Food spoilage is a natural occurring process. When food is subjected to temperatures in the “danger zone” above 40° F. and below 140° F. the toxins multiple at an exponential rate. The toxins in turn leave bacteria on your food. Bacteria, yeasts and molds are among common causes of spoilage and food poisoning. Chilling food helps delay the food poisoning and spoiling process because the toxins grow at a slower rate, thus leaving less bacteria, and keeping food safe to eat for a longer period of time. Many portable containers are available to keep food chilled for a period of time. One impact of chilling food is that it can impact sensory details such as texture, taste and smell. Human beings evolved to prefer hot food. Warmth enhances flavor on the sensory papillae of our tongues and heating food boosts its energy value.
In a following description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration a specific example in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
It should be noted that the descriptions that follow, for example, in terms of a food warming system is described for illustrative purposes and the underlying system can apply to any number and multiple types of foods. In one embodiment of the present invention, the food warming system can be configured using a PCBA with electronic and digital devices. The food warming system can be configured to include real-time temperature monitoring and can be configured to include rechargeable batteries using the present invention.
The food warming system is a portable container for storing chilled food with an integral heating system to warm the food when ready to eat. The food container 100 is the main container designed for food storage. The food container 100 has a main body 110 which is a concave cavity where food is stored. A cover 120 seals the main body 110 closed to prevent food escaping. The cover 120 may be hinged and secured with a single clasp or completely removable and sealed with 4 clasps, one on each side or other closure and seal systems. A heat tray insert is integrated inside the main body and contains all the elements for heating food. A rechargeable battery pack provides power to operate the system of one embodiment.
The rechargeable battery pack is directly connected to a control printed circuit board assembly (PCBA) which controls power flow, temperature, charging and all battery safety protocols. A power button is also connected to the PCBA and is used to activate the system. When the system is activated, electrical power flows though the PCBA and is converted to heat which is then distributed along the heat tray insert foil tape or other conductors that surrounds food. A series of LED indicators are also connected to the PCBA and show a power level of the rechargeable battery pack. Charging the rechargeable battery pack is accomplished via a battery charge port. When not in use the battery charge port is sealed with a waterproof cover to prevent moisture leakage into the battery charge port. The waterproof cover is removed for charging and a charger plug is inserted into the battery charge port of one embodiment.
The food warming system food container forms a self-contained, lightweight, compact, battery powered, food safe, waterproof compartment with surrounding heat elements, adaptable to virtually any food container type. The food warming system container may be fabricated using stainless steel interior insulated walls with exterior plastic jacketing. The exterior plastic jacketing may be fabricated using plastic injection, co molded silicone injection, Surface Mount (SMT) assembly providing low cost and scalable manufacturing systems of one embodiment.
The food warming system devices are configured to be easily portable so that food can be warmed anywhere. The food warming system devices are self-contained, food safe and waterproof so that liquidous foods will not damage the system. Power is supplied by a customized rechargeable battery pack. Heating power, charging and battery safety circuits are all contained in the PCBA. When the system is activated the PCBA will convert electrical energy to heat energy and disperse it through conductors including for example foil tape conductors or other conductors of one embodiment.
These conductors are placed along the walls and bottom of the heat tray insert 200 and, in some embodiments, along the cover inside surface. The heat elements completely surround the food and transfer heat into the food for warming. The food warming system heating systems are attached to a stainless steel shell and heat is transmitted through shell directly to the food which is placed within the stainless steel shell by generating heat in the food container using the electrical impedance of a plurality of heat dispersing elements one embodiment.
The food warming system devices may be configured in shapes and sizes for various food types and natures for example round, oblong or other shapes and sizes. For example one shape and size for a typical sandwich with square shaped bread slices, in another example where the interior space is compartmentalized to separate for example soups from dry foods. In other embodiments the food warming system devices may be configured for specific user activities for example travel in a commercial airlines where the rechargeable battery pack is of a type and design that meet TSA regulations, the food container seals when closed prevent any leakage, and the cover clasp 140 is configured to be child-proof and cannot be accidentally opened by contact with other objects.
In yet other embodiments the food warming system devices may be configured for keeping foods placed inside cold for example ice creams, fresh fruit and salads to prevent wilting and maintaining the food below 40° F. to prevent bacterial growth until the user is ready to warm the food if desired.
The control printed circuit board assembly (PCBA) 410 is electrically coupled to the rechargeable battery pack 400. The control printed circuit board assembly (PCBA) 410 is coupled to a battery charge level device and an infrared thermometer sensor for monitoring food temperature in real time.
The control printed circuit board assembly (PCBA) 410 includes at least one digital processor, at least one digital memory device, at least one database; at least one infrared thermometer coupled to the PCBA, at least one chemical vapor sensing device, at least one circuit coupled to the food container 100 cover 120, at least one circuit coupled to at least one digital temperature display, at least one circuit coupled to an alert light coupled to the cover 120, and at least one circuit coupled to a temperature control selection device mounted on the heat tray insert 200 insert mounting ledge 320.
The at least one chemical vapor sensing device is used to analyze odors from the food placed in the heat tray insert 200. The at least one chemical vapor sensing device detects the chemical signatures of spoiled food odors, food borne pathogens for example salmonella and other food conditions that may cause a food consumer to become ill or even die. The chemical vapor sensing device coupled to the control printed circuit board assembly (PCBA) 410 performs the chemical analysis to determine the chemical formulae of the vapor elements.
The at least one digital processor is used to search at least one digital memory device database for the identity of the chemical formulae from the chemical compound data prerecorded and stored in that database. Should the identified chemical formulae be a categorized as a health hazard, the PCBA will transmit an alert to the user to dispose of the food and not eat the food and identifying the potential health hazard detected. Embodiments may include using the at least one digital memory device database for recording data on various food stuffs to include recipe ingredients, characteristics, visual examples, cooking instructions with minimum food safety temperatures, precautions, spoilage indications and signs, and other information for keeping foods safe for consumption.
In another embodiment the identified chemical formulae is transmitted to a food warming system digital application on a user's digital device. The food warming system digital application is configured to perform an internet search for information to determine if the identified chemical formulae is categorized as a health hazard. The food warming system digital application will automatically display a visual warning and broadcast an audible alert to the user regarding the potential health hazard that has been determined.
In another embodiment the user may enter the type of food to be placed in the food warming system into the food warming system digital application installed on the user's digital device. The food warming system digital application will perform a search and display recipe ingredients, characteristics, visual examples, cooking instructions with minimum food safety temperatures, precautions, spoilage indications and signs, and other information for keeping foods safe for consumption.
The control printed circuit board assembly (PCBA) 410 includes at least one cellular connectivity device and transceiver for transmitting food status signal alerts, battery charge alerts and receiving user turn-off instructions. The control printed circuit board assembly (PCBA) 410 includes connectivity devices to bluetooth and Wi-Fi to provide communication and control alternatives to the user including voice activated commands.
A rheostat device for regulating power levels conducting battery energy to a plurality of heat dispensing elements is also controlled by the control printed circuit board assembly (PCBA) 410 of one embodiment. The rechargeable battery pack 400 provides power to operate the food warming system components. The control printed circuit board assembly (PCBA) 410 controls power flow, temperature, charging and all battery safety protocols. The waterproof power button 220 is also coupled to the control printed circuit board assembly (PCBA) 410 and rechargeable battery pack 400 and is used to activate the system. When the system is activated, electrical power flows though PCBA and is converted to heat which is then distributed along the heat tray insert 200 conductors that surround food placed inside the heat tray insert 200. The LED indicators are also connected to PCBA and show power levels of the rechargeable battery pack 400 of one embodiment.
To alert that person that the food is ready to be served a heat tray transceiver transmitting food status signal alert 810 to the user digital device provides notice that the food is ready. In addition the heat tray transceiver is configured to include transmitting a food status audible alert broadcast 830. The heat tray transceiver food status signal alert 810 and food status audible alert broadcast 830 using cellular connectivity provides signals for a user digital device including a user smart phone receiving and broadcasting food status alerts 820 to alert the user to attend to the food warming status.
The food warming system includes a food warming digital application for installing on a user's digital device including for example a smart phone, tablet, laptop computer and other digital devices. The food warming digital application installed on a user's digital device is configured for displaying the food status alerts on a digital screen and broadcasting audible food status alerts. The user can tap the food warming digital application icon and receive intermediate food status alerts to check the current temperature and a calculated approximate time remaining for the food to reach a safe temperature.
In one embodiment the food warming digital application may display the temperature selection controls of the food warming food container. This allows the user to set the desired temperature using the user's digital device. The user may want to turn off or adjust the temperature which they can perform using the food warming digital application of one embodiment.
The temperature control 900 includes a temperature setting touch screen slide 910 adjusting feature. The temperature setting touch screen slide 910 is adjustable using degrees Celsius and degrees Fahrenheit temperature scales 920. The temperature control 900 includes monitoring food temperature in real time using at least one infrared thermometer 930 that is coupled to the control printed circuit board assembly (PCBA) 410 of
In another embodiment the temperature control 900 includes digital touch buttons labeled for specific food types for example soups, sandwiches, stews, vegetables, and others. The digital touch buttons labeled for specific food types when pressed will set the targeted temperature setting to preset temperatures prerecorded in one of the at least one databases.
The food status audible alert broadcast 830 of
When the system is activated, electrical power from the rechargeable battery pack 400 of
In another embodiment the heat tray insert 200 and food container 100 cover 120 include ultraviolet (UV) lights to treat the food placed in the heat tray insert 200 to kill bacteria, viruses and other food borne pathogens and sterilize the food before, during and after the warming processes.
The foregoing has described the principles, embodiments and modes of operation of the present invention. However, the invention should not be construed as being limited to the particular embodiments discussed. The above described embodiments should be regarded as illustrative rather than restrictive, and it should be appreciated that variations may be made in those embodiments by workers skilled in the art without departing from the scope of the present invention as defined by the following claims.
This application is based on U.S. Provisional Patent Application Ser. No. 62/694,981 filed Jul. 7, 2018, entitled “FOOD WARMING SYSTEM”, by Joseph Ganahl.
Number | Date | Country | |
---|---|---|---|
62694981 | Jul 2018 | US |