In general, the present invention relates to a portable pressurized gas cylinder, and in particular to a foot for a portable pressurized gas cylinder.
A variety of pressurized gas cylinders have been used for storage and transportation of pressurized gas products for household and industrial. For example, the cylinders may be used for the storage of gas for cooking appliances such as stoves or grills. Many of these cylinders have traditionally been fabricated of steel with a steel cylindrical body having a valve at the top for controlling the flow of gas from the cylinder and a footing at the bottom to provide stability for the cylinder upon a supporting surface. When steel cylinders are taken indoors, for example, inside a kitchen or into other living areas of the home, the footing tends to leave rust stains on the flooring or carpeting of the home.
In accordance with an embodiment of the present invention, a foot ring configured to be secured to a tank having a collar is provided. The foot ring includes a base having an inner and outer surface, a central portion, and an outer peripheral portion, a plurality of circumferentially spaced deflectable longitudinal lock tabs extending around the base for securing the foot ring to the tank, each of the circumferentially spaced deflectable longitudinal lock tabs having a first projection and a catch extending from the first projection for engaging a flange of the collar, and a plurality of circumferentially spaced deflectable rotational lock tabs extending around the base for preventing rotational movement of the foot ring relative to the tank, each of the circumferentially spaced deflectable rotational lock tabs having a second projection configured to be received in a respective notch in the flange.
In accordance with an embodiment of the present invention, a portable gas cylinder is provided that includes a gas tank having an upper portion, a lower portion, and a collar, the collar including a base secured to the lower portion, a flange extending around and radially outwardly from the base, and a plurality of notches circumferentially spaced around the flange, and a foot ring configured to be attached to the gas tank, the foot ring including a base having an inner and outer surface, a central portion, and an outer peripheral portion, a plurality of circumferentially spaced deflectable longitudinal lock tabs extending around the base for securing the foot ring to the tank, each of the circumferentially spaced deflectable longitudinal lock tabs having a first projection with an inner surface configured to abut a radially outer surface of the flange, and a catch extending from the first projection for engaging an underside of the flange to secure the foot ring to the tank, and a plurality of circumferentially spaced deflectable rotational lock tabs extending around the base for preventing rotational movement of the foot ring relative to the tank, each of the circumferentially spaced deflectable rotational lock tabs having a second projection configured to be received in a respective one of the notches.
In accordance with an embodiment of the present invention a method of attaching a foot ring to a tank having a collar with a flange is provided. The method includes advancing the foot ring toward the collar until a plurality of circumferentially spaced deflectable longitudinal lock tabs are engaged with the collar to secure the foot ring to the tank, wherein each of the circumferentially spaced deflectable longitudinal lock tabs have a first projection with an inner surface that abuts a radially outer surface of the flange and a catch extending from a respective one of the first projections for engaging an underside of the flange, and rotating the foot ring until a plurality of circumferentially spaced deflectable rotational lock tabs engage with notches in the flange thereby preventing rotational movement of the foot ring relative to the tank.
These and other objects of this invention will be evident when viewed in light of the drawings, detailed description and appended claims.
The invention may take physical form in certain parts and arrangements of parts, a preferred embodiment of which will be described in detail in the specification and illustrated in the accompanying drawings which form a part hereof, and wherein:
Embodiments of the invention relate to methods and systems that relate to a portable gas cylinder. The cylinder has a gas tank having an upper portion, a lower portion, and a collar, the collar including a base secured to the lower portion, a flange extending around and radially outwardly from the base, and a plurality of notches circumferentially spaced around the flange. The cylinder also includes a foot ring configured to be attached to the gas tank. The foot ring includes a base having an inner and outer surface, a central portion, and an outer peripheral portion, a plurality of circumferentially spaced deflectable longitudinal lock tabs extending around the base for securing the foot ring to the tank, each of the circumferentially spaced deflectable longitudinal lock tabs having a first projection with an inner surface configured to abut a radially outer surface of the flange, and a catch extending from the first projection for engaging an underside of the flange to secure the foot ring to the tank, and a plurality of circumferentially spaced deflectable rotational lock tabs extending around the base for preventing rotational movement of the foot ring relative to the tank, each of the circumferentially spaced deflectable rotational lock tabs having a second projection configured to be received in a respective one of the notches.
With reference to the drawings, like reference numerals designate identical or corresponding parts throughout the several views. However, the inclusion of like elements in different views does not mean a given embodiment necessarily includes such elements or that all embodiments of the invention include such elements. The examples and figures are illustrative only and not meant to limit the invention, which is measured by the scope and spirit of the claims.
Turning now to
The collar 20 may be secured to the lower portion 18 in any suitable manner, such as by welding, or may alternatively be integrally formed with the lower portion 18. The collar 20, which is shown as a circular collar, includes a base 22 that is attached to the lower portion 18, and a flange 24 extending around and radially outwardly from the base 22. The flange 24 includes a plurality of notches 26 circumferentially spaced around the flange 24 inward from an edge of the flange 24. The collar 20 may be made of a suitable material, such as metal, and may be made in a suitable manner, such as pressing. The notches 26 prevent the metal collar 20 from cracking as it is bent during pressing and additionally serve to receive rotational lock clips on the foot ring 14 as will be described below in detail.
Turning now to
The foot ring 14 also includes a plurality of circumferentially spaced feet 50, 52 extending from the outer surface 36 of the base 32 for contacting a surface, such as a floor of a building. As shown, the foot ring 14 includes the plurality of circumferentially spaced feet 50 extending from the outer surface 36 at the periphery of the base 32, and the plurality of circumferentially spaced feet 52 extending from the outer surface 36 at an area radially inwardly spaced from the periphery. Each of the circumferentially spaced feet 50 may be radially aligned with one of the circumferentially spaced feet 52. The plurality of circumferentially spaced feet 50, 52 each include at least one opening 54, 56 extending therethrough for material savings and to allow liquid, such as water, to drain through the feet 50, 52 from within an inner area of the foot ring 14. As shown, each of the plurality of circumferentially spaced feet 50 include two openings 54 circumferentially spaced from one another and extending through the respective on of the plurality of circumferentially spaced feet 50 and each of the plurality of circumferentially spaced feet 52 include one opening 56 extending therethrough. The plurality of circumferentially spaced feet 50 are separated from adjacent ones of the plurality of circumferentially spaced feet 50 by recesses 58 extending toward the inner surface 34 and the plurality of circumferentially spaced feet 52 are separated by projections 60 in the outer surface 36 that form cavities in the inner surface 34.
The foot ring 14 additionally includes a plurality of circumferentially spaced shock absorbing members 70 and 72 extending from the inner surface 34 that form cavities in the outer surface 36 between circumferentially adjacent ones of the plurality of circumferentially spaced feet 50, 52. The shock absorbing members 70 and 72 are provided to absorb a shock, for example if the portable gas cylinder 10 was dropped on the surface, thereby preventing damage to the gas tank 12. For example, the shock absorbing members 70 and 72 can deform or bend to absorb energy without causing damage to the gas tank 12.
As shown, the foot ring 14 includes the plurality of circumferentially spaced shock absorbing members 70 extending from the inner surface 34 proximate the periphery of the base 32, and the plurality of circumferentially spaced shock absorbing members 72 extending from the inner surface 34 at an area radially inwardly spaced from the shock absorbing members 70. The plurality of circumferentially spaced shock absorbing members 70 and 72 are angled to abut and conform to the lower portion 18 of the gas tank 12. As shown, because of the contour of the lower portion 18, the plurality of circumferentially spaced shock absorbing members 70 extend from the inner surface farther than the plurality of circumferentially spaced shock absorbing members 72.
Each of the plurality of circumferentially spaced shock absorbing members 70 may be radially aligned with a respective one of the plurality of circumferentially spaced shock absorbing members 72 and radially spaced therefrom by one of the projections 60 that forms the cavity between the shock absorbing members 70 and 72. A support rib 74 is provided between adjacent ones of the plurality of shock absorbing members 70 and a support rib 76 is provided between adjacent ones of the plurality of shock absorbing members 72. A support spacer 78 is provided between each of the shock absorbing members 70 and the inner surface 46 of the skirt 44.
The foot ring 14 additionally includes a plurality of circumferentially spaced deflectable longitudinal lock tabs 90 extending around the base 32 for securing the foot ring 14 to the gas tank 12. When engaged, the deflectable longitudinal lock tabs 90 prevent movement of the foot ring 14 in a longitudinal direction parallel to an axis of the gas tank 12. As shown, the plurality of circumferentially spaced deflectable longitudinal lock tabs 90 extend radially outwardly from the central portion 38 of the base 32 and each have a projection 92 extending toward the inner surface 34 from a free end of the tab 90. The projections 92 define a radially outer portion of the channel 42 an each have an inner surface that is configured to abut a radially outer surface of the flange 24 of the collar 22. Each projection 92 also has a catch 94 for engaging an underside of the flange 24 to secure the foot ring 14 to the collar 22, thereby securing the foot ring to the gas tank 12. Each catch extends towards the central portion 38 from the inner surface of the respective projection 92. Each deflectable longitudinal lock tab 90 can include an opening 96 extending therethrough for material savings and to decrease the rigidity of the tab 90.
The foot ring 14 additionally includes a plurality of circumferentially spaced deflectable rotational lock tabs 110 extending around the base 32 for preventing rotational movement of the foot ring 14 relative to the gas tank 12 when the foot ring 14 is secured to the gas tank 12. As shown, the plurality of circumferentially spaced deflectable rotational lock tabs 110 extend radially inwardly from the base toward the central portion 38 and each have a projection 112 projecting toward the inner surface 34 from a free end of the tab 110. The projections 112 are shaped to fit within one of the notches 26 in the collar 20, and as shown, are curved to fit within the curved notches 26 such that sides of the curved projections 112 interact with sides of the curved notches 26 to prevent rotational movement of the foot ring 14 relative to the collar 20 in a circumferential direction. The plurality of circumferentially spaced deflectable longitudinal lock tabs 90 alternate with the plurality of circumferentially spaced deflectable rotational lock tabs 110 around the foot ring 14. The lock tabs 90 and 110 are positioned proximate the central portion 38 to be protected from shock, for example if the tank 12 is dropped, by the plurality of circumferentially spaced shock absorbing members 70 and 72 that are radially outwardly spaced from the lock tabs 90 and 110.
Turning now to
The portable gas cylinder 210 includes a gas tank 212 and a foot ring 214 attached to the gas tank 212. The gas tank 212 includes an upper portion 216 having a valve port (not shown), a lower portion 218, and a collar 220 secured to the lower portion 218. The collar 220 includes a base 222 that is attached to the lower portion 218, and a flange 224 extending around and radially outwardly from the base 222. The flange 224 includes a plurality of notches 226 circumferentially spaced around the flange 224 inward from an edge of the flange 24.
The foot ring 214 includes a base 232 having inner and outer surfaces 234 and 236 and a central portion 238 with an opening 240 extending therethrough. The base 232 additionally has a channel around the opening 240 on the inner surface 234 for receiving the collar 220. Extending around and upward from a periphery of the base 232 is a skirt 244 having an inner surface 246 configured to abut the gas tank 212.
The foot ring 214 also includes a plurality of circumferentially spaced feet 250, 252 extending from the outer surface 236 of the base 232 for contacting a surface, such as a floor of a building. As shown, the foot ring 214 includes the plurality of circumferentially spaced feet 250 extending from the outer surface 236 at the periphery of the base 232, and the plurality of circumferentially spaced feet 252 extending from the outer surface 236 at an area radially inwardly spaced from the periphery. The plurality of circumferentially spaced feet 250 are separated from adjacent ones of the plurality of circumferentially spaced feet 250 by recesses 258 extending toward the inner surface 234 and the plurality of circumferentially spaced feet 252 are separated by projections 260 in the outer surface 236 that form cavities in the inner surface 234.
The foot ring 14 additionally includes a plurality of circumferentially spaced shock absorbing members 270 and 272 extending from the inner surface 234 that form cavities in the outer surface 236 between circumferentially adjacent ones of the plurality of circumferentially spaced feet 250, 252. A support rib is provided between adjacent ones of the plurality of shock absorbing members 270 and a support rib is provided between adjacent ones of the plurality of shock absorbing members 272. A support spacer is provided between each of the shock absorbing members 270 and the inner surface 246 of the skirt 244.
The foot ring 214 additionally includes a plurality of circumferentially spaced deflectable longitudinal lock tabs 290 extending around the base 232 for securing the foot ring 214 to the gas tank 212. The plurality of circumferentially spaced deflectable longitudinal lock tabs 290 extend radially outwardly from the central portion 238 of the base 232 and each have a projection 292 projecting toward the inner surface 234. The projections 292 define a radially outer portion of the channel an each have an inner surface that is configured to abut a radially outer surface of the flange 224 of the collar 222. Each projection 292 also has a catch 294 for engaging an underside of the flange 224 to secure the foot ring 214 to the collar 222.
The foot ring 214 additionally includes a plurality of circumferentially spaced deflectable rotational lock tabs 310 extending around the base 232. The plurality of circumferentially spaced deflectable rotational lock tabs 310 extend radially inwardly from the base toward the central portion 238 and each have a projection 312 projecting toward the inner surface 234. The projections 312 are shaped to fit within one of the notches 226 in the collar 220, and as shown, are curved to fit within the curved notches 226.
Turning now to
Referring initially to
Referring next to
Referring next to
Referring next to
Referring next to
Referring next to
The aforementioned systems, components, (e.g., foot, cylinders, among others), and the like have been described with respect to interaction between several components and/or elements. It should be appreciated that such devices and elements can include those elements or sub-elements specified therein, some of the specified elements or sub-elements, and/or additional elements. Further yet, one or more elements and/or sub-elements may be combined into a single component to provide aggregate functionality. The elements may also interact with one or more other elements not specifically described herein.
While the embodiments discussed herein have been related to the systems and methods discussed above, these embodiments are intended to be exemplary and are not intended to limit the applicability of these embodiments to only those discussions set forth herein.
The above examples are merely illustrative of several possible embodiments of various aspects of the present invention, wherein equivalent alterations and/or modifications will occur to others skilled in the art upon reading and understanding this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, systems, circuits, and the like), the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component, such as hardware, software, or combinations thereof, which performs the specified function of the described component (e.g., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the illustrated implementations of the invention. In addition although a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Also, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in the detailed description and/or in the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
This written description uses examples to disclose the invention, including the best mode, and also to enable one of ordinary skill in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that are not different from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
In the specification and claims, reference will be made to a number of terms that have the following meanings. The singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Approximating language, as used herein throughout the specification and claims, may be applied to modify a quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Moreover, unless specifically stated otherwise, a use of the terms “first,” “second,” etc., do not denote an order or importance, but rather the terms “first,” “second,” etc., are used to distinguish one element from another.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
The best mode for carrying out the invention has been described for purposes of illustrating the best mode known to the applicant at the time and enable one of ordinary skill in the art to practice the invention, including making and using devices or systems and performing incorporated methods. The examples are illustrative only and not meant to limit the invention, as measured by the scope and merit of the claims. The invention has been described with reference to preferred and alternate embodiments. Modifications and alterations will occur to others upon the reading and understanding of the specification. It is intended to include all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof. The patentable scope of the invention is defined by the claims, and may include other examples that occur to one of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differentiate from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.