200A may be formed in the shape of a traditional tray or pan for a chafing dish, having sidewalls 2003 surrounding a generally planar bottom 2004 and an upper surface with an overhang allowing for placement in a well 100.
At a location near the middle of the generally planar bottom a first port 2500 is disposed on the bottom 2004 of the tray 200A. A fan 2502 is positioned at the port 2500. At one or more positions in the upper portion of the sidewalls 2003 a return port 2602 is formed as an opening therethrough. A duct 2600 is connected to the return port 2602 and continues as a passage to a radiator R1 adjacent to fan 2500. While two return ports 2602 and ducts 2600 are depicted, it will be appreciated that other embodiments with differing numbers may be used depending on the size of the tray 200A.
Upon installation in the well 100, ports 2010 and 2012 are attached to tubes 201 and 203, which may be as discussed previously herein. A tray or pan for use with a chafing dish may then be inserted into tray 200A and covers the upper opening thereof. The sidewalls 2003 of the tray 200A are configured to extend downwards at an angle that ensures that space is present between the sidewalls 2003 and the inserted pan.
Fluid then may flow from manifold block 500 to the radiator R1 and return thereto, and fan 2502 activated. This creates flow of air in the tray 200A that flows from port 2500 to the return port(s) 2602 where it passes through the duct(s) 2600 and radiator R1 in a continuing cycle. As it passes through the radiator R1, the cycled air is heated or cooled, causing the temperature within the tray 200A, and by convection, the temperature in the inserted pan to be similarly heated or cooled.
One advantage of the design of the depicted embodiment is that the flow of temperature controlled air passes along the side of the inserted pan to provide cooling and/or heating along that portion of the pan. Previous air flow cooling systems, such as that disclosed in U.S. Pat. No. 5,388,429 issued Feb. 14, 1995 to Shackelford, et al., the contents of which are incorporated herein in their entirety, used cooling fluid circulating in tubing that flowed along a wall in conductive contact with the sidewalls of the pan, then circulated air underneath the pan to attempt to equalize temperature through the pan. This is inefficient and creates a temperature gradient within the inserted pan that can create unacceptable conditions.
A control panel may be included for the system. In a simple embodiment, the control panel may simply consist of a single switch with three settings, OFF, COOL and HEAT. The switch may be a double-pull double-throw switch. Selection of either closed position, (HEAT or COOL) closes the circuit in an opposite direction, reversing the flow of electricity through the Peltier chips and either cooling or heating at the tray associated tray 200, to heat or cool it. At the same time the heat or cold generated on the opposite face of the chips is transferred to the radiator R for dispersal from the system.
In other embodiments, the control may include multiple switches to individually or jointly control either the operational mode of the Peltier elements, or the functioning of the pump or fans. In other embodiments, variable current controls may be used to adjust the temperature within the trays 10 by varying the current through the Peltier elements 700. In other embodiments, a logic control circuit may be used, such as a logic control board on a semiconductor chip. With a logic control circuit, a desired temperature may be selected and the system may cycle on and off as appropriate to maintain the cabinet at or near the selected temperature. It will be appreciated that use for multiple systems 300 in a single apparatus 10 allows for individual temperature control of each well 100, allowing different foods to be maintained at different temperatures. This can allow for cold and hot wells to be next to each other in a single counter, easing the preparation of foods. In some embodiments, it may be possible to choose to direct either side of a system 300 manifold 500 to either a well or pan or to a radiator, to allow a single system 300 to simultaneously heat and cool different wells.
A first series of tests were run on an embodiment similar to that depicted in
A second series of tests were run on an embodiment similar to that depicted in
Additional tests were performed to compare the performance of embodiments depicted herein to currently available products. U.S. Pat. No. 5,388,429 to Shackelford et al, the contents of which are incorporated by reference herein in its entirety, discloses a system for cooling a food service pan that uses refrigerated tubing disposed in a sidewall adjacent the sides of an inserted pan and a fan underneath the pan for air circulation. A commercial embodiment of this type of device, available from Low Temp Industries, Inc. (“LTI”) was obtained. Similarly, a “hot well” unit manufactured by LTI which can heat inserted pans was also obtained.
A first comparison test, the results of which are depicted in
A second comparison test, the results of which are depicted in
A third comparison test, the results of which are depicted in
A fourth comparison test, the results of which are depicted in
While this invention has been described in certain embodiments, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practices in the art to which this invention pertains.
This application claims the benefit of U.S. Provisional Application No. 62/361,206, filed Jul. 12, 2016, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62361206 | Jul 2016 | US |