The present invention relates to the field of exercise/massage devices and more specifically to those designed exclusively for the foot and ankle.
Plantar fasciitis is a condition that affects the connective tissue supporting the arch of the foot. When inflamed, this tissue causes intense pain in the heel and bottom of the foot. Current studies show that about 90% of people suffering from this ailment will improve their symptoms through a variety of conservative treatment methods that include proper exercise and massage of the plantar fascia. Several devices (splints, arch support socks, and ankle braces) exist directed at treating this particular disorder. Although those methods properly emphasize the use of a static dorsiflexion force of the foot to stretch the plantar fascia, they also fall short at providing a massaging element to treat this area of the body. Conversely, the present invention differs from current conventional art in that it does not involve a dorsiflexion force of the foot. It rather offers an aid in rehabilitation exercise attributing significance to conditioning the tissue found at the bottom of the foot by applying controlled massage and pressure to all sections of the plantar fascia.
A few solutions aimed at easing the pain associated with plantar fasciitis found in prior art follow:
U.S. Pat. No. 6,110,078 issued to Dyer on Aug. 29, 2000, is a device consisting primarily of two hinged plates with a variable tensioning mechanism. Applied to the foot and lower leg the device provides a progressive stretch for planter fascia, Achilles tendon, and gastrocnemius muscle. Enhancements, comprised of an adjustable toe support, adjustable arch support, and foot strap enable maximization of stretch for various foot types and conditions. A method of setting tension levels allows for application of protocol and, in conjunction with the use of a system to measure angular displacement of the plates, provides a method of evaluating flexibility and flexibility gains of the plantar fascia/Achilles tendon system.
The Dyer stretching device offers tension mechanisms where significance is attributed solely to a progressive stretching of the plantar fascia as opposed to our device where significance is attributed to applying pressure and massage to the plantar fascia.
U.S. Pat. No. 5,399,155 issued to Cooper on Feb. 11, 1992, presents a foot and leg-stretching device wherein the heel, ball and arch of the foot remain flat on a footplate while the toes are inclined upwardly against a selectively position able plate. The device is designed to simultaneously stretch the Achilles tendon cord, arch of the foot and calf muscles.
The Cooper stretching device is not only cumbersome to manufacture and use, but lacks functional design and once again, it does not offer a massaging solution for the bottom of the plantar fascia.
U.S. Pat. No. 8,241,232 B2, issued to Sanders on Aug. 14, 2012 describes a foot pain relief device that provides multiple angles of inclination, directed pressure against the plantar fascia, as well as ease of manufacturing and assembly. A toe strap, which is fastened around the ankle and the toe(s), ensures that the toes are flexed up. This toe flexing tenses the plantar fascia of the foot. A ball strap can be threaded through a hole in a ball and then operatively coupled with the toe strap. When operatively coupled to the toe strap, the ball strap keeps the ball positioned on the bottom of the foot while allowing ball mobility. The mobility of the ball can provide directed pressure on at least one component of the plantar fascia. Notably, the simultaneous combination of tension to the plantar fascia and directed pressure to the component(s) of the plantar fascia can be particularly effective at relieving foot pain.
The Sanders device, presents at least three problems (there maybe more). First, lack of functional design is evident. The user must assemble three parts together in his/her foot in order to use the contraption. Second, there is no mechanism securely attaching the device to the foot, therefore parts just fall apart at any given moment. Third, the toe strap and the ball strap operate coupled and held together at the sides with double-sided Velcro (where they touch). However, we know that Velcro is generally used to fasten things in a fixed position as opposed to providing mobility. Therefore, its use in the manner described by Sanders renders the design useless in providing directional flexibility when rolling the ball under the foot.
U.S. Pat. No. 10,130,549 B2 Issued to Balducci on Nov. 20, 2018 describes a physical therapy ball comprising inner and outer hallow spherical bodies. A web positions the inner spherical body with respect to the outer spherical body to form a gap there between. The gap is filled with a high heat capacity gel. An array of conical sections extends from the outer surface of the outer spherical body to facilitate foot massage.
This device presents one fundamental flaw. It lacks a mechanism for attaching it to any part of the body, thereby making it impossible to control the ball under the foot. In this application, the ball might roll away under a piece of furniture (for example, under the bed) in consequence, the user would have to stop exercising and get down on his/her knees to retrieve the ball. This might happen several times during the exercise session making its use very inconvenient.
As explained above, prior art in this field teach several exercising devices all of which correctly emphasize the need of stretching the plantar fascia; nevertheless, there is still a need for a reliable and functional device that properly emphasizes and delivers a method of applying massage and pressure to the plantar fascia.
In consequence, the primary purpose of the present invention is to deliver a novel exercise device for rehabilitating the plantar fascia with the following demonstrable advantages:
a) Original design characteristics
b) Movable flexibility, reliability, and functionality for the user
c) A cost effective exercise solution
Our device, clearly displays evidence of original design characteristics. The novel configuration of all its parts, built in conjunction, delivers an integrated unit device that enables easy, fast, and safe application on the foot. A second advantage is the elasticity of the construction materials employed, which deliver universal one-size-fits-all original design characteristics of flexibility, reliability, and functionality of use. A third advantage is evident in the simplicity of the design, which allows for a cost effective exercise solution. These three advantages will become more evident in the detailed drawings and description down below.
The present foot exercise/massage invention is a novel four-section system built to operate as a universal integrated unit. Each section separately comprises:
Section 1) an ankle brace member, which securely loops and fastens around the ankle of the user.
Section 2) an elastic strip-sleeve member directly connected to the brace section resting exactly on the top section of the foot. This strip-sleeve section furthermore includes two other support members:
a) An attached pin/ring component exemplified by a circular base, a raised stem, and a ring support member; and
b) A frontal toe loop component attached to the underside of the strip-sleeve member.
Section 3) an elastic cord member unrestrictedly threaded through two key points the pin/ring and the center axis of a ball.
Section 4) a spherical exercise/massage ball member that includes an open channel crossing through its central axis.
All these section components, built together as an integrated unit device, deliver a novel foot exercise/massage device engineered for the treatment and relief of pain and inflammation caused by plantar fasciitis.
The accompanying drawings illustrate the present invention:
Lastly, is noted that any specific methods, processes and suitable materials (elastic, molded plastic, rubber, PVC blends, sports mesh, spongy, and others) that prove useful in the manufacturing and overall comfort and fit of this, device may be employed.