During warm and even hot weather, picnics and barbecues provide ample opportunity to enjoy friends, family, and food. But warm and hot weather also provide opportunities for foodborne bacteria to thrive. As food heats up, bacteria multiply. While bacteria exist everywhere in nature, when bacteria have nutrients (i.e. food), moisture, time, and high temperatures, bacteria will grow. Often bacteria will grow so rapidly that upon consumption of food infested with bacteria, the bacteria can cause various types of illnesses—with food poisoning being just one type of illness. Clearly, the rapid multiplication of bacteria in food is dangerous. In fact, it is one of the most common causes of food poisoning. While the symptoms and severity of food poisoning vary, depending on which bacteria has contaminated the food, understanding how to keep food at a safe temperature is critical.
Bacteria grow most rapidly when the temperature is between 40° and 140° F. Between these two temperatures, bacteria have been known to double in as little as 20 minutes. This range of temperatures is called by many the “Danger Zone.” A general rule for most meat is to never leave food out—without refrigeration—for longer than 2 hours. But when the temperature rises above 90° F., the general rule is for food to never be left out for more than 1 hour. While these rules provide general guidelines, they do not fully address the issues of keeping food at safe temperatures.
To keep food at safe temperatures, especially during summer-time picnics and barbecues, typically means toting a number of coolers packed with ice and gel packs. Federal guidelines in the United States, recommend storing food at 40° F. or below to prevent bacterial growth. Other safe practices include limiting the exposure of food to warm outdoor temperatures and keeping coolers closed as much as possible. While these guidelines generally assure temperatures will not veer outside of the recommended safety zones, there is a clearly a need for improved food storage systems, and a particular need for food storage systems that incorporate refrigeration elements and eliminate the need to tote ice and a vast number of gel packs.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
An embodiment includes a food storage system comprising a plurality of bowls. The food storage system also includes a connection element configured to couple to at least two of the bowls and a protection element configured to couple to the connection element. When two bowls are nested and coupled to the connection element, a void is formed between the two nested bowls and a refrigeration element is positionable in the void to maintain a predefined internal temperature in the food storage system. The combination of elements in the food storage systems, as described herein, is intended to keep food contained within the food storage system below or at a temperature safe for human consumption, particularly when the food is exposed to high temperatures.
In
Each element of the food storage system disclosed herein may be manufactured from a food-grade, light-weight material, such as metal-based or plastic-based materials including moldable thermoplastic materials. Types of thermoplastic materials include, but are not limited to, Nylons, Polyethylene Terephthalate (PET-P), Polycarbonate, Acrylonitrile Butadiene Styrene, Modified Polyphenylene Oxide (PPO), Polybutylene terephthalate (PBT), Acetal, Polypropylene, Polyurethane, Polyetheretherketone (PEEK), Ultra-high molecular weight polyethylene (UHMW-PE), Polyetherimide, High Density Polyethylene (HDPE), Low Density Polyethylene(LDPE), High Impact Polystyrene, and Polysulfone, Polyvinylidene fluoride (PVDF).
One or more elements of the food storage system, for example, one or more of the nestable bowls 10, the connection element 50, and/or the protection element 200 may be manufactured from or coupled to one or more materials that include a temperature indicator. The element(s) of the food storage system that are manufactured from or coupled to the temperature indicator material are configured to provide an alert when the temperature in one or more of the nestable bowls rises above a predefined threshold. For example, the element(s) of the food storage system that are manufactured from or coupled to the temperature indicator material are configured to provide an alert when the temperature in one or more of the nestable bowls rises above 40° F. The alert provided from element(s) manufactured from the temperature indicator material may be, for example, a visual indicator wherein the temperature indicator material could change color when the temperature in one or more of the nestable bowls rises above the predefined threshold. The alert provided from element(s) coupled to a temperature indicator material (for example, a thermometer (not shown)) may be an audible or visual signal transmitted from the food storage system when the temperature in one or more of the nestable bowls rises above the predefined threshold.
In
In one embodiment, as shown in
During assembly of the overall food storage system 100, as shown in
Similarly, the second coupling element 70 of the connection element 50 has a downwardly extending, outermost extending annular element 72, having an outermost annular lip 74. The connection element also includes an interior annular surface 76. Together with the downwardly extending, outermost extending annular element 72, the interior annular surface 76 forms an outermost groove 80. The outermost groove 80 of the connection element 50 is positioned such that the annular element 12z of the outermost bowl 10z fits within the outermost annular groove 80. Similarly, the innermost annular groove 64 is positioned such that the annular element 12a of the innermost nested bowl 10a fits within the innermost annular groove 64.
The protection element 200 may also include one or more annular sections 17a-17z configured to mate with annular elements 12a and 12z such that the bowls 10a and 10z may be nested by mating the annular sections 17a-17z of the protection element 200 directly with annular elements 12a and 12z. Moreover, the protection element 200 may comprise a plurality of nestable protection sections/members 19, having refrigeration elements 300 positionable within one or more annular grooved sections 17a-17z.
Variables that can define the refrigeration element 300 include the thickness of the walls of the sections, shown as D1, D2, D3, and the spacing between the sections 302, shown as a1, a2, as shown for example in
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter
The present application claims the benefit of U.S. Provisional Application Ser. No. 62/650,353 titled “Food Storage Systems,” filed Apr. 2, 2018, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5372274 | Freedland | Dec 1994 | A |
8695373 | Patton | Apr 2014 | B1 |
20050051549 | Nelson | Mar 2005 | A1 |
20070144205 | Moore | Jun 2007 | A1 |
20160272388 | Slack | Sep 2016 | A1 |
20170336125 | Winkle | Nov 2017 | A1 |
20180036202 | Wengreen | Feb 2018 | A1 |
20180085250 | Weinstein | Mar 2018 | A1 |
20180146808 | Dove | May 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20190301783 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62650353 | Mar 2018 | US |